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DECISION TREES DO NOT GENERALIZE TO NEW VARIATIONS
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The family of decision tree learning algorithms is among the most widespread and studied. Motivated by the
desire to develop learning algorithms that can generalize when learning highly varying functions such as those
presumably needed to achieve artificial intelligence, we study some theoretical limitations of decision trees. We
demonstrate formally that they can be seriously hurt by the curse of dimensionality in a sense that is a bit different
from other nonparametric statistical methods, but most importantly, that they cannot generalize to variations not
seen in the training set. This is because a decision tree creates a partition of the input space and needs at least
one example in each of the regions associated with a leaf to make a sensible prediction in that region. A better
understanding of the fundamental reasons for this limitation suggests that one should use forests or even deeper
architectures instead of trees, which provide a form of distributed representation and can generalize to variations
not encountered in the training data.
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1. INTRODUCTION

A long-term goal of machine learning research that remains elusive is to produce methods
that will enable artificially intelligent agents. Examples of artificial intelligence (AI) tasks
that remain beyond the reach of current algorithms include many tasks involving visual
perception, auditory perception, and natural language processing. What we would really like
to see are machines that appear to really understand the concepts involved in these tasks.
We argue that achieving AI through machine learning involves capturing a good deal of the
statistical regularities underlying complex data such as natural text and video. These data
objects live in very high-dimensional spaces where the number of possible combinations
of values is huge. Yet, we expect these regularities to be representable in a comparatively
compact form, simply because they arise from the laws of physics and the organization of
our world. Mammals are able to capture a great deal of that structure in a brain that is small
in comparison with the set of possible combinations of values of their sensors. Consider
as a simple example the variations in pixel intensities one obtains by taking pictures of the
same 3D object under different illuminations, in front of different backgrounds, and with
different camera geometry, as illustrated in the NORB data set (LeCun, Huang, and Bottou
2004). Changing only slightly one of these factors (that we will call factors of variation in
the remainder of the article), for example, rotating the object, gives rise to very different
images, when an image is looked at as a vector of pixel intensities, associated with Euclidean
distance as a metric. Specifically, Bengio, Monperrus, and Larochelle (2006b) illustrate how
rotation or translation maps out a manifold in the space of pixel intensities that is highly
curved. A function that would be used to really identify an object or estimate density in the
space of such data would have to capture most of these variations. If in addition, we consider
all the factors that can interact in creating the variations that are observed in natural language
text or in video, it becomes clear that modeling such data requires learning functions with a
large number of variations.

To approach the kind of proficiency that we aim for, it therefore seems plausible to
assume that the required learning algorithms will have to learn functions with a large
number of variations, which however can be represented compactly (i.e., there exists a
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small number of factors underlying these variations). These variations correspond to many
possible combinations of values for the different factors of variation that underlie the unknown
generating process of interest. Note that this large set of variations is not arbitrary. Because
these variations arise through complex interactions of real-world factors, these variations in
the desired function value are structured: one expects that there exists a reasonably simple1

program (such as the one implicitly computed by human brains) that can predict these
variations well. Hence, by the theoretical arguments of Kolmogorov complexity (Solomonoff
1964; Kolmogorov 1965; Li and Vitanyi 1997; Hutter 2005), one would also expect that some
learning algorithms could discover the essential elements of this structure, which would be
required to truly generalize in such domains.

A better understanding of the limitations of current algorithms can serve as a guide in
moving statistical machine learning toward artificial intelligence. If our goal is to achieve
AI through machine learning it is important both to identify the limitations of current
learning algorithms with respect to learning highly varying (but structured) functions, and
to understand these limitations well enough to work around them.

The study of limitations of particular classes of learning algorithms with respect to
learning highly varying functions is not new. This article is inspired by previous work that
has shown such limitations in the case of kernel methods with a local kernel (Bengio,
Delalleau, and Le Roux 2006a) as well as in the case of so-called shallow function classes
(Bengio and LeCun 2007)—which include all fixed-kernel kernel machines such as Support
Vector Machines (Boser, Guyon, and Vapnik 1992; Cortes and Vapnik 1995). These papers
study in particular the case where the predicted function has the form f (x) = ∑

iαi K (x ,
xi ), where xi are training examples and K (u, v) is a “local” function such as the Gaussian
with spread σ . Here, local means that a training example xi has mostly influence on f (x)
only for x near xi . When σ → 0 the function is more local and can model more variations
(the “bumps” can be distinguished), and when σ → ∞ the function becomes quickly very
smooth (first a second-order polynomial, then an affine predictor, then a constant predictor).
The function can be seen as the addition of local bumps, and it is mostly the training examples
in the region around a training example xi that contribute to the value of the function around
xi . For simple to analyze and simple to express but highly varying functions such as the
parity function (also studied here), one can show that an exponential number of training
examples is necessary to obtain a given level of generalization error.

Here, we focus on similar limitations, in the case of decision trees. The theorems are
specialized to the most common type of decision trees, which has axis-aligned decision nodes
and constant leaves, that is, where each node partitions the data getting into it according to
whether a particular input variable is greater or not than a threshold, and where for the data
associated with a leaf, the predicted output is a constant (chosen by learning). However, we
believe that similar proof techniques could be extended to wider classes of decision trees.
Previous theoretical and empirical studies have already shown that decision trees can be
severely limited in their expressive power, unless one allows the number of leaves to be
very large (e.g., exponential in the input size). For example Grigoriev, Karpinski, and Yao
(1995) have shown that to compute the MAX function (answering whether the j th input
is the maximum over the given n inputs) one would require a tree with a size exponential
in n. A related result (which is also closely related to the spirit to this article) is found in
Cucker and Grigoriev (1999) and is discussed below. It states a lower bound on the depth of
a decision tree when some functions must be approximated with an error less than δ.

