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Abstract

In this paper, we show a direct relation between spectral embedding

methods and kernel PCA, and how both are special cases of a more gen-

eral learning problem, that of learning the principal eigenfunctions of an

operator defined from a kernel and the unknown data generating density.
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Whereas spectral embedding methods only provided coordinates for the

training points, the analysis justifies a simple extension to out-of-sample ex-

amples (the Nyström formula) for Multi-Dimensional Scaling, spectral clus-

tering, Laplacian eigenmaps, Locally Linear Embedding (LLE) and Isomap.

The analysis provides, for all such spectral embedding methods, the defi-

nition of a loss function, whose empirical average is minimized by the tra-

ditional algorithms. The asymptotic expected value of that loss defines a

generalization performance and clarifies what these algorithms are trying to

learn. Experiments with LLE, Isomap, spectral clustering and MDS show

that this out-of-sample embedding formula generalizes well, with a level of

error comparable to the effect of small perturbations of the training set on

the embedding.

1 Introduction

In the last few years, many unsupervised learning algorithms have been proposed which

share the use of an eigendecomposition for obtaining a lower-dimensional embedding of

the data that characterizes a non-linear manifold near which the data would lie: Locally

Linear Embedding (LLE) (Roweis and Saul, 2000), Isomap (Tenenbaum, de Silva and

Langford, 2000) and Laplacian Eigenmaps (Belkin and Niyogi, 2003). There are also

many variants of spectral clustering (Weiss, 1999; Ng, Jordan and Weiss, 2002), in

which such an embedding is an intermediate step before obtaining a clustering of the

data that can capture flat, elongated and even curved clusters. The two tasks (manifold

learning and clustering) are linked because the clusters that spectral clustering manages

to capture can be arbitrary curved manifolds (as long as there is enough data to locally

2



capture the curvature of the manifold). Clustering and manifold learning are intimately

related: clusters and manifold both are zones of high density. All of these unsupervised

learning methods are thus capturing salient features of the data distribution. As shown

here, spectral clustering is in fact working in a way that is very similar to manifold

learning algorithms.

The end result of most inductive machine learning algorithms is a function that mini-

mizes the empirical average of a loss criterion (possibly plus regularization). The func-

tion can be applied on new points and for such learning algorithms it is clear that the

ideal solution is a function that minimizes the expected loss under the unknown true

distribution from which the data was sampled, also known as the generalization error.

However, such a characterization was missing for spectral embedding algorithms such

as metric Multi-Dimensional Scaling (MDS) (Cox and Cox, 1994), spectral clustering

(see (Weiss, 1999) for a review), Laplacian eigenmaps, Locally Linear Embedding (LLE)

and Isomap, which are used either for dimensionality reduction or for clustering. They

don’t provide a function that can be applied to new points and the notion of general-

ization error is not clearly defined.

This paper attempts to provide an answer to these questions. A loss criterion for spectral

embedding algorithms can be defined. It is a reconstruction error that depends on

pairs of examples. Minimizing its average value yields the eigenvectors that provide

the classical output of these algorithms, i.e. the embeddings. Minimizing its expected

value over the true underlying distribution yields the eigenfunctions of a linear operator

that is defined by a kernel (which is not necessarily positive semi-definite) and the data

generating density. When the kernel is positive semi-definite and we work with the

empirical density there is a direct correspondence between these algorithms and kernel
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Principal Component Analysis (PCA) (Schölkopf, Smola and Müller, 1998). Our work is

therefore a direct continuation of previous work (Williams and Seeger, 2000) noting that

the Nyström formula and the kernel PCA projection (which are equivalent) represent

an approximation of the eigenfunctions of the above linear operator (called G here).

Previous analysis of the convergence of generalization error of kernel PCA (Shawe-

Taylor, Cristianini and Kandola, 2002; Shawe-Taylor and Williams, 2003) also helps

to justify the view that these methods are estimating the convergent limit of some

eigenvectors (at least when the kernel is positive semi-definite). The eigenvectors can

thus be turned into estimators of eigenfunctions, which can therefore be applied to

new points, i.e. turning the spectral embedding algorithms into function induction

algorithms. The Nyström formula obtained this way is well known (Baker, 1977), and

will be given in eq. 1 below. This formula has been used previously for estimating

extensions of eigenvectors in Gaussian process regression (Williams and Seeger, 2001),

and it was noted (Williams and Seeger, 2000) that it corresponds to the projection of a

test point computed with kernel PCA.

In order to extend spectral embedding algorithms such as LLE and Isomap to out-

of-sample examples, this paper defines for these spectral embedding algorithms data-

dependent kernels Kn that can be applied outside of the training set. See also the

independent work (Ham et al., 2003) for a kernel view of LLE and Isomap, but where

the kernels are only applied on the training set.

Additional contributions of this paper include a characterization of the empirically esti-

mated eigenfunctions in terms of eigenvectors in the case where the kernel is not positive

semi-definite (which is often the case for MDS and Isomap), a convergence theorem link-

ing the Nyström formula to the eigenfunctions of G, as well as experiments on MDS,
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Isomap, LLE and spectral clustering / Laplacian eigenmaps showing that the Nyström

formula for out-of-sample examples is accurate.

