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Abstract

We study an expansion of the log-likelihood in undirected graphical models such as the Restricted

Boltzmann Machine (RBM), where each term in the expansion is associated with a sample in a Gibbs

chain alternating between two random variables (the visible vector and the hidden vector, in RBMs).

We are particularly interested in estimators of the gradient of the log-likelihoodobtained through this

expansion. We show that its residual term converges to zero, justifying the use of a truncation, i.e.

running only a short Gibbs chain, which is the main idea behind the Contrastive Divergence (CD)

estimator of the log-likelihood gradient. By truncating even more, we obtain a stochastic reconstruc-

tion error, related through a mean-field approximation to the reconstruction error often used to train

autoassociators and stacked auto-associators. The derivation is not specific to the particular parametric

forms used in RBMs, and only requires convergence of the Gibbs chain.We present theoretical and

empirical evidence linking the number of Gibbs stepsk and the magnitude of the RBM parameters

to the bias in the CD estimator. These experiments also suggest that the sign of the CD estimator is
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correct most of the time, even when the bias is large, so that CD-k is a good descent direction even for

smallk.

1 Introduction

Motivated by the theoretical limitations of a large class ofnon-parametric learning algorithms (Bengio &

Le Cun, 2007), recent research has focussed on learning algorithms for so-calleddeep architectures(Hin-

ton, Osindero, & Teh, 2006; Hinton & Salakhutdinov, 2006; Bengio, Lamblin, Popovici, & Larochelle,

2007; Salakhutdinov & Hinton, 2007; Ranzato, Poultney, Chopra, & LeCun, 2007; Larochelle, Erhan,

Courville, Bergstra, & Bengio, 2007). These represent the learned function through many levels of com-

position of elements taken in a small or parametric set. The most common element type found in the

above papers is the soft or hard linear threshold unit, orartificial neuron

output(input)= s(w′input+ b) (1)

with parametersw (vector) andb (scalar), and wheres(a) could be 1a>0, tanh(a), or sigm(a) = 1
1+e−a , for

example.

Here, we are particularly interested in the Restricted Boltzmann Machine (Smolensky, 1986; Freund

& Haussler, 1994; Hinton, 2002; Welling, Rosen-Zvi, & Hinton, 2005; Carreira-Perpiñan & Hinton,

2005), a family of bipartite graphical models with hidden variables (the hidden layer) which are used as

components in building Deep Belief Networks (Hinton et al., 2006; Bengio et al., 2007; Salakhutdinov

& Hinton, 2007; Larochelle et al., 2007). Deep Belief Networks have yielded impressive performance on

several benchmarks, clearly beating the state-of-the-artand other non-parametric learning algorithms in

several cases. A very successful learning algorithm for training a Restricted Boltzmann Machine (RBM) is

the Contrastive Divergence (CD) algorithm. An RBM represents the joint distribution between avisible
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vector X which is the random variable observed in the data, and ahidden random variableH. There

is no tractable representation ofP(X,H) but conditional distributionsP(H|X) andP(X|H) can easily be

computed and sampled from. CD-k is based on a Gibbs Monte-Carlo Markov Chain (MCMC) starting at

an exampleX = x1 from the empirical distribution and converging to the RBM’s generative distribution

P(X). CD-k relies on a biased estimator obtained after a small numberk of Gibbs steps (often only

1 step). Each Gibbs step is composed of two alternating sub-steps: samplinght ∼ P(H|X = xt) and

samplingxt+1 ∼ P(X|H = ht), starting att = 1.

The surprising empirical result is that evenk = 1 (CD-1) often gives good results. An extensive

numerical comparison of training with CD-k versus exact log-likelihood gradient has been presented

in (Carreira-Perpĩnan & Hinton, 2005). In these experiments, takingk larger than 1 gives more precise

results, although very good approximations of the solutioncan be obtained even withk = 1. Here we

present a follow-up to (Carreira-Perpiñan & Hinton, 2005) that brings further theoretical and empirical

support to CD-k, even for smallk.

CD-1 has originally been justified (Hinton, 2002) as an approximation of the gradient of

KL(P(X2 = · |x1)||P(X = · )) − KL(P̂(X = · )||P(X = · )), whereKL is the Kullback-Leibler divergence,̂P

is the empirical distribution of the training data, andP(X2 = · |x1) denotes the distribution of the chain

after one step. The term left out in the approximation of the gradient of theKL difference is (Hinton,

2002)
∑

x

∂KL(P(X2 = · |x1)||P(X = · )
∂P(X2 = x|x1)

∂P(X2 = x|x1)
∂θ

(2)

which was empirically found to be small. On the one hand it is not clear how aligned are the log-likelihood

gradient and the gradient with respect to the aboveKL difference. On the other hand it would be nice to

prove that left-out terms are small in some sense. One of the motivations for this paper is to obtain the

3



Contrastive Divergence algorithm from a different route, by which we can prove that the term left-out

with respect to thelog-likelihood gradientis small and converging to zero, as we takek larger.

