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We present a series of arguments supporting the claim that a large class of modern learning algorithms
based on local kernels are highly sensitive to the curse of dimensionality. These algorithms include in
particular local manifold learning algorithms such as Isomap (Tenenbaum, de Silva and Langford, 2000)
and LLE (Roweis and Saul, 2000), and support vector classifiers (Boser, Guyon and Vapnik, 1992) with
Gaussian or other local kernels. The results show that these algorithms are local in the sense that crucial
properties of the learned function at x depend on the neighbors of x in the training set. This makes them
highly sensitive to the curse of dimensionality, well studied for classical non-parametric statistical learning
algorithms. There is a large class of data distributions for which non-local solutions could be expressed
compactly and potentially be learned with few examples, but which will require a large number of local
bases and therefore a large number of training examples when using a local learning algorithm.

The curse of dimensionality for classical non-parametric models can be traced to the bias-variance
dilemma. When the kernel bandwidth is small, the effective number of examples around x that influence
the prediction is small, making the prediction highly sensitive to that particular training sample, i.e. yielding
to high variance. When the kernel bandwidth is large, the prediction becomes overly smooth, i.e. yielding
to high bias. Indeed the prediction at x can be seen in classical non-parametric predictors as an average
of empirical observations over the (possibly weighted) volume of the neighbors. The problem is that in
high dimension d (or more precisely when the data lie on or near a manifold of dimension d), that volume
(where one expects to find enough effective neighbors) grows exponentially, making the bias very large just
to keep variance constant. As shown many times in the statistics litterature (Härdle et al., 2004), this yields
to extremely slow convergence, with the number of examples required to reach a given generalization error
scaling as ncd

1 where n1 (> 1) and c (> 0) are constants. Note that the d that matters here is the data
manifold’s dimension, since these methods are essentially based on the Euclidean distance between near
neighbors and these converge to the geodesic distance on the manifold as the number n of training points
augments.

We present a series of arguments that suggest that modern kernel methods such as SVMs (for supervised
learning) and spectral manifold learning methods (for unsupervised learning) suffer also from the curse of
dimensionality (although to a lesser extent in the case of SVMs, since they can become well regularized
linear classifiers when these generalize better than too local predictors). In the arguments below we assume
that the predictor function is f(x) = b +

∑n
i=1 αiK(x, xi). Note this includes spectral clustering and

spectral dimensionality reduction (Bengio et al., 2004) when seen as inductive algorithms. We also assume
that K(u, v) is local (converging to 0 when ||u − v|| → ∞) or that its derivative is local (in the sense
that its derivative w.r.t v only depends on the near neighbors of v). This is true for the Gaussian kernel as
well as all the spectral manifold learning algortithms studied for example in (Bengio et al., 2004). Some of
these statements are specific to the Gaussian kernel: K(u, v) = e−||u−v||2/σ2

with global bandwidth hyper-
parameter σ. The training examples are {x1, . . . , xn}, with +1 or -1 labels {y1, . . . , yn} in the classification
case. Note that ∂f(x)

∂x represents a tangent vector (or the set of vectors that span the tangent plane, when
f(x) is multi-dimensional) for spectral manifold learning (Bengio and Monperrus, 2005), while it represents
the decision surface’s normal vector in the case of classification tasks.

1. When the test example x is far from all the xi, the predictor either converges to a constant or a nearest
neighbor classifier. Neither of these are good in high dimension.

2. ∂f(x)
∂x is constrained to be approximately a linear combination of the vectors (x − xi) with xi a near

neighbor of x. In high dimension (when the number of effective neighbors is significantly smaller than the
dimension), this is a very strong constraint (either on the shape of the manifold or of the decision surface).

3. As σ → ∞ with Gaussian kernels, a regularized SVM becomes linear and eventually turns into a



constant classifier.
4. As σ → 0 with Gaussian kernels, the SVM classifier converges to a prediction that only depends on

the one nearest neighbor.
The previous two statements suggest that a better σ is intermediate, i.e. with some examples such that
||x − xi|| is on the same order as σ.

5. When there are examples with ||x − xi|| near σ, with x on the decision surface, changes in x small
w.r.t. σ yield only small changes in the normal vector of the decision surface.
The above statement is one about bias: within a ball of radius σ, the decision surface is constrained to be
smooth (small changes in x yield small changes in the shape of the surface).

6. If there exists a line in R
d that intersects m times with the decision surface S (and is not included in

S), then one needs at least dm
2 e Gaussians (of same width) to learn S.

This says that in order to represent a function that varies many times over

decision surface

Class −1

Class 1

the range of the data, one needs a number of examples that scales linearly
with the number of these “variations”. Hence a function that varies a
lot necessarily requires a large number of examples with a local kernel,
although it might be representable efficiently otherwise. For instance in
the case of the figure on the right, one would need at least 10 Gaussians
to learn the decision surface, because the dotted line crosses it 19 times
(even though it is a simple sinusoidal function).

7. At least 2d−1 examples are required to represent the d-bit parity (the function from {0, 1}d to {−1, 1}
which is 1 iff the sum of the bits is even), when using Gaussians with fixed σ centered on data points.

More formal statements and their proofs can be found in a technical report (Bengio, Delalleau and Le
Roux, 2005). One could clearly hope for stronger results, but the above are already strong indications that
when the data lie on a high-dimensional and curved manifold, local learning methods such as SVMs, spec-
tral dimensionality reduction and spectral clustering methods are doomed to scale poorly, in the sense that
the number of examples required to capture the essential structure in the distribution might grow exponen-
tially with the manifold dimension. We hope that these results will stimulate research on non-local learning
methods, and experiments on high-dimensional complex tasks such as those involved in vision and language.
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