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Abstract

We study an expansion of the log-likelihood in undirected graphical modetsasithe Restricted
Boltzmann Machine (RBM), where each term in the expansion is associéted sample in a Gibbs
chain alternating between two random variables (the visible vector and tterhigctor, in RBMs).
We are particularly interested in estimators of the gradient of the log-likelibbtained through this
expansion. We show that its residual term converges to zero, justifyenggé of a truncation, i.e.
running only a short Gibbs chain, which is the main idea behind the Contwd3tisergence (CD)
estimator of the log-likelihood gradient. By truncating even more, we obtainchastic reconstruc-
tion error, related through a mean-field approximation to the reconstrugtionaften used to train
autoassociators and stacked auto-associators. The derivation penidicsto the particular parametric
forms used in RBMs, and only requires convergence of the Gibbs ciénpresent theoretical and
empirical evidence linking the number of Gibbs stépasnd the magnitude of the RBM parameters

to the bias in the CD estimator. These experiments also suggest that the signGi esstimator is



correct most of the time, even when the bias is large, so thalk @2-good descent direction even for

smallk.

1 Introduction

Motivated by the theoretical limitations of a large classioh-parametric learning algorithms (Bengio &
Le Cun, 2007), recent research has focussed on learningthlgerfor so-calledleep architecturegHin-
ton, Osindero, & Teh, 2006; Hinton & Salakhutdinov, 2006; &enLamblin, Popovici, & Larochelle,
2007; Salakhutdinov & Hinton, 2007; Ranzato, Poultney, CapgrLeCun, 2007; Larochelle, Erhan,
Courville, Bergstra, & Bengio, 2007). These represent thenkzhfunction through many levels of com-
position of elements taken in a small or parametric set. Thetraommon element type found in the

above papers is the soft or hard linear threshold uniytficial neuron

output(input)= s(w'input+ b) Q)

1
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with parametersv (vector) andb (scalar), and whers(a) could be 1.0, tanh@), or sigm@) = for
example.

Here, we are particularly interested in the Restricted BadtzmMachine (Smolensky, 1986; Freund
& Haussler, 1994; Hinton, 2002; Welling, Rosen-Zvi, & Hinta2005; Carreira-Perpan & Hinton,
2005), a family of bipartite graphical models with hiddemighles (the hidden layer) which are used as
components in building Deep Belief Networks (Hinton et al0@&; Bengio et al., 2007; Salakhutdinov
& Hinton, 2007; Larochelle et al., 2007). Deep Belief NetwoHave yielded impressive performance on
several benchmarks, clearly beating the state-of-tharattother non-parametric learning algorithms in
several cases. A very successful learning algorithm faritrg a Restricted Boltzmann Machine (RBM) is

the Contrastive Divergence (CD) algorithm. An RBM represenggdimt distribution between wasible
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vector X which is the random variable observed in the data, ahidden random variabled. There

is no tractable representation BfX, H) but conditional distribution®(H|X) and P(X|H) can easily be
computed and sampled from. Gs based on a Gibbs Monte-Carlo Markov Chain (MCMC) starting at
an exampleX = x; from the empirical distribution and converging to the RBM's\geative distribution
P(X). CD-k relies on a biased estimator obtained after a small nurklmdrGibbs steps (often only

1 step). Each Gibbs step is composed of two alternating ®gs:s samplingy ~ P(H|X = x) and
samplingx,;1 ~ P(X|H = h,), starting at = 1.

The surprising empirical result is that even= 1 (CD-1) often gives good results. An extensive
numerical comparison of training with CRversus exact log-likelihood gradient has been presented
in (Carreira-Pergian & Hinton, 2005). In these experiments, takkntarger than 1 gives more precise
results, although very good approximations of the solutan be obtained even with= 1. Here we
present a follow-up to (Carreira-Pefigin & Hinton, 2005) that brings further theoretical and emopl
support to CDk, even for smalk.