We show that the log-likelihood and its gradient can be expanded by considering samples in a Gibbs

chain. We show that when truncating the gradient expansion to k steps, the remainder converges to

zero at a rate that depends on the mixing rate of the chain. Theinspiration for this derivation comes

from Hinton et al. (2006): first the idea that the Gibbs chain can be associated with an infinite directed

graphical model (which here we associate to an expansion of the log-likelihood and of its gradient), and

second that the convergence of the chain justifies Contrastive Divergence (since thek-th sample from

the Gibbs chain becomes equivalent to a model sample). However, our empirical results also show that

the convergence of the chain alone cannot explain the good results obtained by Contrastive Divergence,

because this convergence becomes too slow as weights increase during training. It turns out that even

whenk is not large enough for the chain to converge (e.g. the typical valuek = 1), the CD-k rule remains

a good update direction to increase the log-likelihood of the training data.

Finally, we show that when truncating the series to a single sub-step we obtain the gradient of a

stochastic reconstruction error. A mean-field approximation of that error is the reconstruction error often

used to train autoassociators (Rumelhart, Hinton, & Williams, 1986; Bourlard & Kamp, 1988; Hinton &

Zemel, 1994; Schwenk & Milgram, 1995; Japkowicz, Hanson, & Gluck, 2000). Auto-associators can be

stacked using the same principle used to stack RBMs into a Deep Belief Network in order to train deeep

neural networks (Bengio et al., 2007; Ranzato et al., 2007; Larochelle et al., 2007). Reconstruction error

has also been used to monitor progress in training RBMs by CD (Taylor, Hinton, & Roweis, 2006; Bengio

et al., 2007), because it can be computed tractably and analytically, without sampling noise.

In the following we drop theX = x notation and use shorthands such asP(x|h) instead ofP(X = x|H =
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h). Thet index is used to denote position in the Markov chain, whereasindicesi or j denote an element

of the hidden or visible vector respectively.

2 Restricted Boltzmann Machines and Contrastive Divergence

2.1 Boltzmann Machines

A Boltzmann Machine (Hinton, Sejnowski, & Ackley, 1984; Hinton & Sejnowski, 1986) is a probabilistic

model of the joint distribution betweenvisible units x, marginalizing over the values ofhidden units h,

P(x) =
∑

h

P(x,h) (3)

and where the joint distribution between hidden and visibleunits is associated with aquadraticenergy

function

E(x,h) = −b′x− c′h− h′Wx− x′Ux− h′Vh (4)

such that

P(x,h) =
e−E(x,h)

Z
(5)

whereZ =
∑

x,h e−E(x,h) is a normalization constant (called the partition function) and (b, c,W,U,V) are

parameters of the model.bj is called the bias of visible unitx j, ci is the bias of visible unithi, and

the matricesW, U, and V representinteraction terms between units. Note that non-zeroU and V

mean that there are interactions between units belonging tothe same layer (hidden layer or visible layer).

Marginalizing overh at the level of the energy yields the so-calledfree energy:

F (x) = − log
∑

h

e−E(x,h). (6)
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We can rewrite the log-likelihood accordingly

logP(x) = log
∑

h

e−E(x,h) − log
∑

x̃,h̃

e−E(x̃,h̃) = −F (x) − log
∑

x̃

e−F (x̃). (7)

Differentiating the above, the gradient of the log-likelihood with respect to some model parameterθ can

be written as follows:

∂ logP(x)
∂θ

= −

∑

h e−E(x,h) ∂E(x,h)
∂θ

∑

h e−E(x,h)
+

∑

x̃,h̃ e−E(x̃,h̃) ∂E(x̃,h̃)
∂θ

∑

x̃,h̃ e−E(x̃,h̃)

= −
∑

h

P(h|x)
∂E(x,h)
∂θ

+
∑

x̃,h̃

P(x̃, h̃)
∂E(x̃, h̃)
∂θ

. (8)

Computing ∂E(x,h)
∂θ

is straightforward. Therefore, if sampling from the model was possible, one could

obtain a stochastic gradient for use in training the model, as follows. Two samples are necessary:h given

x for the first term, which is called thepositive phase, and an ( ˜x, h̃) pair fromP(x̃, h̃) in what is called the

negative phase. Note how the resulting stochastic gradient estimator

−
∂E(x,h)
∂θ

+
∂E(x̃, h̃)
∂θ

(9)

has one term for each of the positive phase and negative phase, with the same form but opposite signs.