All of the algorithms described in this paper start from a data set D = (x1, . . . , xn) with

xi ∈ R
d sampled i.i.d. from an unknown distribution with density p. Below we will use

the notation

Ex[f(x)] =

∫
f(x)p(x)dx

for averaging over p(x) and

Êx[f(x)] =
1

n

n∑

i=1

f(xi)

for averaging over the data in D, i.e. over the empirical distribution denoted p̂(x). We

will denote kernels with Kn(x, y) or K̃(x, y), symmetric functions, not always positive

semi-definite, that may depend not only on x and y but also on the data D. The

spectral embedding algorithms construct an affinity matrix M , either explicitly through

Mij = Kn(xi, xj), or implicitly through a procedure that takes the data D and computes

M . We denote by vik the i-th coordinate of the k-th eigenvector of M , associated with

the eigenvalue `k. With these notations, the Nyström formula discussed above can be

written:

fk,n(x) =

√
n

`k

n∑

i=1

vikKn(x, xi) (1)

where fk,n is the k-th Nyström estimator with n samples. We will show in section 4 that

it estimates the k-th eigenfunction of a linear operator.

2 Kernel Principal Component Analysis

Kernel PCA is an unsupervised manifold learning technique that maps data points to

a generally lower-dimensional space. It generalizes the Principal Components Analysis
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approach to non-linear transformations using the kernel trick (Schölkopf, Smola and

Müller, 1996; Schölkopf, Smola and Müller, 1998; Schölkopf, Burges and Smola, 1999).

The algorithm implicitly finds the leading eigenvectors and eigenvalues of the covariance

of the projection φ(x) of the data in “feature space”, where φ(x) is such that the kernel

Kn(x, y) = φ(x) · φ(y) (i.e. Kn must not have negative eigenvalues). If the data is

centered in feature space (Êx[φ(x)] = 0), the feature space covariance matrix is

C = Êx[φ(x)φ(x)′], (2)

with eigenvectors wk and eigenvalues λk. To obtain a centered feature space, a kernel

K̃ (e.g. the Gaussian kernel) is first normalized into a data-dependent kernel Kn via

Kn(x, y) = K̃(x, y) − Êx′ [K̃(x′, y)] − Êy′ [K̃(x, y′)] + Êx′ [Êy′ [K̃(x′, y′)]]. (3)

The eigen-decomposition of the corresponding Gram matrix M is performed, i.e. solving

Mvk = `kvk, as with the other spectral embedding methods (Laplacian Eigenmaps, LLE,

Isomap, MDS). However, in this case one can obtain a test point projection Pk(x) that

is the inner product of φ(x) with the eigenvector wk of C, and using the kernel trick, it

is written as the expansion

Pk(x) = wk · φ(x) =
1√
`k

n∑

i=1

vikKn(xi, x). (4)

Note that the eigenvectors of C are related to the eigenvectors of M through λk = `k/n

and

wk =
1√
`k

n∑

i=1

vikφ(xi),

as shown in (Schölkopf, Smola and Müller, 1998).

(Ng, Jordan and Weiss, 2002) already noted the link between kernel PCA and spec-

tral clustering. Here we take advantage of that link to propose and analyze out-of-
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sample extensions for spectral clustering and other spectral embedding algorithms. Re-

cently, (Ham et al., 2003) have shown how Isomap, LLE and Laplacian Eigenmaps can

be interpreted as performing a form of kernel PCA, although that paper does not pro-

pose to use that link in order to perform function induction, i.e. obtain an embedding

for out-of-sample points.

Recent work has shown convergence properties of kernel PCA that are particularly

important here. (Shawe-Taylor, Cristianini and Kandola, 2002; Shawe-Taylor and

Williams, 2003) give bounds on the kernel PCA convergence error (in the sense of

the projection error with respect to the subspace spanned by the eigenvectors), using

concentration inequalities.

3 Data-Dependent Kernels for Spectral Embedding

Algorithms

The spectral embedding algorithms can be seen to build an n × n similarity matrix

M , compute its principal eigenvectors vk = (v1k, . . . , vnk)
′ with eigenvalues `k, and

associate with the i-th training example the embedding with coordinates (vi1, vi2, . . .)

(for Laplacian Eigenmaps and LLE) 1 or (
√

`1vi1,
√

`2vi2, . . .) (for Isomap and MDS). In

general we will see that Mij depends not only on (xi, xj) but also on the other training

examples. Nonetheless, as we show below, it can always be written Mij = Kn(xi, xj)

where Kn is a “data-dependent” kernel. In many algorithms a matrix M̃ is first formed

1For Laplacian Eigenmaps and LLE the matrix M discussed here is not the one

defined in the original algorithms, but a transformation of it to reverse the order of

eigenvalues, as we see below.

7



from a simpler, often data-independent kernel (such as the Gaussian kernel), and then

transformed into M . By defining a kernel Kn for each of these methods, we will be able

to generalize the embedding to new points x outside of the training set, via the Nyström

formula. This will only require computations of the form Kn(x, xi) with xi a training

point.

3.1 Multi-Dimensional Scaling

Metric Multi-Dimensional Scaling (MDS) (Cox and Cox, 1994) starts from a notion of

distance d(x, y) that is computed between each pair of training examples to fill a matrix

M̃ij = d2(xi, xj). These distances are then converted to equivalent dot products using

the “double-centering” formula, which makes Mij depend not only on (xi, xj) but also

on all the other examples:

Mij = −1

2
(M̃ij −

1

n
Si −

1

n
Sj +

1

n2

∑

k

Sk) (5)

where Si =
∑n

j=1
M̃ij. The embedding of the example xi is given by

√
`kvik where v·k is

the k-th eigenvector of M .

To generalize MDS, we define a corresponding data dependent kernel which generates

the matrix M :

Kn(a, b) = −1

2
(d2(a, b) − Êx[d

2(x, b)] − Êx′ [d2(a, x′)] + Êx,x′ [d2(x, x′)]), (6)

where the expectations are taken on the training set D. An extension of metric MDS to

new points has already been proposed in (Gower, 1968), in which one solves exactly for

the coordinates of the new point that are consistent with its distances to the training

points, which in general requires adding a new dimension. Note also that (Williams,

2001) makes a connection between kernel PCA and metric MDS, remarking that kernel
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PCA is a form of MDS when the kernel is isotropic. Here we pursue this connection in

order to obtain out-of-sample embeddings.