CD-1 has originally been justified (Hinton, 2002) as an appnation of the gradient of
KL(P(X; = - [x)IIP(X = -)) = KL(P(X = -)|IP(X = -)), whereKL is the Kullback-Leibler divergencé
is the empirical distribution of the training data, aR{X, = -|x;) denotes the distribution of the chain
after one step. The term left out in the approximation of tredgent of theKL difference is (Hinton,

2002)

5 OKL(P(Xz = - xa)lIP(X = -) 8P(X2 = Xxa) )

8P(X2 = Xle) o0
which was empirically found to be small. On the one hand ibisakear how aligned are the log-likelihood
gradient and the gradient with respect to the albdlzedifference. On the other hand it would be nice to

prove that left-out terms are small in some sense. One of titevations for this paper is to obtain the



Contrastive Divergence algorithm from aférent route, by which we can prove that the term left-out
with respect to théog-likelihood gradienis small and converging to zero, as we t&Kkarger.

We show that the log-likelihood and its gradient can be egpdrby considering samples in a Gibbs
chain. We show that when truncating the gradient expangidndteps, the remainder converges to
zero at a rate that depends on the mixing rate of the chain. indparation for this derivation comes
from Hinton et al. (2006): first the idea that the Gibbs chain be associated with an infinite directed
graphical model (which here we associate to an expansidmedbg-likelihood and of its gradient), and
second that the convergence of the chain justifies ConteaBlivergence (since thieth sample from
the Gibbs chain becomes equivalent to a model sample). Howeur empirical results also show that
the convergence of the chain alone cannot explain the gadtseobtained by Contrastive Divergence,
because this convergence becomes too slow as weightsseateaing training. It turns out that even
whenk is not large enough for the chain to converge (e.g. the typadaek = 1), the CDk rule remains
a good update direction to increase the log-likelihood eftthining data.

Finally, we show that when truncating the series to a singlestep we obtain the gradient of a
stochastic reconstruction error. A mean-field approxioratf that error is the reconstruction error often
used to train autoassociators (Rumelhart, Hinton, & Wilsad086; Bourlard & Kamp, 1988; Hinton &
Zemel, 1994; Schwenk & Milgram, 1995; Japkowicz, Hanson, I&dR, 2000). Auto-associators can be
stacked using the same principle used to stack RBMs into a Delegf Retwork in order to train deeep
neural networks (Bengio et al., 2007; Ranzato et al., 2007dtwelle et al., 2007). Reconstruction error
has also been used to monitor progress in training RBMs by COdifdyinton, & Roweis, 2006; Bengio
et al., 2007), because it can be computed tractably andtaraly, without sampling noise.

In the following we drop the&X = x notation and use shorthands suclirégh) instead ofP(X = x|H =



h). Thet index is used to denote position in the Markov chain, whenagdisesi or | denote an element

of the hidden or visible vector respectively.

2 Restricted Boltzmann Machines and Contrastive Divergence

2.1 Boltzmann Machines

A Boltzmann Machine (Hinton, Sejnowski, & Ackley, 1984; Hint& Sejnowski, 1986) is a probabilistic

model of the joint distribution betweansible units x, marginalizing over the values dfdden units h,

P(x) = Z P(x, h) 3)

h

and where the joint distribution between hidden and visilsigs is associated with guadraticenergy

function
E(x,h) = -b'x-c’h-hWx- xXUx-hVh 4)
such that
e—S(x,h)
P(x.h) = — (5)

whereZ = ¥, ,e¢*" is a normalization constant (called the partition functiand @, c, W U, V) are
parameters of the modeb; is called the bias of visible uni;, ¢ is the bias of visible unity, and
the matricesw, U, andV represeninteraction terms between units. Note that non-zetb and V
mean that there are interactions between units belongitigetsame layer (hidden layer or visible layer).

Marginalizing overh at the level of the energy yields the so-calfezk energy.