Let u = (x,h) be a vector with all the unit values. In a general Boltzmann machine, one can compute and

sample fromP(ui |u−i), whereu−i is the vector with all the unit values except thei-th. Gibbs sampling with

as many sub-steps as units in the model has been used to train Boltzmann machines in the past, with very

long chains, yielding correspondingly long training times.

2.2 Restricted Boltzmann Machines

In a Restricted Boltzmann Machine (RBM),U = 0 andV = 0 in eq. 4, i.e. the only interaction terms are

between a hidden unit and a visible unit, but not between units of the same layer. This form of model was
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first introduced under the name ofHarmonium (Smolensky, 1986). Because of this restriction,P(h|x)

andP(x|h) factorize and can be computed and sampled from easily. Thisenables the use of a 2-step Gibbs

sampling alternating betweenh ∼ P(H|X = x) and x ∼ P(X|H = h). In addition, the positive phase

gradient can be obtained exactly and efficiently because the free energy factorizes:

e−F (x) =
∑

h

eb′x+c′h+h′Wx = eb′x
∑

h1

∑

h2

. . .
∑

hdh

dh∏

i=1

ecihi+(Wx)ihi

= eb′x
∑

h1

eh1(c1+W1x) . . .
∑

hdh

ehdh(cdh+Wdh x)

= eb′x
dh∏

i=1

∑

hi

ehi (ci+Wi x)

whereWi is thei-th row ofW anddh the dimension ofh. Using the same type of factorization, one obtains

for example in the most common case wherehi is binary

−
∑

h

P(h|x)
∂E(x,h)
∂Wi j

= E[Hi |x] · xj , (10)

where

E[Hi |x] = P(Hi = 1|X = x) = sigm(ci +Wi x). (11)

The log-likelihood gradient forWi j thus has the form

∂ logP(x)
∂Wi j

= P(Hi = 1|X = x) · x j − EX[P(Hi = 1|X) · X j] (12)

whereEX is an expectation overP(X). Samples fromP(X) can be approximated by running an alternating

Gibbs chainx1 ⇒ h1 ⇒ x2 ⇒ h2 ⇒ . . . Since the modelP is trying to imitate the empirical distribution

P̂, it is a good idea to start the chain with a sample fromP̂, so that we start the chain from a distribution

close to the asymptotic one.

In most uses of RBMs (Hinton, 2002; Carreira-Perpiñan & Hinton, 2005; Hinton et al., 2006; Bengio

et al., 2007) bothhi andxj are binary, but many extensions are possible and have been studied, including
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cases where hidden and/or visible units are continuous-valued (Freund & Haussler,1994; Welling et al.,

2005; Bengio et al., 2007).

2.3 Contrastive Divergence

Thek-step Contrastive Divergence (CD-k) (Hinton, 1999, 2002) involves a second approximation besides

the use of MCMC to sample fromP. This additional approximation introduces some bias in thegradient:

we run the MCMC chain for onlyk steps, starting from the observed examplex. Using the same technique

as in eq. 8 to express the log-likelihood gradient, but keeping the sums overh inside the free energy, we

obtain

∂ logP(x)
∂θ

=
∂(−F (x) − log

∑

x̃ e−F (x̃))
∂θ

= −
∂F (x)
∂θ

+

∑

x̃ e−F (x̃) ∂F (x̃)
∂θ

∑

x̃ e−F (x̃)

= −
∂F (x)
∂θ

+
∑

x̃

P(x̃)
∂F (x̃)
∂θ
. (13)

The CD-k update after seeing examplex is taken proportional to

∆θ = −
∂F (x)
∂θ

+
∂F (x̃)
∂θ

(14)

wherex̃ is a sample from our Markov chain afterk steps. We know that whenk→ ∞, the samples from

the Markov chain converge to samples fromP, and the bias goes away. We also know that when the model

distribution is very close to the empirical distribution, i.e., P ≈ P̂, then when we start the chain fromx

(a sample fromP̂) the MCMC samples have already converged toP, and we need less sampling steps to

obtain an unbiased (albeit correlated) sample fromP.
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3 Log-Likelihood Expansion via Gibbs Chain

In the following we consider the case where bothh and x can only take a finite number of values. We

also assume that there is no pair (x,h) such thatP(x|h) = 0 or P(h|x) = 0. This ensures the Markov chain

associated with Gibbs sampling isirreducible (one can go from any state to any other state), and there

exists a unique stationary distributionP(x,h) the chain converges to.