3.2 Spectral Clustering

Several variants of spectral clustering have been proposed (Weiss, 1999). They can yield

impressively good results where traditional clustering looking for “round blobs” in the

data, such as K-means, would fail miserably (see Figure 1). It is based on two main

steps: first embedding the data points in a space in which clusters are more “obvious”

(using the eigenvectors of a Gram matrix), and then applying a classical clustering

algorithm such as K-means, e.g. as in (Ng, Jordan and Weiss, 2002). To construct the

spectral clustering affinity matrix M , we first apply a data-independent kernel K̃ such

as the Gaussian kernel to each pair of examples: M̃ij = K̃(xi, xj). The matrix M̃ is

then normalized, e.g. using divisive normalization (Weiss, 1999; Ng, Jordan and Weiss,

2002) 2 :

Mij =
M̃ij√
SiSj

. (7)

To obtain m clusters, the first m principal eigenvectors of M are computed and K-

means is applied on the unit-norm coordinates, obtained from the embedding vik of

each training point xi.

To generalize spectral clustering to out-of-sample points, we define a kernel that could

2Better embeddings are usually obtained if we define Si =
∑

j 6=i M̃ij: this alternative

normalization can also be cast into the general framework developed here, with a slightly

different kernel.
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have generated that matrix:

Kn(a, b) =
1

n

K̃(a, b)√
Êx[K̃(a, x)]Êx′ [K̃(x′, b)]

. (8)

⇒

Figure 1: Example of the transformation learned as part of spectral clustering. Input

data on the left, transformed data on the right. Gray level and cross/circle drawing

are only used to show which points get mapped where: the mapping reveals both the

clusters and the internal structure of the two manifolds.

This normalization comes out of the justification of spectral clustering as a relaxed

statement of the min-cut problem (Chung, 1997; Spielman and Teng, 1996) (to divide

the examples into two groups such as to minimize the sum of the “similarities” between

pairs of points straddling the two groups). The additive normalization performed with

kernel PCA (eq. 3) makes sense geometrically as a centering in feature space. Both nor-

malization procedures make use of a kernel row/column average. It would be interesting

to find a similarly pleasing geometric interpretation to the divisive normalization.

3.3 Laplacian Eigenmaps

The Laplacian Eigenmaps method is a recently proposed dimensionality reduction pro-

cedure (Belkin and Niyogi, 2003) that was found to be very successful for semi-supervised
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learning. The authors use an approximation of the Laplacian operator such as the Gaus-

sian kernel or the k-nearest-neighbor graph: the symmetric matrix whose element (i, j)

is 1 if xi and xj are k-nearest-neighbors (xi is among the k nearest neighbors of xj or

vice versa) and 0 otherwise. Instead of solving an ordinary eigenproblem, the following

generalized eigenproblem is solved:

(S − M̃)yk = σkSyk (9)

with eigenvalues σk, eigenvectors yk and S the diagonal matrix with elements Si previ-

ously defined (row sums of M̃). The smallest eigenvalue is left out and the eigenvectors

corresponding to the other small eigenvalues are used for the embedding. This is actually

the same embedding that is computed with the spectral clustering algorithm from (Shi

and Malik, 1997): as noted in (Weiss, 1999) (Normalization Lemma 1), an equivalent

result (up to a component-wise scaling of the embedding) can be obtained by consid-

ering the principal eigenvectors vk of the normalized matrix M defined in eq. 7. To fit

the common framework for spectral embedding in this paper, we have used the latter

formulation. Therefore, the same data-dependent kernel can be defined as for spectral

clustering, eq. 8, to generate the matrix M , i.e. spectral clustering just adds a clustering

step after a Laplacian Eigenmap dimensionality reduction.

3.4 Isomap

Isomap (Tenenbaum, de Silva and Langford, 2000) generalizes MDS to non-linear man-

ifolds. It is based on replacing the Euclidean distance by an empirical approximation

of the geodesic distance on the manifold. We define the geodesic distance D(·, ·) with
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respect to a data set D, a distance d(·, ·) and a neighborhood k as follows:

D(a, b) = min
π

|π|∑

i=1

d(πi, πi+1) (10)

where π is a sequence of points of length |π| = l ≥ 2 with π1 = a, πl = b, πi ∈ D ∀i ∈

{2, . . . , l − 1} and (πi,πi+1) are k-nearest-neighbors of each other. The length |π| = l

is free in the minimization. The Isomap algorithm obtains the normalized matrix M

from which the embedding is derived by transforming the raw pairwise distances matrix

as follows: (1) compute the matrix M̃ij = D2(xi, xj) of squared geodesic distances with

respect to the data D and (2) apply to this matrix the distance-to-dot-product transfor-

mation (eq. 5), as for MDS. As in MDS, the embedding of xi is
√

`kvik rather than vik.

There are several ways to define a kernel that generates M and also generalizes out-of-

sample. The solution we have chosen simply computes the geodesic distances without

involving the out-of-sample point(s) along the geodesic distance sequence (except possi-

bly at the extreme). This is automatically achieved with the above definition of geodesic

distance D, which only uses the training points to find the shortest path between a and

b. The double-centering kernel transformation of eq. 6 can then be applied, using the

geodesic distance D instead of the MDS distance d.

A formula has been proposed (de Silva and Tenenbaum, 2003) to approximate Isomap

using only a subset of the examples (the “landmark” points) to compute the eigenvectors.