1 Simple in the sense that its size is small compared to the number of possible combinations of these underlying factors
of variation.
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Decision trees were introduced in Breiman et al. (1984): A decision tree recursively
partitions the input space and assigns an output value for each of the input regions in that
partition. Each node of the tree corresponds to a region of the input space and the root is
associated with the whole input space. The whole tree corresponds to a piece-wise constant
function where the pieces are defined by the internal decision nodes, each leaf is associated
with one piece, along with a constant to output in the associated region.

In this article, we study fundamental theoretical limitations of decision trees concerning
their inability to generalize to variations not seen in the training set. The basic argument
is that we need a separate leaf node to properly model each such variation, and at least
one training example for each leaf node. Our theoretical analysis is in line with previous
empirical results (Pérez and Rendell 1996; Vilalta, Blix, and Rendell 1997) showing that the
generalization performance of decision trees degrades when the number of variations in the
target function increases. Whereas other nonparametric learning algorithms also suffer from
the curse of dimensionality, the way in which the problem appears in the case of decision
trees is different and helps to focus on the fundamental difficulty. The general problem is
not really dimensionality, nor is it about a predictor that is a sum of purely local terms (like
kernel machines). The problem arises from dividing the input space in regions (in a hard
way in the case of decision trees) and having separate parameters for each region. Unless the
parameters are tied in some way or regularized using strong prior knowledge, the number
of available examples thus limits the complexity one can capture, that is, the number of
independent regions that can be distinguished.

2. DEFINITIONS

An internal node of the tree is associated with a decision function that splits the region
(associated with this node) into subregions. Each subregion corresponds to a child of this
internal node. Leaf nodes are associated with a function (usually a constant function) that
computes the prediction of the tree when the input example falls in the region associated
with the leaf. Because the number of possible decision trees is exponential in the size of the
tree, the trees are grown greedily, and the size of the tree is selected based on the data, for
example, using cross-validation. A decision tree-learning algorithm is thus nonparametric,
constructing a more flexible function when more training examples are available. In many
implementations (see Breiman et al. 1984) the internal node decision function depends on a
single input variable (we call it axis-aligned), and for a continuous variable it just splits the
space by selecting a threshold value (thus giving rise to a binary tree). It is also possible to
use multivariate decision functions, such as a linear classifier (as in Loh and Shih 1997), or
n-ary splits in the internal nodes.

Definition 1 (n-ary split function). Let n be an internal node of a tree and n1, . . . , nk its
k child nodes. The n -ary split function Sn of node n is defined on the region Rn of input
space R

d associated with n, and takes values in {n1, . . . , nk}. It, thus, defines a region Rni

associated with each child node ni such thatRni = {x ∈ Rn|Sn(x) = ni }.

Definition 2 (Decision Tree). A decision tree is the function T : R
d → R resulting from a

learning algorithm applied on training data lying in input space R
d , which always has the

following form:

T (x) =
∑

i∈leaves

gi (x)1x∈Ri =
∑

i∈leaves

gi (x)
∏

a∈ancestors(i)

1Sa(x)=ca,i , (1)
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where Ri ⊂ R
d is the region associated with leaf i of the tree, ancestors(i) is the set of

ancestors of leaf node i , ca,i is the child of node a on the path from a to leaf i , and Sa is
the n -ary split function at node a. gi ( · ) is the decision function associated with leaf i and
is learned only from training examples in Ri . Note that exactly one term of the sum in T (x)
can be nonzero (associated with the leaf in which x falls). Learning algorithms for decision
trees grow the tree by adding and removing nodes, in such a way that every node has at least
one training example falling in it (i.e., no Ri is empty).

Definition 3 (Piecewise Constant). We say function f : R ⊆ R
d → R is piecewise constant

if it is of the form f (x) = ∑N
i=1 gi 1x∈Ri for some finite N , where gi ∈ R and the Ri ’s are

disjoint subsets of R
d such that ∪N

i=1 Ri = R.

Definition 4 (Piecewise Constant with N Pieces). We say that function f is piecewise
constant with N pieces if it is piecewise constant and it cannot be represented with less than
N pieces.

Definition 5 (Constant-Leaves Decision Tree). A constant-leaves decision tree is a decision
tree as in Definition 2 such that for each leaf node i , the decision function gi ( · ) is
constant, i.e., ∀x ∈ Ri , gi (x) = gi ∈ R. If it has N leaf nodes, it can thus be written
TN (x) = ∑N

i=1 gi 1x∈Ri and it is a piecewise constant function with at most N pieces.

Definition 6 (Approximation and error). We say a function f approximates a function g with
error ε if supx | f (x) − g(x)| is smaller than ε.

Definition 7 (ε-variation). We say that a function f has n ε-variations if it takes at least n
constant pieces for a piecewise constant function to approximate f with an error at most ε
over the domain of f .

3. INABILITY TO GENERALIZE TO NEW VARIATIONS

Cucker and Grigoriev (1999) prove a very interesting result on the complexity of function
approximation when a round-off error is allowed. We believe that their result is intimately
connected to the inability of decision trees to generalize to new variations. Their result,
illustrated in Figure 1 , is about trees that define a piecewise-polynomial function T that can
approximate another piecewise-polynomial function f . f is associated with regions Vi ⊂ R

d

that form a partition of the input space R
d , so that f is polynomial in each Vi . The size of

these regions is characterized by a quantity w(τ ) that is the number of pieces large enough
to contain a d-dimensional cube of side τ . They define a tolerance �τ that depends only on
the target function f and the choice of τ , and they prove in their main theorem that if T
approximates f with error δ and δ < �τ , then the depth of T cannot be less than log2 w(τ ).

The following Lemma can be seen as stating for constant-leaves (piece-wise constant)
decision trees a result that has the same flavor as the aforementioned, but in the context of
learning and generalization. Instead of characterizing the complexity of the target function
by the geometry of regions, we simply count the number of regions N needed to obtain a
given accuracy.