Lemma 3.1. Consider the irreducible Gibbs chain x1 ⇒ h1 ⇒ x2 ⇒ h2 . . . starting at data point x1. The

log-likelihood can be written as follows at any step t of the chain

logP(x1) = log
P(x1)
P(xt)

+ logP(xt) (15)

and since this is true for any path:

logP(x1) = EXt

[

log
P(x1)
P(Xt)

∣
∣
∣
∣
∣
x1

]

+ EXt [log P(Xt)|x1] (16)

where expectations are over Markov chain sample paths, conditioned on the starting sample x1.

Proof. Eq. 15 is obvious, while eq. 16 is obtained by writing

logP(x1) =
∑

xt

P(xt|x1) logP(x1)

and substituting eq. 15. �

Note thatEXt [log P(Xt)|x1] is the negative entropy of thet-th visible sample of the chain, and it does

not become smaller ast → ∞. Therefore it does not seem reasonable to truncate this expansion. However,

the gradient of the log-likelihood is more interesting. But first we need a simple lemma.

Lemma 3.2. For any model P(Y) with parametersθ,

E

[

∂ logP(Y)
∂θ

]

= 0

when the expected value is taken according to P(Y).
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Proof.

E

[

∂ logP(Y)
∂θ

]

=
∑

Y

P(Y)
∂ logP(Y)
∂θ

=
∑

Y

P(Y)
P(Y)

∂P(Y)
∂θ

=
∂
∑

Y P(Y)
∂θ

=
∂1
∂θ
= 0.

�

The lemma is clearly also true for conditional distributions with corresponding conditional expecta-

tions.

Theorem 3.3. Consider the converging Gibbs chain x1 ⇒ h1 ⇒ x2 ⇒ h2 . . . starting at data point x1.

The log-likelihood gradient can be written

∂ logP(x1)
∂θ

= −
∂F (x1)
∂θ

+ EXt

[

∂F (Xt)
∂θ

∣
∣
∣
∣
∣
x1

]

+ EXt

[

∂ logP(Xt)
∂θ

∣
∣
∣
∣
∣
x1

]

(17)

and the final term (which will be shown later to be the bias of the CD estimator) converges to zero as t

goes to infinity.

Proof. We take derivatives with respect to a parameterθ in the log-likelihood expansion in eq. 15 of

Lemma 3.1:

∂ logP(x1)
∂θ

=
∂

∂θ
log

P(x1)
P(xt)

+
∂ logP(xt)
∂θ

=
∂

∂θ
loge−F (x1)+F (xt) +

∂ logP(xt)
∂θ

= −
∂F (x1)
∂θ

+
∂F (xt)
∂θ

+
∂ logP(xt)
∂θ

.

Then we take expectations with respect to the Markov chain conditional onx1, getting

∂ logP(x1)
∂θ

= −
∂F (x1)
∂θ

+ EXt

[

∂F (Xt)
∂θ

∣
∣
∣
∣
∣
x1

]

+ EXt

[

∂ logP(Xt)
∂θ

∣
∣
∣
∣
∣
x1

]

.

In order to prove the convergence of the CD bias towards zero, we will use the assumed convergence of

the chain, which can be written

P(Xt = x|X1 = x1) = P(x) + ǫt(x) (18)
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with
∑

x ǫt(x) = 0 and limt→+∞ ǫt(x) = 0 for all x. Sincex is discrete,ǫt
de f
= maxx |ǫt(x)| also verifies

lim t→+∞ ǫt = 0. Then we can rewrite the last expectation as follows:

EXt

[

∂ logP(Xt)
∂θ

∣
∣
∣
∣
∣
x1

]

=
∑

xt

P(xt|x1)
∂ logP(xt)
∂θ

=
∑

xt

(P(xt) + ǫt(xt))
∂ logP(xt)
∂θ

=
∑

xt

P(xt)
∂ logP(xt)
∂θ

+
∑

xt

ǫt(xt)
∂ logP(xt)
∂θ

.