Using the notation of this paper, that formula is

ek(x) =
1

2
√

`k

∑

i

vik(Êx′ [D2(x′, xi)] −D2(xi, x)). (11)

The formula is applied to obtain an embedding for the non-landmark examples. One can

show (Bengio et al., 2004) that ek(x) is the Nyström formula when Kn(x, y) is defined

as above. Landmark Isomap is thus equivalent to performing Isomap on the landmark
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points only and then predicting the embedding of the other points using the Nyström

formula. It is interesting to note a recent descendant of Isomap and LLE, called Hessian

Eigenmaps (Donoho and Grimes, 2003), which considers the limit case of the continuum

of the manifold, and replaces the Laplacian in Laplacian Eigenmaps by a Hessian.

3.5 Locally Linear Embedding

The Locally Linear Embedding (LLE) algorithm (Roweis and Saul, 2000) looks for an

embedding that preserves the local geometry in the neighborhood of each data point.

First, a sparse matrix of local predictive weights Wij is computed, such that
∑

j Wij = 1,

Wij = 0 if xj is not a k-nearest-neighbor of xi and ||(∑j Wijxj) − xi||2 is minimized.

Then the matrix M̃ = (I −W )′(I −W ) is formed. The embedding is obtained from the

lowest eigenvectors of M̃ , except for the eigenvector with the smallest eigenvalue, which

is uninteresting because it is proportional to (1, 1, . . . , 1) (and its eigenvalue is 0). To

select the principal eigenvectors, we define our normalized matrix here by M = cI − M̃ ,

and ignore the top eigenvector (although one could apply an additive normalization to

remove the components along the (1, 1, . . . , 1) direction). The LLE embedding for xi

is thus given by the vik, starting at the second eigenvector (since the principal one is

constant). If one insists on having a positive semi-definite matrix M , one can take for

c the largest eigenvalue of M̃ (note that c only changes the eigenvalues additively and

has no influence on the embedding of the training set).

In order to find our kernel Kn, we first denote by w(x, xi) the weight of xi in the

reconstruction of any point x ∈ R
d by its k nearest neighbors in the training set (if

x = xj ∈ D, w(x, xi) = δij). Let us first define a kernel K ′
n by K ′

n(xi, x) = K ′
n(x, xi) =
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w(x, xi) and K ′
n(x, y) = 0 when neither x nor y is in the training set D. Let K ′′

n be

such that K ′′
n(xi, xj) = Wij + Wji −

∑
k WkiWkj and K ′′

n(x, y) = 0 when either x or y is

not in D. It is then easy to verify that the kernel Kn = (c − 1)K ′
n + K ′′

n is such that

Kn(xi, xj) = Mij (again, there could be other ways to obtain a data-dependent kernel

for LLE that can be applied out-of-sample). Something interesting about this kernel is

that when c → ∞, the embedding obtained for a new point x converges to the extension

of LLE proposed in (Saul and Roweis, 2002), as shown in (Bengio et al., 2004) (this is

the kernel we actually used in the experiments reported here).

As noted independently in (Ham et al., 2003), LLE can be seen as performing kernel

PCA with a particular kernel matrix. The identification becomes more accurate when

one notes that getting rid of the constant eigenvector (principal eigenvector of M) is

equivalent to the centering operation in feature space required for kernel PCA (Ham

et al., 2003).

4 Similarity Kernel Eigenfunctions

As noted in (Williams and Seeger, 2000), the kernel PCA projection formula (eq. 4)

is proportional to the so-called Nyström formula (Baker, 1977; Williams and Seeger,

2000) (eq. 1), which has been used successfully to “predict” the value of an eigenvector

on a new data point, in order to speed-up kernel methods computations by focusing the

heavier computations (the eigendecomposition) on a subset of examples (Williams and

Seeger, 2001). The use of this formula can be justified by considering the convergence

of eigenvectors and eigenvalues, as the number of examples increases (Baker, 1977;

Koltchinskii and Giné, 2000; Williams and Seeger, 2000; Shawe-Taylor and Williams,

2003). Here we elaborate on this relation in order to better understand what all these
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spectral embedding algorithms are actually estimating.

If we start from a data set D, obtain an embedding for its elements, and add more and

more data, the embedding for the points in D converges (for eigenvalues that are unique):

(Shawe-Taylor and Williams, 2003) give bounds on the convergence error (in the case

of kernel PCA). Based on this kernel PCA convergence results, we conjecture that in

the limit, each eigenvector would converge to an eigenfunction for the linear operator

defined below, in the sense that the i-th element of the k-th eigenvector converges to

the application of the k-th eigenfunction to xi.

In the following we assume that the (possibly data-dependent) kernel Kn is bounded (i.e.

|Kn(x, y)| < c for all x, y in R) and has a discrete spectrum, i.e. that it can be written

as a discrete expansion

Kn(x, y) =
∞∑

k=1

αkφk(x)φk(y).

Consider the space Hp of continuous functions f that are square integrable as follows:

∫
f 2(x)p(x)dx < ∞

with the data-generating density function p(x). One must note that we actually do not

work on functions but on equivalence classes: we say two functions f and g belong to

the same equivalence class (with respect to p) if and only if
∫

(f(x) − g(x))2p(x)dx = 0

(if p is strictly positive, then each equivalence class contains only one function).

We will assume that Kn converges uniformly in its arguments and in probability to its

limit K as n → ∞. This means that for all ε > 0,

lim
n→∞

P ( sup
x,y∈Rd

|Kn(x, y) − K(x, y)| ≥ ε) = 0.