Lemma 1. Let F be the set of piece-wise constant functions. Consider a target function
h : D ⊆ R

d → R. For a given representation error level ε, let N be the minimum number
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FIGURE 1. Example of a partition of R
2 into six regions V 1 to V 6, with the number of regions able to

contain a 2D square of side τ being w(τ ) = 4 (V 1 to V 4 can contain such a square, while V 5 and V 6 are too
small). A tree approximating a piecewise-polynomial function f defined by these regions must have depth at least
log2 (w(τ )) = 2 when the approximation error is sufficiently small (less than some threshold �τ ).

of constant pieces required to approximate with a function in F the target function h with
an error less than ε. Then to train a constant-leaves decision tree with error less than ε one
requires at least N training examples.

Proof . This is a direct consequence of the fact that a constant-leaves decision tree with �
leaves is piecewise constant with at most � pieces, and each leaf must contain at least one
training example. �

Since one can easily form an exponential number of distinct regions in R
d by taking

cross-products of one-dimensional partitions, it should now appear clearly that the number
of examples required to train a constant-leaves decision tree can grow exponentially with the
dimension of the input space R

d .
To illustrate this phenomenon concretely, we prove such exponential growth statements

in the special cases of two classes of functions: the parity function and the checkerboard
functions (defined later). What is important to note here, is that these functions may otherwise
be represented compactly, suggesting that some rather generic learning algorithms could
learn them. This is justified by the fact that the Kolmogorov complexity (Kolmogorov 1965;
Li and Vitanyi 1997) of these functions could be very low, that is, one would be able to
express them with a small program in any current programming language. Functions with
low Kolmogorov complexity can theoretically be learned with few examples (Solomonoff
1964; Kolmogorov 1965; Li and Vitanyi 1997; Hutter 2005), but we show in this section that
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decision trees are unable to do so, regardless of the learning algorithm being used. Keep in
mind that although the following classes of functions may be easy to represent compactly in
some standard programming language, it does not necessarily mean it is easy to learn this
representation, because one needs an efficient way to search in the space of programs. The
results in this section do not tell us how to solve this computational complexity issue, but by
highlighting some fundamental limitations of decision trees, they also give some ideas as to
how one may get around them: this will be discussed in Section 4.

3.1. Curse of Dimensionality on the Parity Task

It was already known from empirical evidence that decision trees were not able to learn
the parity function, in the sense of not generalizing to regions of the input space that do
not correspond to a training example (see, e.g., Pérez and Rendell 1996). The mathematical
results in this section show this formally, connecting the number of training examples, input
dimension, and generalization error.

Definition 8 (d-bit Parity Task). The d -bit parity task has as target function the d -bit parity
function p : {0, 1}d ⊂ R

d → {−1, 1},

p(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1 if
d∑

i=1

xi is even

1 if
d∑

i=1

xi is odd.

As a learning task it has a total of 2d possible examples, each sampled with equal probability.
On this task, we thus define the number of generalization errors of a predictor g as |{x ∈
{0, 1}d : g(x) 
= p(x)}| and its generalization error (or error rate) as |{x ∈ {0, 1}d : g(x) 
=
p(x)}|/2d . Similarly we can talk of the generalization error of a node of a decision tree as
the average error among the examples falling into that node.

Definition 9 (Constant-leaves decision tree with axis-aligned decision nodes). A constant-
leaves decision tree with axis-aligned decision nodes is a constant-leaves decision tree whose
decision split at internal node i is of the form Si (x) = 1x j <αi , i.e., it splits the current region
in two, based on the comparison between the j th coordinate and a single threshold αi .

Lemma 2. As illustrated in Figure 2 , on the task of learning the d -bit parity function, a
constant-leaves decision tree with axis-aligned decision nodes and output in { − 1, 1} will
have a generalization error of 1

2 on leaf nodes of depth less than d .

Proof . Let us prove the result by induction on d ≥ 1, for both the tasks of learning the parity
function and its opposite −p( · ). For d = 1, it is obvious since the only leaf node of depth
less than d can be the root node, which contains all 2 possible examples. Let us suppose the
result is true for d = k ≥ 1, and let us consider the case d = k + 1. Since no node can be
empty, the split function at the root node r must have a threshold αr ∈ (0, 1). Without loss of
generality, suppose the split is performed on the first input coordinate. The two subregions
thus defined are R = {x ∈ {0, 1}k+1|x1 = 0} and R′ = {x ∈ {0, 1}k+1|x1 = 1}. Since
the first coordinate is constant in both R and R′, the corresponding subtrees cannot perform
additional splitting with regard to this coordinate (as this would result in empty nodes), and



DECISION TREES DO NOT GENERALIZE TO NEW VARIATIONS 455

FIGURE 2. Illustration of Lemma 2 on a tree with axis-aligned decision nodes in {0, 1}3. Data points are
listed inside the leaf node they fall into, in italics for points whose parity output would be −1, and in bold for
those whose parity output would be 1. The two leaf nodes with depth less than 3 must have a classification error
of 1

2 , since they contain one of each kind.

x1 can be ignored. If the original task was to learn the parity task this implies the subtree
trained on R tries to learn the parity task in dimension k, while the subtree trained on R′ tries
to learn the opposite of the parity task in dimension k (because the target is switched on R′,
due to x1 = 1). From the induction hypothesis, all leaf nodes of depth less than k in these
subtrees (i.e., of depth less than k + 1 = d in the full tree) have a generalization error of 1

2 .
If the original task was to learn the opposite of the parity task, the same reasoning applies
(switching the roles of R and R′). �

Theorem 1. On the d -bit parity task, a constant-leaves decision tree with axis-aligned
decision nodes trained on n different examples has a generalization error in [ 1

2 − n
2d+1 , 1 −

n
2d ].