F(x) = —log ) e, (6)
h



We can rewrite the log-likelihood accordingly

log P(X) = IogZ e 8 _ Iogz = _F(x) - IogZ e’ ™, (7)
T X

Differentiating the above, the gradient of the log-likelihodthwespect to some model paramedaran

be written as follows:

dlogP(¥) _Zh e—a(xh)% . IR ) 0&(%h) 86(x D)
o0 B 3 e Exh) Sai e—S(x,h)
_ aE(X, ) .~ 08(%, h)
= Zhl P(hX)—— + Zh] P )=~ ®)

Computlng"s("h) is straightforward. Therefore, if sampling from the modelsapossible, one could
obtain a stochastic gradient for use in training the modelplhows. Two samples are necessdngiven
x for the first term, which is called theositive phase and an h) pair fromP(%, h) in what is called the

negative phaseNote how the resulting stochastic gradient estimator

aE(x,h)  8&(% h)
o0 T o0 ©)

has one term for each of the positive phase and negative phédkehe same form but opposite signs.
Letu = (x, h) be a vector with all the unit values. In a general Boltzmancmrae, one can compute and
sample fromP(u;Ju_;), whereu_; is the vector with all the unit values except thn. Gibbs sampling with

as many sub-steps as units in the model has been used to ttemBon machines in the past, with very

long chains, yielding correspondingly long training times

2.2 Restricted Boltzmann Machines

In a Restricted Boltzmann Machine (RBM),= 0 andV = 0 in eq. 4, i.e. the only interaction terms are

between a hidden unit and a visible unit, but not betweersurithe same layer. This form of model was
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first introduced under the name Bfarmonium (Smolensky, 1986). Because of this restricti@(h|x)
andP(x|h) factorize and can be computed and sampled from easily.efaibles the use of a 2-step Gibbs
sampling alternating betwedn~ P(H|X = x) andx ~ P(X|H = h). In addition, the positive phase

gradient can be obtained exactly arficgently because the free energy factorizes:

g7 Z g xrchihWx eb’xz Z o Z ﬁ ohi+(Wih

h ht  ha hg, i=1

eb’x Z ehl(cl"'wlx) . Z ehdh(cdh+WdhX)
hy

ey,
g’ x ﬁ Z ghi(ci+Wix)

i=1 h

whereW is thei-th row of W andd;, the dimension oh. Using the same type of factorization, one obtains

for example in the most common case whigris binary

0E(x. h) o
_Zh: P(h|x) W, E[HilX] - ;, (10)
where
E[Hi|X] = P(H; = 11X = X) = sigm(; + WX). (11

The log-likelihood gradient fowy; thus has the form

dlog P(x)
oW

= P(H; = 1IX = X) - X; — Ex[P(H; = 1X) - X{] (12)
whereEy is an expectation ovd?(X). Samples fronP(X) can be approximated by running an alternating
Gibbs chainx; = h; = x, = h, = ... Since the modeP is trying to imitate the empirical distribution
P, it is a good idea to start the chain with a sample fiBnso that we start the chain from a distribution
close to the asymptotic one.

In most uses of RBMs (Hinton, 2002; Carreira-P&gm & Hinton, 2005; Hinton et al., 2006; Bengio

et al., 2007) botln; andx; are binary, but many extensions are possible and have begiedtincluding
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cases where hidden glod visible units are continuous-valued (Freund & Hausd4l884; Welling et al.,

2005; Bengio et al., 2007).

2.3 Contrastive Divergence

Thek-step Contrastive Divergence (GD{Hinton, 1999, 2002) involves a second approximationdesi
the use of MCMC to sample frofA. This additional approximation introduces some bias ingtaelient:
we run the MCMC chain for onli steps, starting from the observed exampl&sing the same technique
as in eq. 8 to express the log-likelihood gradient, but kaghe sums ovel inside the free energy, we

obtain

dlogP(x)  A(-F(x) —logYze ™)
0 96 ]

LI Xxe TR
00 YeeF®

AF (X) L OF (%)
S +ZP(X) T (13)

X

The CDk update after seeing examplés taken proportional to

RUACIRAC

AG =
o 06 a6

(14)

wherex’is a sample from our Markov chain afteisteps. We know that whdn— oo, the samples from
the Markov chain converge to samples fréand the bias goes away. We also know that when the model
distribution is very close to the empirical distributiore.i P ~ P, then when we start the chain from

(a sample fronP) the MCMC samples have already converge®t@nd we need less sampling steps to

obtain an unbiased (albeit correlated) sample fiam



3 Log-Likelihood Expansion via Gibbs Chain

In the following we consider the case where bbtand x can only take a finite number of values. We
also assume that there is no pairi) such thatP(xh) = 0 or P(h|x) = 0. This ensures the Markov chain
associated with Gibbs samplingirseducible (one can go from any state to any other state), and there

exists a unique stationary distributi®&fx, h) the chain converges to.