We will associate with each Kn a linear operator Gn and with K a linear operator G,
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such that for any f ∈ Hp,

Gnf =
1

n

n∑

i=1

Kn(·, xi)f(xi) (12)

and

Gf =

∫
K(·, y)f(y)p(y)dy (13)

which makes sense because we work in a space of functions defined everywhere. Further-

more, as Kn(·, y) and K(·, y) are square-integrable in the sense defined above, for each

f and each n, Gn(f) and G(f) are square-integrable in the sense defined above. We will

show that the Nyström formula (eq. 1) gives the eigenfunctions of Gn (Proposition 1),

that their value on the training examples corresponds to the spectral embedding, and

that they converge to the eigenfunctions of G (Proposition 2), if they converge at all.

These results will hold even if Kn has negative eigenvalues.

The eigensystems of interest are thus the following:

Gfk = λkfk (14)

and

Gnfk,n = λk,nfk,n (15)

where (λk, fk) and (λk,n, fk,n) are the corresponding eigenvalues and eigenfunctions.

Note that when eq. 15 is evaluated only at the xi ∈ D, the set of equations reduces to

the eigensystem

Mvk = nλk,nvk.

The following proposition gives a more complete characterization of the eigenfunctions

of Gn, even in the case where eigenvalues may be negative. The next two propositions

formalize the link already made in (Williams and Seeger, 2000) between the Nyström

formula and eigenfunctions of G.
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Proposition 1 Gn has in its image m ≤ n eigenfunctions of the form:

fk,n(x) =

√
n

`k

n∑

i=1

vikKn(x, xi) (16)

with corresponding non-zero eigenvalues λk,n = `k

n
, where vk = (v1k, . . . , vnk)

′ is the k-th

eigenvector of the Gram matrix M , associated with the eigenvalue `k.

For xi ∈ D these functions coincide with the corresponding eigenvectors, in the sense

that fk,n(xi) =
√

nvik.

Proof

First, we show that the fk,n coincide with the eigenvectors of M at xi ∈ D. For fk,n

associated with non-zero eigenvalues,

fk,n(xi) =

√
n

`k

n∑

j=1

vjkKn(xi, xj)

=

√
n

`k

`kvik

=
√

nvik. (17)

The vk being orthonormal the fk,n (for different values of k) are therefore different from

each other.

Then for any x

(Gnfk,n)(x) =
1

n

n∑

i=1

Kn(x, xi)fk,n(xi) =
1√
n

n∑

i=1

Kn(x, xi)vik =
`k

n
fk,n(x) (18)

which shows that fk,n is an eigenfunction of Gn with eigenvalue λk,n = `k/n. �

Discussion The previous result shows that the Nyström formula generalizes the spectral

embedding outside of the training set. However, there could be many possible general-

izations. To justify the use of this particular generalization, the following theorem helps
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to understand the convergence of these functions as n increases. We would like the out-

of-sample embedding predictions obtained with the Nyström formula to be somehow

close to the asymptotic embedding (the embedding one would obtain as n → ∞).

Note also that the convergence of eigenvectors to eigenfunctions shown in (Baker, 1977)

applies to data xi which are deterministically chosen to span a domain, whereas here

the xi form random sample from an unknown distribution.

Proposition 2 If the data-dependent bounded kernel Kn (|Kn(x, y)| ≤ c) converges uni-

formly in its arguments and in probability, with the eigendecomposition of the Gram ma-

trix converging, and if the eigenfunctions fk,n of Gn associated with non-zero eigenvalues

converge uniformly in probability, then their limit are the corresponding eigenfunctions

of G.

Proof

Denote fk,∞ the non-random function such that

sup
x

|fk,n(x) − fk,∞(x)| → 0 (19)

in probability. Similarly, let K the non-random kernel such that

sup
x,y

|Kn(x, y) − K(x, y)| → 0 (20)

in probability.

Let us start from the Nyström formula and insert fk,∞, taking advantage of (Koltchinskii

and Giné, 2000), theorem 3.1, that shows that λk,n → λk almost surely, where λk are

the eigenvalues of G:

fk,n(x) =
1

nλk,n

n∑

i=1

fk,n(xi)Kn(x, xi) (21)
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=
1

nλk

n∑

i=1

fk,∞(xi)K(x, xi)

+
λk − λk,n

nλk,nλk

n∑

i=1

fk,∞(xi)K(x, xi)

+
1

nλk,n

n∑

i=1

fk,∞(xi)[Kn(x, xi) − K(x, xi)]

+
1

nλk,n

n∑

i=1

Kn(x, xi)[fk,n(xi) − fk,∞(xi)]. (22)

Below we will need to have shown that fk,∞(x) is bounded. For this we use the assump-

tion that Kn is bounded, independently of n. Let |Kn(x, y)| < c, then

|fk,n(x)| =

∣∣∣∣∣
1

nλk,n

n∑

i=1

fk,n(xi)Kn(x, xi)

∣∣∣∣∣ ≤ 1

n|λk,n|

n∑

i=1

|fk,n(xi)||Kn(x, xi)|

≤ c

n|λk,n|

n∑

i=1

|fk,n(xi)|

≤ c

n|λk,n|

n∑

i=1

√
n|vik|

≤ c√
n|λk,n|

n∑

i=1

1√
n

≤ c

|λk,n|

where in the second line we used the bound on Kn, on the third eq. 17, and on the

fourth the fact that the maximum of
∑n

i=1
ai s.t. ai ≥ 0 and

∑n

i=1
a2

i = 1 is achieved

when ai = 1√
n
. Finally, using eq. 19 and the convergence of λk,n, we can deduce that

|fk,∞| ≤ c/|λk|, thus is bounded.