Proof . Let k the number of leaf nodes of depth d in a tree trained on n different examples.
We will first show that the generalization error is ε = 1

2 − k
2d+1 . On a leaf of depth d, there can

be only one training example (because every ancestor of the leaf splits on a different input
and divides the input space in 2, and there are only 2d possible examples). Hence training
and generalization error on the k depth d leaves is 0. On the other hand, Lemma 2 shows
that the generalization error is 1/2 on the other leaves. Since there are k examples falling in
depth d leaves, and 2d − k examples falling in the others, the total number of generalization
errors is 1

2 (2d − k) and the error rate is ε = 1
2 − k

2d+1 .
To prove our theorem we now have to find lower and upper bounds for k. Clearly, k

≤ n, otherwise we could have more leaf nodes of depth d than examples. This proves the
first inequality: ε ≥ 1

2 − n
2d+1 . Moreover, the worst we can do—in terms of generalization

error—before inserting a first leaf node of depth d is to create all the leaf nodes of depth d −
1 and this requires at least 2d−1 examples. Then each additional example will lead to a node
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of depth d − 1 being split, creating two nodes of depth d, so that k ≥ 2(n − 2d−1). Hence

ε ≤ 1
2 − 2(n−2d−1)

2d+1 = 1
2 − 2n

2d+1 + 2d

2d+1 = 1 − n
2d . �

Corollary 1. On the task of learning the d -bit parity function, a constant-leaves decision
tree with axis-aligned decision nodes will require at least 2d (1 − 2ε) examples to achieve a
generalization error less than or equal to ε.

Proof . Let n(ε) be the number of examples to get a generalization error ε. Directly from the
lower bound of Theorem 1 we find n(ε) ≥ 2d (1 − 2ε). �

3.2. Curse of Dimensionality for the Checkerboard Task

The parity function may look maybe too simple. Can we generalize some of its properties?
The checkerboard task defined later is similar in spirit to the parity function, in the sense
that it defines a large number of regions such that the target output in each region is different
from the target output in neighboring regions, but in such a way that the overall function can
be written down with an expression much smaller than the total number of regions, that is,
a learning algorithm approximately minimizing Kolmogorov complexity should be able to
discover a good solution without requiring an exponential number of examples.

Definition 10 (Checkerboard Task). A Checkerboard task over [0, 1)d with minimum varia-
tion δ, minimum mass m per board cell and interval numbers {ni }d

i=1 defines:

• for each dimension i ≤ d, a partition of [0, 1) into ni intervals {[αi, j , αi, j+1)}ni
j=1 with

αi ,1 = 0, αi,ni +1 = 1, and αi ,j < αi ,j+1
• a target function f constant over each cell C j1,..., jd = [α1, j1, α1, j1+1) × · · · ×

[αd, jd , αd, jd+1), such that the constant values of f on two neighborhing cells differ
at least by δ.

To form a data set, the inputs x are sampled with a probability distribution p such
that P(x ∈ C j1, j2,..., jd ) = ∫

x∈C j1, j2,..., jd ) p(x) dx ≥ m for every cell C j1, j2,..., jd and p is uniform

within each cell. The generalization error of a predictor h on a checkerboard task is measured
as the average squared error E = ∫

(h(x) − f (x))2 p(x)dx .

Proposition 1. To obtain an average generalization error less than mδ2

2 on a checkerboard
task over [0, 1)d with minimum mass m per cell, minimum variation δ and interval numbers
{ni }d

i=1, using a constant-leaves decision tree with axis-aligned decision nodes, the tree must
be trained with at least N = ∏d

i=1 ni different examples.

Before going into the detailed proof, we first give an intuitive explanation for this result.
The idea is that if a tree is trained with less than N different examples, then its output must
be constant on two neighboring cells. Because the target values in these cells differ by at least
δ, and each cell has a probability mass at least m, then the squared error is related to mδ2.
This reasoning is detailed in the last paragraph of the following proof (explaining where the
1
2 factor comes from), while most of this proof is dedicated to showing first that we may
consider only trees using cell boundaries as splitting thresholds.
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Proof . We will prove that a tree achieving a generalization error less than mδ2

2 must have at
least N leaf nodes, which by Definition 2 of a decision tree implies it has been trained with
at least N examples (since there must be at least one training example falling in each leaf).

We first prove that we can restrict ourselves to decision trees whose splitting functions
at each node are of the form

S(x) = 1xi <αi, j , (2)

i.e., whose splitting thresholds on dimension i are constrained to be among the interval
boundaries {αi, j }ni

j=1. To show this, let us consider any constant-leaves decision tree with
axis-aligned decision nodes, and let us show its thresholds can be modified to verify constraint
(2) without adding nodes nor increasing its generalization error on the checkerboard task.
Let S be the splitting function of the highest depth node that does not verify (2), that is, is of
the form:

S(x) = 1xi <γ , (3)

where γ ∈ (0, 1) (otherwise some node would contain no example) and such that ∀ j =
1, . . . , ni + 1 we have γ 
= αi ,j . Since αi ,1 = 0, αi,ni +1 = 1 and the αi ,j are increasing with
j , there must exist j ∈ {1, . . . , ni} such that γ ∈ (αi ,j , αi ,j+1). Now consider, among all
nodes in the path from the root of the tree to the parent of the node we are considering, those
that also make a split based on the same variable xi , and define T the set of all their split
thresholds. We will focus on the interval defined by the following two real numbers:

λ = max(αi, j , max(β ∈ T |β < γ ))

μ = min(αi, j+1, min(β ∈ T |β > γ )),

where we take the minimum of an empty set to be +∞ and its maximum to be −∞ (note also
that γ /∈ T because a tree does not split twice on the same variable with the same threshold
in the same branch, otherwise one would get 0 training examples in a node). From their
definition, λ and μ verify the following inequality:

αi, j ≤ λ < γ < μ ≤ αi, j+1. (4)

Moreover, for fixed xj , j 
= i , when xi varies in [λ, γ ) or in [γ , μ) the output of the decision
tree does not change, since there exists no split with regard to coordinate xi with a threshold
in the interior of these intervals (remember that the node we are considering is the deepest
one not verifying (2), and thus all its child nodes that may split with regard to xi have a
threshold in (0, αi ,j ] or [αi ,j+1, 1)).