Lemma 3.1. Consider the irreducible Gibbs chain x> h; = x, = h,... starting at data point x The

log-likelihood can be written as follows at any step t of theicha

P(x1)
logP(x1) = lo + log P(x 15
gP(4) = log 55+ 10g P(x) (15)
and since this is true for any path:
P(x
10gP(x) = Ex, 109 02|y, | + Excllog POQ)Ix] (16)
P(Xy)

where expectations are over Markov chain sample paths, tiondd on the starting samplg.x

Proof. Eqg. 15 is obvious, while eq. 16 is obtained by writing

log P(xy) = Z P(xi|x1) log P(x1)

Xt
and substituting eq. 15. O
Note thatEx [log P(X;)Ix.] is the negative entropy of theth visible sample of the chain, and it does
not become smaller ds— co. Therefore it does not seem reasonable to truncate thisisixpa However,

the gradient of the log-likelihood is more interesting. Budtfive need a simple lemma.

Lemma 3.2. For any model Y) with parameters,

dlogP(Y)|
SECLUI

when the expected value is taken according (6)P
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Proof.

PY) 90 - o8 a0

E [éﬂog P(Y)] Z P(Y)aIOg P(Y) Z P(Y)oP(Y) o0XYyP(Y) o1

The lemma is clearly also true for conditional distribusamith corresponding conditional expecta-

tions.

Theorem 3.3. Consider the converging Gibbs chain % h; = X = h,... starting at data point x

The log-likelihood gradient can be written

dlogP(xy)) _87—‘(x1)+E IF (%)
30 B 90 X1 9

dlog P(Xy)
Ex 90

m] 17)

and the final term (which will be shown later to be the bias of the Gim&tor) converges to zero as t

goes to infinity.

Proof. We take derivatives with respect to a parameéten the log-likelihood expansion in eq. 15 of

Lemma 3.1:
dlogP(x)) 0 Io P(x;) dlogP(x)
00 9P) 00
_ 2 Fowsrxy . 9109 P(X)
Y loge: A0
3 _a(f (X1) N OF (%) N 0log P(x)
B A0 90 F

Then we take expectations with respect to the Markov chamditional onx;, getting

a1

In order to prove the convergence of the CD bias towards zezayil use the assumed convergence of

0log P(X)
00

dlogP(x) _ 97 (x) . [97(X)
90 N 90 o Y,

Xll + E)(t

the chain, which can be written

P(X = XX, = %) = P(X) + &(X) (18)
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with 3}, &(X) = 0 and lim_,,. &(X) = O for all x. Sincex is discrete,g et max |&(X)| also verifies

limi.. & = 0. Then we can rewrite the last expectation as follows:

Xl] = ZP(XXm)aILP(Xt)

£ [alog P(X)
Xe | =™ an
Xt 00

00

0 Iog P(xt)

P + &%) ———=

Xt

| t | {
ZP( t)a ogP(x) Z a(x t)a ogP(x).

Using Lemma 3.2, the first sum is equal to zero. Thus we candthus expectation by

EXt[alo%Z(Xt) Xl] < Z' t(Xt)|'alogP(xt)
< (Nxmxax %')& (19)

whereN, is the number of discrete configurations for the random téeid. This proves the expectation

converges to zero ds— +oo, since lim_,,, ¢ = 0. O

One may wonder to what extent the above results still holdhéndituation wherex andh are not
discrete anymore, but instead may take values in infinitegjpdy uncountable) sets. We assuR{& h)
andP(h|x) are such that there still exists a unique stationary thstion P(x, h). Lemma 3.1 and its proof

remain unchanged. On another hand, Lemma 3.2 is only truidtyrbutionsP such that

oP(y) 0
| F5av= 55 | Poray. (20)

This equation can be guaranteed to be verified under additioiceness” assumptions d?, and we
assume it is the case for distributioR$x), P(x/h) and P(h|x). Consequently, the gradient expansion
(eqg. 17) in Theorem 3.3 can be obtained in the same way asebefidre key point to justify further
truncation of this expansion is the convergence towards akthe bias

dlog P(X;)
Ex 00

Xl] . (21)
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This convergence is not necessarily guaranteed unless veecoavergence dP(X|x;) to P(X) in the

sense that

(22)

06 06

t—oo

im Ex, [8 log P(X)

_ Ex[alog P(X)]’

where the second expectation is over the stationary digioib P. If the distributionsP(x/h) and P(h|x)
are such that eq. 22 is verified, then this limit is also zeapeding to Lemma 3.2, and it makes sense to
truncate eq. 17. Note however than eq. 22 does not necgdsaldlin the most general case (Hanuez-

Lerma & Lasserre, 2003).