We now insert 1

λk

∫
fk,∞(y)K(x, y)p(y) dy in eq. 22 and obtain the following inequality:

∣∣∣∣fk,n(x) − 1

λk

∫
fk,∞(y)K(x, y)p(y) dy

∣∣∣∣ (23)

≤
∣∣∣∣∣

1

nλk

n∑

i=1

fk,∞(xi)K(x, xi) −
1

λk

∫
fk,∞(y)K(x, y)p(y) dy

∣∣∣∣∣

+

∣∣∣∣∣
λk − λk,n

nλk,nλk

n∑

i=1

fk,∞(xi)K(x, xi)

∣∣∣∣∣
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+

∣∣∣∣∣
1

nλk,n

n∑

i=1

fk,∞(xi)[Kn(x, xi) − K(x, xi)]

∣∣∣∣∣

+

∣∣∣∣∣
1

nλk,n

n∑

i=1

Kn(x, xi)[fk,n(xi) − fk,∞(xi)]

∣∣∣∣∣
≤ An + Bn + Cn + Dn.

From our convergence hypothesis (eq. 19 and 20), the convergence of λk,n to λk almost

surely, and the fact that fk,∞, K and Kn are bounded, it is clear that the last three

terms Bn, Cn and Dn converge to 0 in probability. In addition, applying the law of large

numbers, the first term An also converges to 0 in probability. Therefore

fk,n(x) → 1

λk

∫
fk,∞(y)K(x, y)p(y) dy

in probability for all x. Since we also have fk,n(x) → fk,∞(x), we obtain

λkfk,∞(x) =

∫
fk,∞(y)K(x, y)p(y) dy

which shows that fk,∞ is an eigenfunction of G, with eigenvalue λk, therefore fk,∞ = fk:

the limit of the Nyström function, if it exists, is an eigenfunction of G. �

Discussion Kernel PCA has already been shown to be a stable and convergent algo-

rithm (Shawe-Taylor, Cristianini and Kandola, 2002; Shawe-Taylor and Williams, 2003).

These papers characterize the rate of convergence of the projection error on the subspace

spanned by the first m eigenvectors of the feature space covariance matrix. When we

perform the PCA or kernel PCA projection on an out-of-sample point we are taking

advantage of the above convergence and stability properties in order to trust that a

principal eigenvector of the empirical covariance matrix estimates well a correspond-

ing eigenvector of the true covariance matrix. Another justification for applying the

Nyström formula outside of the training examples is therefore, as already noted ear-

lier and in (Williams and Seeger, 2000), in the case where Kn is positive semi-definite,
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that it corresponds to the kernel PCA projection (on a corresponding eigenvector of the

feature space correlation matrix C).

Clearly, we therefore have with the Nyström formula a method to generalize spectral em-

bedding algorithms to out-of-sample examples, whereas the original spectral embedding

methods only provide the transformed coordinates of training points (i.e. an embedding

of the training points). The experiments described below show empirically the good

generalization of this out-of-sample embedding.

An interesting justification for estimating the eigenfunctions of G has been shown

in (Williams and Seeger, 2000). When an unknown function f is to be estimated with an

approximation g that is a finite linear combination of basis functions, if f is assumed to

come from a zero-mean Gaussian process prior with covariance Ef [f(x)f(y)] = K(x, y),

then the best choices of basis functions, in terms of expected squared error, are (up to

rotation/scaling) the leading eigenfunctions of the linear operator G as defined above.

5 Learning Criterion for the Leading Eigenfunctions

Using an expansion into orthonormal bases (e.g. generalized Fourier decomposition in

the case where p is continuous), the best approximation of K(x, y) (in the sense of

minimizing expected squared error) using only m terms is the expansion that uses the

first m eigenfunctions of G (in the order of decreasing eigenvalues):

m∑

k=1

λkfk,n(x)fk,n(y) ≈ Kn(x, y).

This simple observation allows us to define a loss criterion for spectral embedding algo-

rithms, something that was lacking up to now for such algorithms. The limit of this loss

converges toward an expected loss whose minimization gives rise to the eigenfunctions
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of G. One could thus conceivably estimate this generalization error using the average of

the loss on a test set. That criterion is simply the reconstruction error

L(xi, xj) =

(
Kn(xi, xj) −

m∑

k=1

λk,nfk,n(xi)fk,n(xj)

)2

.

Proposition 3 Asymptotically, the spectral embedding for a continous kernel K with

discrete spectrum is the solution of a sequential minimization problem, iteratively min-

imizing the expected value of the loss criterion L(xi, xj). Firstly, with {(fk, λk)}m−1

k=1

already obtained, one can recursively obtain (λm, fm) by minimizing

Jm(λ′, f ′) =

∫ (
K(x, y) − λ′f ′(x)f ′(y) −

m−1∑

k=1

λkfk(x)fk(y)

)2

p(x)p(y)dxdy (24)

where by convention we scale f ′ such that
∫

f ′(x)2p(x) = 1 (any other scaling can be

transferred into λ′).

Secondly, if the Kn are bounded (independently of n) and the fk,n converge uniformly in

probability, with the eigendecomposition of the Gram matrix converging, the Monte-Carlo

average of this criterion

1

n2

n∑

i=1

n∑

j=1

(
Kn(xi, xj) −

m∑

k=1

λk,nfk,n(xi)fk,n(xj)

)2

converges in probability to the above asymptotic expectation.

Proof

We prove the first part of the proposition concerning the sequential minimization of

the loss criterion, which follows from classical linear algebra (Strang, 1980; Kreyszig,

1990). We proceed by induction, assuming that we have already obtained f1, . . . , fm−1

orthogonal eigenfunctions in order of decreasing absolute value of λi. We want to prove

that (λ′, f ′) that minimizes Jm is (λm, fm).
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Setting ∂Jm

∂λ′
= 0 yields

λ′ = 〈f ′, Kf ′〉 −
m−1∑

i=1

∫
λifi(x)fi(y).f ′(x)f ′(y)p(x)p(y)dxdy (25)

Thus, we have

Jm = Jm−1

− 2

∫
λ′f ′(x)f ′(y)(K(x, y) −

m−1∑

i=1

λifi(x)fi(y))p(x)p(y)dxdy

+

∫
(λ′f ′(x)f ′(y))2p(x)p(y)dxdy

which gives Jm = Jm−1 − λ′2, so that λ′2 should be maximized in order to minimize Jm.