Let h be the output function of the tree, and E0 its average error on D0 = {x ∈ [0, 1)d |xi

∈ [λ, γ )}:

E0 = 1∫
x∈D0

p(x) dx

∫
x∈D0

(h(x) − f (x))2 p(x) dx

de f= 1

p0
J (D0).
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Similarly, define E1 = 1
p1

J (D1) its average error on D1 = {x ∈ [0, 1)d |xi ∈ [γ , μ)}. Since
D0 and D1 are disjoint, the overall generalization error of h can be written

E =
∫

x∈[0,1)d

(h(x) − f (x))2 p(x) dx

= J (D0) + J (D1) + J ([0, 1)d \ (D0 ∪ D1))

= p0 E0 + p1 E1 + J ([0, 1)d \ (D0 ∪ D1)). (5)

Let us first consider the case E0 ≤ E1. Let h′ the output function that would result from
replacing threshold γ in (3) by μ, and D′ = {x ∈ [0, 1)d |xi ∈ [λ, μ)} (note that D′ =
D0∪D1). Denoting by J ′(A) the error

∫
x∈A(h′(x) − f (x))2 p(x)dx , the generalization error

E ′ of h′ can be written:

E ′ = J ′(D0) + J ′(D1) + J ′([0, 1)d \ (D0 ∪ D1)). (6)

For x ∈ [0, 1)d\D1, we have h′(x) = h(x) since for such a x , xi < γ⇔xi < μ and xi ≥
γ⇔xi ≥ μ. Thus, using (5) and (6), the difference between generalization errors E and E ′
reduces to

E − E ′ = p1 E1 − J ′(D1). (7)

Defining x̃ = (x1, . . . , xi−1, xi+1, . . . , xd) ∈ [0, 1)d−1, J ′(D1) can be written

J ′(D1) =
∫

x∈D1

(h′(x) − f (x))2 p(x) dx

=
∫

x̃∈[0,1)d−1

(∫
xi ∈[γ,μ)

(h′(x) − f (x))2 p(x) dxi

)
dx̃ . (8)

To simplify (8) we observe that, for a fixed x̃ , h′(x) is constant with regard to xi ∈ [γ , μ)
because there is no node in the tree performing a split on xi with a threshold within this
interval. Let y ∈ [0, 1)d the point defined by yj = xj for all j 
= i , and yi = λ. Then h′(x) =
h(y), because:

• on the path from the root to the parent of the node we are considering, all splits with
regard to the i th coordinate return the same result for all values in [λ, μ) (this is a direct
consequence of the definition of λ and μ),

• the split for the node we are considering returns 0 when evaluating h′(x) because xi <
μ, and 0 when evaluating h(y) because yi < γ ,

• the splits on the i th coordinate for its child nodes can only involve thresholds equal to
some αi ,j , and thus return the same results for all values in [λ, μ) due to (4).

Similarly, we can compute J (D0) by

J (D0) =
∫

x∈D0

(h(x) − f (x))2 p(x) dx

=
∫

x̃∈[0,1)d−1

(∫
xi ∈[λ,γ )

(h(x) − f (x))2 p(x) dxi

)
dx̃ . (9)

For the same fixed x̃ as above, h(x) is constant with regard to xi ∈ [λ, γ ) since there is no
node in the tree performing a split on xi with a threshold within this interval. Thus, h(x) =
h(y) (with y defined as earlier, that is, with its i th coordinate set to λ). Finally, we observe
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that for a fixed x̃ , both p(x) and f (x) are also constant with regard to xi ∈ [λ, μ). Indeed,
let C be the cell containing x when xi = λ ≥ αi ,j : as xi increases, x stays in the same cell
as long as xi < αi ,j+1, which is true since μ < αi ,j+1. The probability distribution being
uniform within cell C , p(x) is thus constant and we denote it by p̃(x̃). Moreover, f (x) is also
constant since x stays in the same cell. We denote its value by f̃ (x̃). All these observations
allow us to rewrite (8) and (9) into

J ′(D1) =
∫

x̃∈[0,1)d−1

(μ − γ )(h(y) − f̃ (x̃))2 p̃(x̃) dx̃

J (D0) =
∫

x̃∈[0,1)d−1

(γ − λ)(h(y) − f̃ (x̃))2 p̃(x̃) dx̃

and consequently

J ′(D1) = μ − γ

γ − λ
J (D0) = μ − γ

γ − λ
p0 E0. (10)

To conclude, we need to express the above ratio in terms of p0 and p1. Using the same
notations:

p0 =
∫

x̃∈[0,1)d−1

(∫
xi ∈[λ,γ )

p̃(x̃) dxi

)
dx̃ =

∫
x̃∈[0,1)d−1

(γ − λ) p̃(x̃) dx̃

p1 =
∫

x̃∈[0,1)d−1

(∫
xi ∈[γ,μ)

p̃(x̃) dxi

)
dx̃ =

∫
x̃∈[0,1)d−1

(μ − γ ) p̃(x̃) dx̃,

which shows that μ−γ

γ−λ
= p1

p0
, and thus, using (7) and (10):

E − E ′ = p1 E1 − p1

p0
p0 E0 = p1(E1 − E0) ≥ 0

because we are in the situation where E0 ≤ E1. This means the new tree h′ does not degrade
the generalization error compared to h. In the case where E0 > E1, the same reasoning can
be applied when replacing threshold γ with λ instead of μ, to obtain a tree h′ with a similar
(or lower) generalization error. After this step, one of the two following situations can occur:

• Either the new threshold is equal to a threshold of a parent node splitting on the same
coordinate. In this case, it is useless and the current node can be deleted (along with one
of its subtrees), leading to a smaller tree. The above procedure can then be iterated.