Using Lemma 3.2, the first sum is equal to zero. Thus we can bound this expectation by

∣
∣
∣
∣
∣
∣
EXt

[

∂ logP(Xt)
∂θ

∣
∣
∣
∣
∣
x1

]∣
∣
∣
∣
∣
∣
≤

∑

xt

|ǫt(xt)|
∣
∣
∣
∣
∣

∂ logP(xt)
∂θ

∣
∣
∣
∣
∣

≤

(

Nx max
x

∣
∣
∣
∣
∣

∂ logP(x)
∂θ

∣
∣
∣
∣
∣

)

ǫt (19)

whereNx is the number of discrete configurations for the random variable X. This proves the expectation

converges to zero ast → +∞, since limt→+∞ ǫt = 0. �

One may wonder to what extent the above results still hold in the situation wherex andh are not

discrete anymore, but instead may take values in infinite (possibly uncountable) sets. We assumeP(x|h)

andP(h|x) are such that there still exists a unique stationary distributionP(x,h). Lemma 3.1 and its proof

remain unchanged. On another hand, Lemma 3.2 is only true fordistributionsP such that

∫

y

∂P(y)
∂θ

dy=
∂

∂θ

∫

y
P(y)dy. (20)

This equation can be guaranteed to be verified under additional “niceness” assumptions onP, and we

assume it is the case for distributionsP(x), P(x|h) and P(h|x). Consequently, the gradient expansion

(eq. 17) in Theorem 3.3 can be obtained in the same way as before. The key point to justify further

truncation of this expansion is the convergence towards zero of the bias

EXt

[

∂ logP(Xt)
∂θ

∣
∣
∣
∣
∣
x1

]

. (21)
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This convergence is not necessarily guaranteed unless we have convergence ofP(Xt|x1) to P(Xt) in the

sense that

lim
t→∞

EXt

[

∂ logP(Xt)
∂θ

∣
∣
∣
∣
∣
x1

]

= EX

[

∂ logP(X)
∂θ

]

, (22)

where the second expectation is over the stationary distribution P. If the distributionsP(x|h) andP(h|x)

are such that eq. 22 is verified, then this limit is also zero according to Lemma 3.2, and it makes sense to

truncate eq. 17. Note however than eq. 22 does not necessarily hold in the most general case (Hernández-

Lerma & Lasserre, 2003).

4 Connection with Contrastive Divergence

4.1 Theoretical Analysis

Theorem 3.3 justifies truncating the series aftert steps, i.e. ignoringEXt

[
∂ logP(Xt)
∂θ

∣
∣
∣ x1

]

, yielding the ap-

proximation

∂ logP(x1)
∂θ

≃ −
∂F (x1)
∂θ

+ EXt

[

∂F (Xt)
∂θ

∣
∣
∣
∣
∣
x1

]

. (23)

Note how the expectation can be readily replaced by samplingxt ∼ P(Xt|x1), giving rise to the stochastic

update

∆θ = −
∂F (x1)
∂θ

+
∂F (xt)
∂θ

whose expected value is the above approximation. This is also exactly the CD-(t − 1) update (eq.14).

The idea that faster mixing yields to better approximation by CD-k was already introduced ear-

lier (Carreira-Perpĩnan & Hinton, 2005; Hinton et al., 2006). The bound in eq. 19 explicitly relates

the convergence of the chain (through the convergence of error ǫt in estimatingP(x) with P(Xk+1 = x|x1))

to the approximation error of the CD-k gradient estimator. When the RBM weights are large it is plausi-
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ble that the chain will mix more slowly because there is less randomness in each sampling step. Hence

it might be advisable to use larger values ofk as the weights become larger during training. It is thus

interesting to study how fast the bias converges to zero ast increases, depending on the magnitude of the

weights in an RBM. Markov chain theory (Schmidt, 2006) ensuresthat, in the discrete case,

ǫt = max
x
|ǫt(x)| ≤ (1− Nxa)t−1 (24)

whereNx is the number of possible configurations forx, anda is the smallest element in the transition

matrix of the Markov chain. In order to obtain a meaningful bound on eq.19 we also need to bound the

gradient of the log-likelihood. In the following we will thus consider the typical case of a binomial RBM,

with θ being a weightWi j between hidden uniti and visible unitj. Recall eq. 12:

∂ logP(x)
∂Wi j

= P(Hi = 1|X = x) · x j − EX[P(Hi = 1|X) · X j].

For anyx, bothP(Hi = 1|X = x) andx j are in (0,1). Consequently, the expectation above is also in (0,1)

and thus
∣
∣
∣
∣
∣
∣

∂ logP(x)
∂Wi j

∣
∣
∣
∣
∣
∣
≤ 1.