4 Connection with Contrastive Divergence

4.1 Theoretical Analysis

dlog P(X)

Theorem 3.3 justifies truncating the series aftsteps, i.e. ignorindex, [T

|x1], yielding the ap-

proximation

OF (X1)

0logP(x) 0% (%) L E
06

30 30 %

xl] | (23)

Note how the expectation can be readily replaced by sampirgP(X|x1), giving rise to the stochastic

update

0T () | ()

A= -7 90

whose expected value is the above approximation. Thisasexactly the CD4(— 1) update (eq.14).

The idea that faster mixing yields to better approximatign@GD-k was already introduced ear-
lier (Carreira-Pergian & Hinton, 2005; Hinton et al., 2006). The bound in eq. 19liekly relates
the convergence of the chain (through the convergence af iin estimatingP(x) with P(Xx,1 = X|X1))

to the approximation error of the CRgradient estimator. When the RBM weights are large it is plausi-

12



ble that the chain will mix more slowly because there is lesglomness in each sampling step. Hence
it might be advisable to use larger valueskads the weights become larger during training. It is thus
interesting to study how fast the bias converges to zetaraseases, depending on the magnitude of the

weights in an RBM. Markov chain theory (Schmidt, 2006) ensthiag in the discrete case,
& = max|g(X)| < (1 - Nya)'™? (24)
X

whereN, is the number of possible configurations fqgranda is the smallest element in the transition
matrix of the Markov chain. In order to obtain a meaningfuibd on eq.19 we also need to bound the
gradient of the log-likelihood. In the following we will tls.iconsider the typical case of a binomial RBM,

with 6 being a weightV;; between hidden unitand visible unitj. Recall eq. 12:

dlogP
ggT”(X) = P(Hi = 1X = %) - X; — Ex[P(H: = 11X) - Xj].

For anyx, bothP(H; = 1|X = x) andx; are in (Q1). Consequently, the expectation above is also )0
and thus

<1

0log P(x)
OW;j

Combining this inequality with eq. 24, we obtain from eq. 18tth
dlog P(X)

E)(t [ 90 Xl]

It remains to quantifya, the smallest term in the Markov chain transition matrix.clcalement of this

< Ny(1- N,a)'. (25)

matrix is of the form

P(lxa) = ) POeh)P(hix,)

h
Z I1;P(xz I P(hi|xy).
h
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Since 1- sigmf) = sigm(-2), we have:

sigm'W,; + b)) if xo; =1

P(x2,jIh)
Sigm(—h,Wj - bj) if Xoj = 0

\%

sigm(-[h'W; + by])
sigm(— (Z W | + |b,-|))
sigm(— (Z Wi+ |b,-|]].

Let us denoter; = 3 W] + [bjl, ands; = 3. [W;| + |c;|. We can obtain in a similar way th&(hi|x;) >

%

\%

sigm(=g;). As a result, we have that
a> > TIjsigmea;)ITisigmEp;) = Nnlljsigmé-a;)TTisigme4,). (26)
h
In order to simplify notations (at the cost of a looser boutet)us denote

@ = Maxa; (27)
J

B= miaxﬁi. (28)
Then, by combining equations 25 and 26, we finally obtain:

0log P(X;)
Ex 00

whereN, = 2% andN;, = 2%. Note that although this bound is tight (and equal to zerojfiyt > 2 when

X || < Ny (1= NuNysigm-a)®sigm(g)*) (29)

weights and biases are set to zero (since mixing is immedtaebound is likely to be loose in practical
cases. Indeed, the bound approachgsast, as the two sigmoids decrease towards zero. Howewer, th
bound clarifies the importance of weight size in the bias ef @D approximation. It is also interesting
to note that this bound on the bias decreases exponentidhiytive number of steps performed in the CD
update, even though this decrease may become linear whéotine is loose (which is usually the case