• Or the new threshold is equal to αi ,j or αi ,j+1, and the above procedure can also be
iterated (note that if this threshold is equal to 0 or 1, then the tree can also be pruned).

Since at each step we either remove a node or set its threshold to an interval boundary
αi ,j , in the end we obtain a tree that (i) does not contain more nodes than h, (ii) does not have
a higher generalization error than h, and (iii) has only thresholds among interval boundaries
αi ,j .

We can now study the case where (2) is verified at each node. A direct consequence is
that the output function h is constant on all cells of the target function f . Let M the number
of pieces in the piece-wise constant function h (i.e., the number of leaf nodes in the tree).
If M < N pieces, there must be two neighbor cells C and C ′ on which h assigns the same
value t , and on which function f takes values respectively c and c′. The generalization error



460 COMPUTATIONAL INTELLIGENCE

E of h is then at least EC ∪ C ′ , with

EC ∪ C ′ =
∫

x∈C∪C ′
(h(x) − f (x))2 p(x) dx =

∫
x∈C

(t − c)2 p(x) dx +
∫

x∈C ′
(t − c′)2 p(x) dx

≥ (t − c)2m + (t − c′)2m,

with m the minimum mass per cell of the checkerboard task. This quadratic function of t is
minimized for t = c+c′

2 and is equal to m
2 (c − c′)2 for this value of t . Because from Definition

10, we have |c − c′| ≥ δ, we can thus conclude that E ≥ mδ2

2 . �

4. DISCUSSIONS

Decision trees have been used with great success and have generated an important
literature in the statistics, machine learning, and data-mining communities. Even though
our results suggest that they are insufficient to learn the type of task involved in AI (with
a number of ε-variations much greater than the number of examples one could hope to
get), they might still be used as useful components. The above results should also help us
gather a better understanding of the limitations of nonparametric learning algorithms by
illustrating the differences and common pitfalls of decision trees and other nonparametric
learning algorithms.

4.1. Trees versus Local Nonparametric Models

Local nonparametric learning methods such as Gaussian Support Vector Machines
(SVMs) and nearest-neighbor classifiers or Parzen windows are hurt by the curse of di-
mensionality because they associate a separate set of parameters to each region, where each
region is a kind of blob centered on a training example (like the radially defined Gaussians
in Gaussian kernel machines). Instead, decision trees define regions which can extend for
arbitrary distances away from a training example. According to the definition of local given
by Bengio et al. (2006a), decision trees are nonlocal: they can generalize to a test point
arbitrarily far from a training point because they can ignore some dimensions (and do so
differently in different parts of the space), and this is true not just for test points that are far
from the cloud of training points. Hence the sense in which they are cursed by dimensionality
is a bit different from local nonparametric methods such as nearest-neighbor methods, kernel
density estimation, or SVMs. However, we believe that there is a way to view these two effects
under a common light, by thinking about the notions (that we have tried to highlight in this
article) of variations and regions. Both types of methods construct some kind of soft or hard
partition of the input space, and consider a simple parametrization inside each region of this
partition: constant model in the case of constant-leaves decision trees and nearest-neighbor
classifiers or histograms, and something more powerful (close to a low-degree polynomial)
in the case of Gaussian SVMs. What hurts generalization in both cases is the need to have
examples in each of these regions to be able to generalize. What is missing is the ability to
learn something about the statistical structure in some region of space that could be some-
how applied in other regions of space, besides the immediately neighboring regions. See
(Bengio, Larochelle, and Vincent 2006c; Bengio et al. 2006b) for discussions of nonlocal
generalization and attempts to transform local kernel methods so as to achieve it.

So in spite of the degree of nonlocality that may confer some advantages to decision
trees over other nonparametric learning algorithms, decision trees suffer from a very similar
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limitation arising not so much because of the dimensionality of the input but because of the
degree of variability of the target function to be learned.

4.2. Forests and Boosted Trees

Forests, that is, sums of trees—random forests (Ho 1995; Breiman 2001), error-correcting
committees of trees (Kong and Dietterich 1995), and boosted trees (Freund and Schapire
1996)—are known to perform generally better than decision trees. Many empirical results
support this statement, and several explanations have already been proposed, such as variance
reduction in forests and margin bounds for boosting. Boosted trees and other forests have
the form f (x) = ∑n

i=1 αi Ti (x) where Ti (x) is the prediction of the i th tree. It has been
reported often that boosted trees and random forests generalized better than single trees. The
theoretical results presented here suggest yet another reason for the better performance of
forests and boosted trees over single trees. Indeed, our negative theorems do not apply to
sums of trees. In fact we have that:

Proposition 2. Let f (x) = ∑n
i=1 αi Ti (x) be a forest of constant-leaves decision tree with

axis-aligned decision nodes defined on an input space of dimension d , with n ≤ d. Then
the number of different values f can take can grow exponentially with n, even in situations
where the number of different values each Ti can take is bounded by a fixed constant.

Proof . Let Ti (x) = 1xi <
1
2

and αi = 2i−1. For any k ∈ {0, 1, 2, . . . , 2n − 1} there exists

x ∈ R
d such that f (x) = k: since n ≤ d we can simply use the binary representation b =

bn−1. . .b1b0 of k, and set xi = bi−1 for i ≤ n (and for instance xi = 0 for i > n). �

This proof suggests a different way to combine trees. If we consider the output T (x) of a
tree to be a discrete variable specifying in which leaf x falls, then we can consider the output
of a forest as the encoding of a vector whose elements are these discrete variables, one per tree
in the forest. Clearly, this is a form of distributed representation (Hinton 1986), which can
express a number of configurations possibly exponential in the number of trees (even though
the model is expressed with a set of numbers of size linear in the number of trees). This
expressive power (a small set of numbers saying things about a large set of distinct regions
in input space) is also what could buy strong generalization power (for the same reason that
a model with a smaller Kolmogorov complexity explaining correctly a much larger data set
is likely to generalize well). Note how in error-correcting output coding with one tree for
each output bit (Kong and Dietterich 1995), we have a fixed distributed representation (the
output code). The work developed by Hinton over the last two decades (e.g., see Hinton
1986; Hinton and Ghahramani 1997; Paccanaro and Hinton 2000; Hinton, Osindero, and
Teh 2006) is instead geared toward learning internal distributed representations that help
capture the main factors of variation in the data.