Take the derivative of Jm w.r.t. the value of f ′ at a particular point z (under some

regularity conditions to bring the derivative inside the integral), and set it equal to zero,

yields the equation:

∫
K(z, y)f ′(y)p(y)dy =

∫
λ′f ′(z)f ′(y)2p(y)dy +

m−1∑

i=1

∫
λifi(z)fi(y)f ′(y)p(y)dy.

Using the constraint ||f ′||2 = 〈f ′, f ′〉 =
∫

f ′(y)2p(y)dy = 1, we obtain:

(Kf ′)(z) = λ′f ′(z) +
m−1∑

i=1

∫
λifi(z)fi(y)f ′(y)p(y)dy (26)

which rewrites into Kf ′ = λ′f ′ +
∑m−1

i=1
λifi〈f ′, fi〉. Writing Kf ′ in the basis of all the

eigenfunctions, Kf ′ =
∑∞

i=1
λifi〈f ′, fi〉, we obtain

λ′f ′ = λmfm〈f ′, fm〉 +
∞∑

i=m+1

λifi〈f ′, fi〉.

Since the fi are orthogonal, take the norm and apply Parseval’s theorem:

λ′2 = λm
2〈f ′, fm〉2 +

∞∑

i=m+1

λi
2〈f ′, fi〉2.

If the eigenvalues are distinct, we have λm > λi for i > m, and the last expression is

maximized when 〈f ′, fm〉 = 1 and 〈f ′, fi〉 = 0 for i > m, which proves that f ′ = fm is

in fact the m-th eigenfunction of the kernel K and thereby λ′ = λm.
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If the eigenvalues are not distinct, then the result can be generalized in the sense that

the choice of eigenfunctions is not anymore unique, and the eigenfunctions sharing the

same eigenvalue form an orthogonal basis for a subspace.

This concludes the proof of the first statement.

To prove the second part (convergence statement), we want to show that the difference

between the average cost and the expected asymptotic cost tends toward 0. If we write

K̂n(x, y) =
∑m

k=1
λk,nfk,n(x)fk,n(y) and K̂(x, y) =

∑m

k=1
λkfk(x)fk(y), that difference is

∣∣∣∣∣
1

n2

n∑

i=1

n∑

j=1

(
Kn(xi, xj) − K̂n(xi, xj)

)2

− Ex,y

[(
K(x, y) − K̂(x, y)

)2
]∣∣∣∣∣

≤
∣∣∣∣∣

1

n2

n∑

i=1

n∑

j=1

(
K(xi, xj) − K̂(xi, xj)

)2

− Ex,y

[(
K(x, y) − K̂(x, y)

)2
]∣∣∣∣∣

+

∣∣∣∣∣
1

n2

n∑

i=1

n∑

j=1

(
Kn(xi, xj) − K̂n(xi, xj) − K(xi, xj) + K̂(xi, xj)

)

(
Kn(xi, xj) − K̂n(xi, xj) + K(xi, xj) − K̂(xi, xj)

)∣∣∣ .

The eigenfunctions and the kernel being bounded, the second factor in the product

(in the second term of the inequality) is bounded by a constant B with probability 1

(because of the λk,n converging almost surely).

Thus, we have with probability 1:

∣∣∣∣∣
1

n2

n∑

i=1

n∑

j=1

(
Kn(xi, xj) − K̂n(xi, xj)

)2

− Ex,y

[(
K(x, y) − K̂(x, y)

)2
]∣∣∣∣∣

≤
∣∣∣∣∣

1

n2

n∑

i=1

n∑

j=1

(
K(xi, xj) − K̂(xi, xj)

)2

− Ex,y

[(
K(x, y) − K̂(x, y)

)2
]∣∣∣∣∣

+

∣∣∣∣∣
B

n2

n∑

i=1

n∑

j=1

(
Kn(xi, xj) − K(xi, xj) − K̂n(xi, xj) + K̂(xi, xj)

)∣∣∣∣∣

But then, with our convergence and bounding assumptions, the second term in the

inequality converges to 0 in probability. Furthermore, by the law of large numbers, the
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first term also tends toward 0 (in probability) as n goes to ∞. We have therefore proved

the convergence in probability of the average loss to its asymptotic expectation. �

Discussion Note that the empirical criterion is indifferent to the value of the solutions

fk,n outside of the training set. Therefore, although the Nyström formula gives a pos-

sible solution to the empirical criterion, there may be other solutions. Remember that

the task we consider is that of estimating the eigenfunctions of G, i.e. approximating a

similarity function K where it matters according to the unknown density p. Solutions

other than the Nyström formula might also converge to the eigenfunctions of G. For ex-

ample one could use a non-parametric estimator (such as a neural network) to estimate

the eigenfunctions. Even if such a solution does not yield the exact eigenvectors on the

training examples (i.e. does not yield the lowest possible error on the training set), it

might still be a good solution in terms of generalization, in the sense of good approx-

imation of the eigenfunctions of G. It would be interesting to investigate whether the

Nyström formula achieves the fastest possible rate of convergence to the eigenfunctions

of G.

6 Experiments

We want to evaluate whether the precision of the generalizations suggested in the previ-

ous sections is comparable to the intrinsic perturbations of the embedding algorithms.