14



in practice): in such cases, it can be writtégf1—y)"* with a smally, and thus is close th,(1-y(t— 1)),
which is a linear decrease in

If the contrastive divergence update is considered likeagdd and noisy estimator of the true log-
likelihood gradient, it can be shown that stochastic gmatddescent converges (to a local minimum),
provided that the bias is not too large (Yuille, 2005). On otieer hand, one should keep in mind that
for small k, there is no guarantee that contrastive divergence coesargar the maximum likelihood
solution (MacKay, 2001). The experiments below confirm theva theoretical results and suggest that
even when the bias is large and the weights are large, theo$iire CD estimator may be generally

correct.

4.2 Experiments

In the following series of experiments, we study empiricalbw the CDk update relates to the gradient
of the log-likelihood. More specifically, in order to removariance caused by sampling noise, we are

interested in comparing two quantities:

A(X1) = —‘97;(9)(1) + EXM[% xl] (30)

where A(x,) is the gradient of the likelihood (eq. 13) amg(x,) its average approximation by Cb-

(eq. 23). The dierence between these two terms is the bi&s,), i.e., according to eq. 17:
dlog P(X:1) ]
— X

k(%) = A(Xs) = A(xa) = Ex., [ 90

and, as shown in section 4.1, we have
lim 6x(%) = 0.
k—+o0

15



Note that our analysis isfilerent from the one in (Carreira-Pdiipn & Hinton, 2005), where the solutions
(after convergence) found by Ckand gradient descent on the negative log-likelihood werepared,
while we focus on the updates themselves.

In these experiments, we use two manually generated birzdagets:

1. Diagyq is ad-dimensional dataset containidg- 1 samples as follows:

d bits

000...000
100...000
110...000
111...000
111...100
111...110
111...111

2. 1DBally is a d-dimensional dataset containingl P%lj samples, representing “balls” on a one-
dimensional discrete line witl pixels. Half of the data examples are generated by first picki
the positionb of the beginning of the ball (amordjpossibilities), then its widthv (amongh[d%lj
possibilities). Pixels fron to b + w— 1 (modulod) are then set to 1 while the rest of the pixels are
set to 0. The second half of the dataset is generated by simgMgrting” its first half (switching

zeros and ones).

In order to be able to compudg(x,) exactly, only RBMs with a small (less than 10) number of visibl

and hidden units are used. We compute quantities far all\; (the weights of the RBM connections

16



between visible and input units). The following statisteze then computed over all weightg; and all

training examples;:

the weight magnitude indicatonsandg, as defined in eq. 27 and 28,

the mean of the gradient bi&&(x;)|, denoted by and called the absolute bias,

the median O*M , 1.e. the relative dference between the CBupdate and the log-likelihood

A(%1)

gradient (we use the median to avoid numerical issues for small gnésliedenoted by, and

called the relative bias,

the sign errois,, i.e., the fraction of updates for whiakk(x;) andA(x;) have diterent signs.

The RBM is initialized with zero biases and small weights umifty sampled in-2, 2| whered is
the number of visible units. Note that even with such smaligives, the bound from eq. 29 is already
close to its maximum valul, so that it is not interesting to plot it on the figures. The bemof hidden
units is also set td for the sake of simplicity. The RBM weights and biases are éeiny CD-1 with a
learning rate set to I8: keep in mind that we are not interested in comparing thenlegrprocess itself,
but rather how the quantities above evolve fdfetient kinds of RBMs, in particular as weights become
larger during training. Training is stopped once the averagpative log-likelihood over training samples
has less than 5% relativeftirence compared to its lower bound, which here isNgghereN is the
number of training samples (which are all unique).

Figure 1 shows a typical example of how the quantities defaisal/e evolve during trainings(is

not plotted as it exhibits the same behaviodsAs the weights increase (as showndy so does the

This quantity is more interesting than the absolute biasbse it tells us what proportion of the true gradient of the

log-likelihood is “lost” by using the CDk update.