4.3. Architectural Depth and Distributed Representations

Learning algorithms that learn to represent functions with many levels of composition are
said to have a deep architecture (we are talking here about architectural depth, different from
tree depth). Bengio and LeCun (2007) discuss results in computational theory of circuits
that strongly suggest that, compared to their shallow counterparts, deep architectures are
much more efficient in terms of representation, that is, can require a smaller number of
computational elements or of parameters to approximate a target function. In spite of the
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fact that 2-level architectures (e.g., a one-hidden layer neural network, a kernel machine, or
a 2-level digital circuit) are able to represent any function (Hornik, Stinchcombe, and White
1989, see for example), they may need a huge number of elements and, consequently, of
training examples. Generally, a function that can be represented efficiently with a circuit of
depth k may require an exponentially larger circuit of depth k − 1. For example, the parity
function on d bits can be implemented by a digital circuit of architectural depth log (d) with
O(d) elements but requires O(2d ) elements to be represented by a 2-level digital circuit
(Ajtai 1983), for example, in conjunctive or disjunctive normal form. A similar result was
proved for Gaussian kernel machines: they require O(2d ) nonzero coefficients (i.e., support
vectors in a SVM) to represent such a highly varying function (Bengio et al. 2006a). Note
however that parity can be represented efficiently with 2 or 3 levels if the units at each level
are slightly more powerful, for example, with an RBF network that has different spreads
in each unit, or with a multi-layer neural network with two hidden layers, so it may not be
the best illustration of what requires deeper architectures. Another example, discussed by
Bengio and LeCun (2007), is that of multiplication of n-bit integers using digital circuits. It
can either be achieved with a two-layer architecture that has a number of gates exponential
in n, or efficiently with a deep circuit of O(log n) layers.

What is the architectural depth of decision trees and decision forests? It depends on what
elementary units of computation are allowed on each level. By analogy with the disjunctive
normal form (which is usually assigned an architectural depth of two) one would assign an
architectural depth of two to a decision tree, and of three to decision forests or boosted trees.
The top-level disjunction computed by a decision tree is a sum over the terms associated with
each leaf. A first-level conjunctive term is a product of the indicator functions associated
with each internal node and with the predicted constant associated with the leaf. With this
interpretation, a decision forest has an architectural depth of three. An extra summation layer
is added. Note how this summation layer is very different from the top layer of the decision
tree architecture. Although both perform a summation, the decision tree top layer sums over
mutually exclusive terms, whereas the decision forest sums over terms which are generally
nonzero, allowing an exponential number of combinations of leaves (one from each tree) to
be added, as discussed above.

It is interesting to pursue the analogy between polynomials and decision trees, in the
context of shallow versus deep architectures. For the sake of simplicity, we consider the case
of binary inputs x = (x1, . . . , xd ) ∈ {0, 1}d , and binary functions (i.e., the output is in {0, 1}
as well). We will see how a decision tree corresponds to some kind of (shallow) expansion of
a polynomial, while there may exist a kind of (deep) factorization allowing a more compact
representation of the same function. In the context of binary inputs and output, equation (1)
becomes of the form

T (x) =
∑

(y,α)∈L

�d
i=1(yi xi + (1 − yi )(1 − xi ))

αi , (11)

where each (y, α) ∈ L is associated with a leaf where the output value is 1, and both y and
α are d-dimensional binary vectors2: the i th term of the product is ensuring that xi and yi

are equal when αi is 1 (while being indifferent to their values when αi is 0). The nonzero
values of α thus correspond to the variables that are tested on the path from the root of the
tree to a leaf (and their number is the length of this path), while y contains the values of
these variables that lead to this leaf (note that the value of yi does not matter when αi = 0,
because the variable is not being tested). The resulting function T (x) thus has a polynomial

2 Here we use the convention 00 = 1.
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FIGURE 3. Example of a deep architecture obtained when adding extra layers performing a second “sum of
products” operation. Here, the + nodes simply sum their children. If the × nodes compute the product of one of
their children by the negation of their other child, then this architecture computes the parity function (see text for
details).

form, and we call its representation by equation (11) its expansion (in the form of sums of
products). Note that any binary function over {0, 1}d can be written in this form, because
for any f we can write

f (x) =
∑

y∈{0,1}d

f (y)1y=x =
∑

y∈{0,1}d s.t. f (y)=1

�i (yi xi + (1 − yi )(1 − xi )).

This equation shows that we do not need the α’s in equation (11) to represent a function.
However, they can lead to a more compact representation: for instance the function x1 O R x2
can be written x1 + (1 − x1)x2 instead of x1x2 + (1 − x1)x2 + x1(1 − x2). It remains a shallow
representation though, corresponding to a 2-level architecture with a hidden layer containing
as many nodes as leaves (each node computing a product �d

i=1(yi xi + (1 − yi )(1 − xi ))αi ),
and a single output unit that simply computes the sum of all hidden nodes. Consider now a
deeper architecture obtained first by allowing multiple output units (each performing a sum
over a different subset of hidden nodes), then adding two extra layers similar to our initial
hidden and output layers (i.e., the first extra layer’s nodes compute products of their inputs,
possibly negated, while the second extra layer is a unit computing the sum of all these nodes).
This process can be repeated such as to obtain an architecture of depth 2k, that we call
factorized (as a sum of products of sums of products of ...). Figure 3 shows an example of
such an architecture for k = 2. When expanding it into an equivalent expansion of the form
of equation (11), one may require a number of terms in the sum (i.e., of nodes in the hidden
layer of the 2-level corresponding architecture, and of leaves in the corresponding decision
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tree) potentially exponential in the depth of the tree, requiring many more parameters to be
tuned when learning it from data.