The perturbation analysis will be achieved by replacing some examples by others from

the same distribution. For this purpose we consider splits of the data in three sets,

D = F ∪R1 ∪R2 and training either with F ∪R1 or F ∪R2, comparing the embeddings

on F . For each algorithm described in section 3, we apply the following procedure:

1. We choose F ⊂ D with m = |F | samples. The remaining n − m samples in D/F
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are split into two equal size subsets R1 and R2. We train (obtain the eigenvectors)

over F∪R1 and F∪R2 and we calculate the Euclidean distance between the aligned

embeddings obtained for each xi ∈ F . When eigenvalues are close, the estimated

eigenvectors are unstable and can rotate in the subspace they span. Thus we

estimate an alignment (by linear regression) between the two embeddings using

the points in F .

2. For each sample xi ∈ F , we also train over {F ∪R1}/{xi}. We apply the Nyström

formula to out-of-sample points to find the predicted embedding of xi and calcu-

late the Euclidean distance between this embedding and the one obtained when

training with F ∪ R1, i.e. with xi in the training set (in this case no alignment is

done since the influence of adding a single point is very limited).

3. We calculate the mean difference (and its standard error, shown in the figure)

between the distance obtained in step 1 and the one obtained in step 2 for each

sample xi ∈ F , and we repeat this experiment for various sizes of F .

The results obtained for MDS, Isomap, spectral clustering and LLE are shown in Figure 2

for different values of |R1|/n (i.e the fraction of points exchanged). Experiments are done

over a database of 698 synthetic face images described by 4096 components that is avail-

able at http://isomap.stanford.edu. Similar results have been obtained over other

databases such as Ionosphere (http://www.ics.uci.edu/˜mlearn/MLSummary.html)

and swissroll (http://www.cs.toronto.edu/˜roweis/lle/). Each algorithm gener-

ates a two-dimensional embedding of the images, following the experiments reported for

Isomap. The number of neighbors is 10 for Isomap and LLE, and a Gaussian kernel

with a standard deviation of 0.01 is used for spectral clustering / Laplacian eigenmaps.

95% confidence intervals are drawn beside each mean difference of error on the figure.
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As expected, the mean difference between the two distances is almost monotonically

increasing as the number |R1| of substituted training samples grows, mostly because

the training set embedding variability increases. Furthermore, we find in most cases

that the out-of-sample error is less than or comparable to the training set embedding

instability when around 2% of the training examples are substituted randomly.

7 Conclusion

Spectral embedding algorithms such as spectral clustering, Isomap, LLE, metric MDS,

and Laplacian Eigenmaps are very interesting dimensionality reduction or clustering

methods. However, they lacked up to now a notion of generalization that would allow

to easily extend the embedding out-of-sample without again solving an eigensystem.

This paper has shown with various arguments that the well known Nyström formula can

be used for this purpose, and that it thus represents the result of a function induction

process. These arguments also help us to understand that these methods do essentially

the same thing, but with respect to different kernels: they estimate the eigenfunctions of

a linear operator associated with a kernel and with the underlying distribution of the

data. This analysis also shows that these methods are minimizing an empirical loss, and

that the solutions toward which they converge are the minimizers of a corresponding

expected loss, which thus defines what good generalization should mean, for these meth-

ods. It shows that these unsupervised learning algorithms can be extended into function

induction algorithms. The Nyström formula is a possible extension but it does not ex-

clude other extensions which might be better or worse estimators of the eigenfunctions

of the asymptotic linear operator G. When the kernels are positive semi-definite, these

methods can also be immediately seen as performing kernel PCA. Note that Isomap
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generally yields a Gram matrix with negative eigenvalues, and users of MDS, spectral

clustering or Laplacian eigenmaps may want to use a kernel that is not guaranteed to

be positive semi-definite. The analysis in this paper can still be applied in that case,

even though the kernel PCA analogy does not hold anymore.

The experiments performed here have shown empirically on several data sets that the

predicted out-of-sample embedding is generally not far from the one that would be

obtained by including the test point in the training set, and that the difference is of the

same order as the effect of small perturbations of the training set.

An interesting parallel can be drawn between the spectral embedding algorithms and the

view of PCA as finding the principal eigenvectors of a matrix obtained from the data.

The present paper parallels for spectral embedding the view of PCA as an estimator

of the principal directions of the covariance matrix of the underlying unknown distri-

bution, thus introducing a convenient notion of generalization, relating to an unknown

distribution.

Finally, a better understanding of these methods opens the door to new and potentially

much more powerful unsupervised learning algorithms. Several directions remain to be

explored:

1. Using a smoother distribution than the empirical distribution to define the linear

operator Gn. Intuitively, a distribution that is closer to the true underlying distri-

bution would have a greater chance of yielding better generalization, in the sense

of better estimating eigenfunctions of G. This relates to putting priors on certain

parameters of the density, e.g. as in (Rosales and Frey, 2003).

2. All of these methods are capturing salient features of the unknown underlying den-

sity. Can one use the representation learned through the estimated eigenfunctions
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in order to construct a good density estimator? Looking at Figure 1 suggests that

modeling the density in the transformed space (right hand side) should be much

easier (e.g. would require much fewer Gaussians in a Gaussian mixture) than in

the original space.

3. Learning higher-level abstractions on top of lower-level abstractions by iterating

the unsupervised learning process in multiple “layers”. These transformations

discover abstract structures such as clusters and manifolds. It might be possi-

ble to learn even more abstract (and less local) structures, starting from these

representations.
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Figure 2: δ (training set variability minus out-of-sample error), w.r.t. ρ (proportion

of substituted training samples) on the “Faces” dataset (n = 698), obtained with a

two-dimensional embedding. Top left: MDS. Top right: spectral clustering or Laplacian

eigenmaps. Bottom left: Isomap. Bottom right: LLE. Error bars are 95% confidence

intervals. Exchanging about 2% of the training examples has an effect comparable to

using the Nyström formula.
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