17
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0.6 —— a: weight magnitjde
: . 01: bias

— r7: relative bias
e S1: Sign error

0.4t |
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0 360000 720000 1080000 1440000
number of updates

0.0

Figure 1: Typical evolution of weight magnitude gradient absolute bia%, relative biasr; and sign
errors; as the RBM is being trained by CD-1 dBall;o. The size of weighta and the absolute bias
6, are rescaled so that their maximum value is 1, while theiveldtiasr, and the sign disagreemest

naturally fall within [Q 1].
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absolute value of the left out term in CD-d;], and its relative magnitude compared to the log-likelithoo
(ry). In particular, we observe that most of the log-likelihogihdient is quickly lost in CD-1 (here
after only 80000 updates), so that CD-1 is not anymore a goprbajmation of negative log-likelihood
gradient descent. However, the RBM is still able to learn ipatrdistribution, which can be explained by
the fact that the “sign disagreemest’between CD-1 and the log-likelihood gradient remains snhesks(

than 5% for the whole training period).

+—+d=10 +—+d=10

~xd=9 0.9 ~xd=9
0.7 «ad=8 «ad=8

Hd:? 0.8 0—0d=7

Hd:6 Hd:6
0.6 0.7

0.6

Ik

0.5

0.4

0.3

0.2

Figure 2: Median relative biag between the CIk update and the gradient of the log-likelihood, kor
from 1 to 10, with input dimensiod € {6, 7, 8,9, 10}, when the stopping criterion is reached. Left: on

dataset®iagy. Right: on datasetsDBallj.

Figures 2 and 4 show how ands, respectively vary depending on the number of stepsrformed
in CD, on theDiagy (left) and1DBally (right) datasets, fod € {6, 7, 8,9, 10}. All these values are taken
when our stopping criterion is reached (i.e. we are closegmto the empirical distribution). It may seem
surprising thaty, does not systematically increase without remember that each RBM may be trained for
a different number of iterations, leading to potentially verffetent weight magnitude. Figure 3 shows

the corresponding values farandg (which reflect the magnitude of weights): we can see for inmsta
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Figure 3: Measures of weight magnitudeindg as the input dimensiod varies from 6 to 10, when the

!
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stopping criterion is reached. Left: on datadetsgy. Right: on datasetsDBally.
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Figure 4: Average disagreemeptbetween the Ckupdate and negative log-likelihood gradient descent,
for k from 1 to 10, with input dimensiod € {6, 7, 8,9, 10}, when the stopping criterion is reached. Left:

on datasetBiagy. Right: on datasetsDBally.
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Figure 5: ry (left) and @ and g (right) on datasetdDBally, after only 300000 training iterationgy

systematically increases withwhen weights are small (compared to figures 2 and 3).

thata andg for datasetlDBalls are larger than for dataséDBall;, which explains why is also larger,
as shown in figure 2 (right). Figure 5 shows a “smoother” beranf ry w.r.t. d when all RBMs are
trained for a fixed (small) number of iterations, illustrafihow the quality of CCk decreases in higher
dimension (as an approximation to negative log-likelihgoadient descent).

We observe on figure 2 that the relative bigdecomes large not only for sm&ll(which means the
CD-k update is a poor approximation of the true log-likelihooddjent), but also for largec in higher
dimensions. As a result, increasikgnoderately (from 1 to 10) still leaves a large approximatoror
(e.g. from 80% to 50% withl = 10 in Figure 2) in spite of a 10-fold increase in computatiomet This
suggests that when trying to obtain a more precise estinséatbe gradient, alternatives to Closuch as
persistent CD (Tieleman, 2008) may be more appropriate. ©thanhand, we notice from figure 4 that
the disagreemery; between the two updates remains low even for siaillarger dimensions (in our
experiments it always remains below 5%). This may explaig @B-1 can successfully train RMBs even

when connection weights become larger and the Markov chas dot mix fast anymore. An intuitive
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explanation for this empirical observation is the popul@wof CDk as a process that, on one hand,
decreases the energy of a training sampléfirst term in eq. 30), and on another hand increases the

energy of other nearby input examples (second term), tlagirig to an overall increase B{x;).