Combining this inequality with eq. 24, we obtain from eq. 19 that

∣
∣
∣
∣
∣
∣
EXt

[

∂ logP(Xt)
∂θ

∣
∣
∣
∣
∣
x1

]∣
∣
∣
∣
∣
∣
≤ Nx(1− Nxa)t−1. (25)

It remains to quantifya, the smallest term in the Markov chain transition matrix. Each element of this

matrix is of the form

P(x2|x1) =
∑

h

P(x2|h)P(h|x1)

=
∑

h

Π jP(x2, j |h)ΠiP(hi |x1).
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Since 1− sigm(z) = sigm(−z), we have:

P(x2, j |h) =






sigm(h′W· j + bj) if x2, j = 1

sigm(−h′W· j − bj) if x2, j = 0

≥ sigm
(

−
∣
∣
∣h′W· j + bj

∣
∣
∣

)

≥ sigm



−





∑

i

hi |Wi j | + |bj |









≥ sigm



−





∑

i

|Wi j | + |bj |







 .

Let us denoteα j =
∑

i |Wi j | + |bj |, andβi =
∑

j |Wi j | + |ci |. We can obtain in a similar way thatP(hi |x1) ≥

sigm(−βi). As a result, we have that

a ≥
∑

h

Π jsigm(−α j)Πisigm(−βi) = NhΠ jsigm(−α j)Πisigm(−βi). (26)

In order to simplify notations (at the cost of a looser bound), let us denote

α = max
j
α j (27)

β = max
i
βi . (28)

Then, by combining equations 25 and 26, we finally obtain:

∣
∣
∣
∣
∣
∣
EXt

[

∂ logP(Xt)
∂θ

∣
∣
∣
∣
∣
x1

]∣
∣
∣
∣
∣
∣
≤ Nx

(

1− NxNhsigm(−α)dxsigm(−β)dh
)t−1

(29)

whereNx = 2dx andNh = 2dh. Note that although this bound is tight (and equal to zero) for anyt ≥ 2 when

weights and biases are set to zero (since mixing is immediate), the bound is likely to be loose in practical

cases. Indeed, the bound approachesNx fast, as the two sigmoids decrease towards zero. However, the

bound clarifies the importance of weight size in the bias of the CD approximation. It is also interesting

to note that this bound on the bias decreases exponentially with the number of steps performed in the CD

update, even though this decrease may become linear when thebound is loose (which is usually the case
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in practice): in such cases, it can be writtenNx(1−γ)t−1 with a smallγ, and thus is close toNx(1−γ(t−1)),

which is a linear decrease int.

If the contrastive divergence update is considered like a biased and noisy estimator of the true log-

likelihood gradient, it can be shown that stochastic gradient descent converges (to a local minimum),

provided that the bias is not too large (Yuille, 2005). On theother hand, one should keep in mind that

for small k, there is no guarantee that contrastive divergence converges near the maximum likelihood

solution (MacKay, 2001). The experiments below confirm the above theoretical results and suggest that

even when the bias is large and the weights are large, the signof the CD estimator may be generally

correct.

4.2 Experiments

In the following series of experiments, we study empirically how the CD-k update relates to the gradient

of the log-likelihood. More specifically, in order to removevariance caused by sampling noise, we are

interested in comparing two quantities:

∆k(x1) = −
∂F (x1)
∂θ

+ EXk+1

[

∂F (Xk+1)
∂θ

∣
∣
∣
∣
∣
x1

]

(30)

∆(x1) = −
∂F (x1)
∂θ

+ EX

[

∂F (X)
∂θ

]

where∆(x1) is the gradient of the likelihood (eq. 13) and∆k(x1) its average approximation by CD-k

(eq. 23). The difference between these two terms is the biasδk(x1), i.e., according to eq. 17:

δk(x1) = ∆(x1) − ∆k(x1) = EXk+1

[

∂ logP(Xk+1)
∂θ

∣
∣
∣
∣
∣
x1

]

and, as shown in section 4.1, we have

lim
k→+∞

δk(x1) = 0.
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Note that our analysis is different from the one in (Carreira-Perpiñan & Hinton, 2005), where the solutions

(after convergence) found by CD-k and gradient descent on the negative log-likelihood were compared,

while we focus on the updates themselves.

In these experiments, we use two manually generated binary datasets:

1. Diagd is ad-dimensional dataset containingd + 1 samples as follows:

d bits
︷       ︸︸       ︷

000. . . 000

100. . . 000

110. . . 000

111. . . 000

. . .

111. . . 100

111. . . 110

111. . . 111

2. 1DBalld is a d-dimensional dataset containing 2d
⌊

d−1
2

⌋

samples, representing “balls” on a one-

dimensional discrete line withd pixels. Half of the data examples are generated by first picking

the positionb of the beginning of the ball (amongd possibilities), then its widthw (amongh
⌊

d−1
2

⌋

possibilities). Pixels fromb to b+w− 1 (modulod) are then set to 1 while the rest of the pixels are

set to 0. The second half of the dataset is generated by simply“reverting” its first half (switching

zeros and ones).