As an example, consider representing the parity function in input dimension d = 2k , with
its output defined to be 1 if the number of nonzero bits in the input is odd, and 0 otherwise.
It is easy to see that a decision tree of the form of equation (11) requires a sum over 2d−1

terms (all possible inputs for which the output is 1) to perfectly model this function, because
no variable can be ignored in the decision (i.e., all αi ’s must be 1). On another hand, consider
a deep architecture of depth 2k where the (2 j − 1)th layer computes products of pairs of
(possibly negated) nodes in its input layer, more precisely by denoting z�

i the i th unit in layer
�,

z2 j−1
2i−1 = z2 j−2

2i−1

(
1 − z2 j−2

2i

)
z2 j−1

2i = (
1 − z2 j−2

2i−1

)
z2 j−2

2i ,

and the layer above is made of half the number of nodes, each computing a sum

z2 j
i = z2 j−1

2i−1 + z2 j−1
2i .

The resulting architecture for d = 4 (i.e., k = 2) is illustrated in Figure 3. The interpretation
is that each node of layer 2 j represents the output of the parity function over two nodes
of layer 2( j − 1), and thus, by recursion, it is also the output of the parity function over a
subset of 2j bits of the input. Consequently, the top layer is a single unit computing the parity
function over the whole input. It is easy to see that such an architecture has a total number
of units equal to 3(d − 1), and thus a number of parameters on the order of O(d), which
is exponentially less than in the flat expansion of equation (11). Yet, it defines the same
function (that varies a lot in input space). This is an example of how the factorized form of a
polynomial, as represented by a deep architecture, allows for a more compact representation
than its expanded form (shallow architecture).

Even though boosted trees and forests have clearly been shown to generalize better than
single decision trees in a large number of real world learning tasks (Ho 1995; Freund and
Schapire 1996; Breiman 2001), we conjecture that their depth is still too limited to be able
to learn highly varying functions like what is needed for the checkerboard task, in the sense
of generalizing to variations not seen in the training set. The conjecture is inspired by the
circuit complexity results stating that there are functions computable with a polynomial-size
logic gates or threshold circuits of depth k that require exponential size when restricted to
depth k − 1 (Håstad 1986; Håstad and Goldmann 1991). In other words, the right depth may
be data-dependent.

5. CONCLUSION

Inspired by previous work (Bengio et al. 2006a; Bengio and LeCun 2007) showing
the inability of Gaussian kernel machines and more generally of shallow architectures to
learn highly varying functions (even when a simple expression for the solution exists), we
presented similar negative results for decision trees. We believe that the arguments made
in this article can easily be generalized to the case of decision trees with nonconstant leaf
predictions (such as linear predictions) and decision nodes that are not axis-aligned. Formal
proofs for these more general cases remain to be established, but the crucial ingredients
that remain valid from the current analysis are (i) only the examples falling into a leaf are
used to produce the estimator associated with this leaf and (ii) the leaves are associated with
nonintersecting regions.
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This analysis helps to understand the old question of the curse of dimensionality by
illustrating its effect in the case of decision trees. It clarifies that the central issue is not
one of dimensionality, nor purely one of local predictions (like in the case of Gaussian
kernels (Bengio et al. 2006a; Bengio and LeCun 2007)). Instead it is about the limitation of
estimators that divide the input space in regions (hard ones in the case of decision trees, soft
ones in the case of Gaussian kernel machines), with separate parameters associated with each
region. Consider the learning of a highly varying function, that is, which requires many such
regions to be properly represented. Barring the injection of additional knowledge to guide
the estimation of these parameters, the number of examples required to learn such models
thus grows linearly with the number of these regions, that is, the complexity of the functions
that can be represented. The analysis also gives an alternative conjecture to explain some of
the better generalization abilities of forests and boosted trees. The latter actually exploit a
distributed representation of the input space in order to generalize to regions not covered by
the training set, giving them a potentially exponentially more efficient representation than
single decision trees. One question raised by this work and inspired by results on complexity
theory of circuits is whether even forests and boosted trees could be significantly improved
upon by considering yet deeper architectures.

Although previous complexity theory results (Grigoriev et al. 1995; Cucker and Grigoriev
1999), and empirical observations (Pérez and Rendell 1996; Vilalta et al. 1997) have already
pointed out limitations of decision trees that originate from the same source that underlies
the theorems presented here, we believe that an important contribution of this article is to
connect such results with the question of learning, and in particular of learning complex
tasks such as those required for AI. This puts closer to the center stage for AI and machine
learning research the question of learning efficient representations of highly varying but low
Kolmogorov complexity functions, such as those one would expect to need to solve AI tasks.
This article adds to previously presented arguments (Bengio and LeCun 2007) suggesting
that a necessary condition for solving AI tasks is that the learning algorithm should be
able to construct a deep architecture for the learned function. Although these results are
related to computational complexity theory results, they point to a statistical limitation: the
need for a large tree implies the need for a large number of examples. Of course, assuming
a deeper architecture does not necessarily provide better generalization because to define
a learning algorithm we need in addition to a nice function class a way to search in it.
The discussion arising here does not address the computational complexity issue due to
the difficulty of searching in the space of deep architectures, for example, optimizing their
parameters appears to be a fundamentally difficult challenge. However, new hope has arisen
in the form of successful algorithms based on unsupervised learning for particular classes of
deep architectures (Hinton et al. 2006; Bengio et al. 2007; Ranzato et al. 2007; Bengio 2009).
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