5 Connection with Autoassociator Reconstruction Error

In this section, we relate the autoassociator reconstmuairor criterion (an alternative to Contrastive
Divergence learning) to another similar truncation of thg-likelihood expansion. We can use the same

approach as in Theorem 3.3 to introduce the first hidden samals follows:

dlogP(x) _ 9 _ P(x)

o0 90 (Iog P(hy) +log P(hl))
_ 0 ,qPlulhy)  9logP(hy)
007 P(hylxa) 09

Taking the expectation with respectkly conditioned orx; yields

dlog P(xy) 0log P(xq|H1)

- E dlog P(H1|X1) dlog P(H,)
g 06 o0

- EH1 [ a0 Xl] + EHl [ 90

Using lemma 3.2, the second term is equal to zero. If we trgnitas expansion by removing the last

X1

xl] (31)

term (as is done in CD) we thus obtain:
dlog P(xq|h
S Py 18T (32
hy

which is an average ovél(h;|x;), that could be approximated by sampling. Note that thioisquite the

negated gradient of treochastic reconstruction error

SRE= - Z P(hy|x.) log P(xi|). (33)

hy

Let us consider a notion ofiean-field approximation by which an averagEx| f (X)] over configurations
of a random variabl& is approximated byf (E[X]), i.e., using the mean configuration. Applying such
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an approximation to SRE (eq. 33) gives tieeonstruction error typically used in training autoassoci-
ators (Rumelhart et al., 1986; Bourlard & Kamp, 1988; Hinton énael, 1994; Schwenk & Milgram,

1995; Japkowicz et al., 2000; Bengio et al., 2007; Ranzata,&2@07; Larochelle et al., 2007),
RE = — log P(x.[hy) (34)

whereh;, = E[H1|x4] is the mean-field output of the hidden units given the obsetiaputx;. If we apply

the mean-field approximation to the truncation of the ldglihood given in eq. 32, we obtain

dlogP(x;) dlog P(xi/hy)
00 00

It is arguable whether the mean-field approximation per sesgus license to include iﬂ%xl'ﬁl) the
effect of6 on hy, but if we do so then we obtain the gradient of the reconstmerror (eq. 34), up to the
sign (since the log-likelihood is maximized while the reswaction error is minimized).

As a result, whereas CD-1 truncates the chain expansign(as seen in section 2.3), ignoring

Xl] ,

we see (using the fact that the second term of 31 is zero) ¢leanstruction update truncates the chain

dlog P(X,)
Ex, 90

expansion one step earlier @), ignoring

0 |Og P(Hl)
Ery 30

and working on a mean-field approximation instead of a s&tahapproximation. The reconstruction

X1

error gradient can thus be seen as a more biased approxmneétioe log-likelihood gradient than CD-1.
Comparative experiments between reconstruction erraiimigiend CD-1 training confirm this view (Ben-
gio et al., 2007; Larochelle et al., 2007): CD-1 updating gelhehas a slight advantage over reconstruc-
tion error gradient.
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However, reconstruction error can be computed deterngalit and has been used as an easy method
to monitor the progress of training RBMs with CD, whereas theldi3elf is generally not the gradient

of anything and is stochastic.

6 Conclusion

This paper provides a theoretical and empirical analyste@tog-likelihood gradient in graphical mod-
els involving a hidden variablk in addition to the observed variable and where conditionalB(h|x)
andP(x|h) are easy to compute and sample from. That includes the ¢&Sentrastive Divergence for
Restricted Boltzmann Machines (RBM). The analysis justifiesue of a short Gibbs chain of length
k to obtain a biased estimator of the log-likelihood gradidaten though our results do not guarantee
that the bias decreases monotically vkilwe prove a bound that does, and observe this decrease-experi
mentally. Moreover, although this bias may be large whenguenly few steps in the Gibbs chain (as is
usually done in practice), our empirical analysis indisates estimator remains a good update direction
compared to the true (but intractable) log-likelihood geadl

The analysis also shows a connection between reconstmuetior, log-likelihood and Contrastive
Divergence (CD), which helps understand the better reseltemlly obtained with CD and justify the
use of reconstruction error as a monitoring device whemittgian RBM by CD. The generality of the
analysis also opens the door to other learning algorithmshich P(h|x) and P(xjh) do not have the

parametric forms of RBMs.
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