In order to be able to computeδk(x1) exactly, only RBMs with a small (less than 10) number of visible

and hidden units are used. We compute quantities for allθ = Wi j (the weights of the RBM connections
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between visible and input units). The following statisticsare then computed over all weightsWi j and all

training examplesx1:

• the weight magnitude indicatorsα andβ, as defined in eq. 27 and 28,

• the mean of the gradient bias|δk(x1)|, denoted byδk and called the absolute bias,

• the median of
∣
∣
∣
∣
δk(x1)
∆(x1)

∣
∣
∣
∣, i.e. the relative difference between the CD-k update and the log-likelihood

gradient1 (we use the median to avoid numerical issues for small gradients), denoted byrk and

called the relative bias,

• the sign errorsk, i.e., the fraction of updates for which∆k(x1) and∆(x1) have different signs.

The RBM is initialized with zero biases and small weights uniformly sampled in
[

−1
d ,

1
d

]

whered is

the number of visible units. Note that even with such small weights, the bound from eq. 29 is already

close to its maximum valueNx, so that it is not interesting to plot it on the figures. The number of hidden

units is also set tod for the sake of simplicity. The RBM weights and biases are trained by CD-1 with a

learning rate set to 10−3: keep in mind that we are not interested in comparing the learning process itself,

but rather how the quantities above evolve for different kinds of RBMs, in particular as weights become

larger during training. Training is stopped once the average negative log-likelihood over training samples

has less than 5% relative difference compared to its lower bound, which here is log(N), whereN is the

number of training samples (which are all unique).

Figure 1 shows a typical example of how the quantities definedabove evolve during training (β is

not plotted as it exhibits the same behavior asα). As the weights increase (as shown byα), so does the

1This quantity is more interesting than the absolute bias because it tells us what proportion of the true gradient of the

log-likelihood is “lost” by using the CD-k update.
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number of updates

0.0

0.2

0.4

0.6

0.8

1.0

α: weight magnitude
δ1: bias
r1: relative bias
s1: sign error

Figure 1: Typical evolution of weight magnitudeα, gradient absolute biasδ1, relative biasr1 and sign

error s1 as the RBM is being trained by CD-1 on1DBall10. The size of weightsα and the absolute bias

δ1 are rescaled so that their maximum value is 1, while the relative biasr1 and the sign disagreements1

naturally fall within [0,1].
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absolute value of the left out term in CD-1 (δ1), and its relative magnitude compared to the log-likelihood

(r1). In particular, we observe that most of the log-likelihoodgradient is quickly lost in CD-1 (here

after only 80000 updates), so that CD-1 is not anymore a good approximation of negative log-likelihood

gradient descent. However, the RBM is still able to learn its input distribution, which can be explained by

the fact that the “sign disagreement”s1 between CD-1 and the log-likelihood gradient remains small (less

than 5% for the whole training period).

1 2 3 4 5 6 7 8 9 10
k

0.2

0.3

0.4

0.5

0.6

0.7

0.8

d = 6
d = 7
d = 8
d = 9
d = 10

r k

1 2 3 4 5 6 7 8 9 10
k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

d = 6
d = 7
d = 8
d = 9
d = 10

r k

Figure 2: Median relative biasrk between the CD-k update and the gradient of the log-likelihood, fork

from 1 to 10, with input dimensiond ∈ {6,7,8,9,10}, when the stopping criterion is reached. Left: on

datasetsDiagd. Right: on datasets1DBalld.

Figures 2 and 4 show howrk andsk respectively vary depending on the number of stepsk performed

in CD, on theDiagd (left) and1DBalld (right) datasets, ford ∈ {6,7,8,9,10}. All these values are taken

when our stopping criterion is reached (i.e. we are close enough to the empirical distribution). It may seem

surprising thatrk does not systematically increase withd, but remember that each RBM may be trained for

a different number of iterations, leading to potentially very different weight magnitude. Figure 3 shows

the corresponding values forα andβ (which reflect the magnitude of weights): we can see for instance
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Figure 3: Measures of weight magnitudeα andβ as the input dimensiond varies from 6 to 10, when the

stopping criterion is reached. Left: on datasetsDiagd. Right: on datasets1DBalld.

1 2 3 4 5 6 7 8 9 10
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Figure 4: Average disagreementsk between the CD-k update and negative log-likelihood gradient descent,

for k from 1 to 10, with input dimensiond ∈ {6,7,8,9,10}, when the stopping criterion is reached. Left:

on datasetsDiagd. Right: on datasets1DBalld.
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Figure 5: rk (left) andα and β (right) on datasets1DBalld, after only 300000 training iterations:rk

systematically increases withd when weights are small (compared to figures 2 and 3).

thatα andβ for dataset1DBall6 are larger than for dataset1DBall7, which explains whyrk is also larger,

as shown in figure 2 (right). Figure 5 shows a “smoother” behavior of rk w.r.t. d when all RBMs are

trained for a fixed (small) number of iterations, illustrating how the quality of CD-k decreases in higher

dimension (as an approximation to negative log-likelihoodgradient descent).

We observe on figure 2 that the relative biasrk becomes large not only for smallk (which means the

CD-k update is a poor approximation of the true log-likelihood gradient), but also for largerk in higher

dimensions. As a result, increasingk moderately (from 1 to 10) still leaves a large approximationerror

(e.g. from 80% to 50% withd = 10 in Figure 2) in spite of a 10-fold increase in computation time. This

suggests that when trying to obtain a more precise estimatorof the gradient, alternatives to CD-k such as

persistent CD (Tieleman, 2008) may be more appropriate. On another hand, we notice from figure 4 that

the disagreementsk between the two updates remains low even for smallk in larger dimensions (in our

experiments it always remains below 5%). This may explain why CD-1 can successfully train RMBs even

when connection weights become larger and the Markov chain does not mix fast anymore. An intuitive
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explanation for this empirical observation is the popular view of CD-k as a process that, on one hand,

decreases the energy of a training samplex1 (first term in eq. 30), and on another hand increases the

energy of other nearby input examples (second term), thus leading to an overall increase ofP(x1).

5 Connection with Autoassociator Reconstruction Error

In this section, we relate the autoassociator reconstruction error criterion (an alternative to Contrastive

Divergence learning) to another similar truncation of the log-likelihood expansion. We can use the same

approach as in Theorem 3.3 to introduce the first hidden sampleh1 as follows:

∂ logP(x1)
∂θ

=
∂

∂θ

(

log
P(x1)
P(h1)

+ logP(h1)

)

=
∂

∂θ
log

P(x1|h1)
P(h1|x1)

+
∂ logP(h1)
∂θ

.

Taking the expectation with respect toH1 conditioned onx1 yields

∂ logP(x1)
∂θ

= EH1

[

∂ logP(x1|H1)
∂θ

∣
∣
∣
∣
∣
x1

]

− EH1

[

∂ logP(H1|x1)
∂θ

∣
∣
∣
∣
∣
x1

]

+ EH1

[

∂ logP(H1)
∂θ

∣
∣
∣
∣
∣
x1

]

(31)

Using lemma 3.2, the second term is equal to zero. If we truncate this expansion by removing the last

term (as is done in CD) we thus obtain:

∑

h1

P(h1|x1)
∂ logP(x1|h1)

∂θ
(32)

which is an average overP(h1|x1), that could be approximated by sampling. Note that this is not quite the

negated gradient of thestochastic reconstruction error

SRE= −
∑

h1

P(h1|x1) logP(x1|h1). (33)

Let us consider a notion ofmean-field approximationby which an averageEX[ f (X)] over configurations

of a random variableX is approximated byf (E[X]), i.e., using the mean configuration. Applying such
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an approximation to SRE (eq. 33) gives thereconstruction error typically used in training autoassoci-

ators (Rumelhart et al., 1986; Bourlard & Kamp, 1988; Hinton & Zemel, 1994; Schwenk & Milgram,

1995; Japkowicz et al., 2000; Bengio et al., 2007; Ranzato et al., 2007; Larochelle et al., 2007),

RE= − logP(x1|ĥ1) (34)

whereĥ1 = E[H1|x1] is the mean-field output of the hidden units given the observed inputx1. If we apply

the mean-field approximation to the truncation of the log-likelihood given in eq. 32, we obtain

∂ logP(x1)
∂θ

≃
∂ logP(x1|ĥ1)

∂θ
.

It is arguable whether the mean-field approximation per se gives us license to include in∂ logP(x1|ĥ1)
∂θ

the

effect ofθ on ĥ1, but if we do so then we obtain the gradient of the reconstruction error (eq. 34), up to the

sign (since the log-likelihood is maximized while the reconstruction error is minimized).

As a result, whereas CD-1 truncates the chain expansion atx2 (as seen in section 2.3), ignoring

EX2

[

∂ logP(X2)
∂θ

∣
∣
∣
∣
∣
x1

]

,

we see (using the fact that the second term of 31 is zero) that reconstruction update truncates the chain

expansion one step earlier (ath1), ignoring

EH1

[

∂ logP(H1)
∂θ

∣
∣
∣
∣
∣
x1

]

and working on a mean-field approximation instead of a stochastic approximation. The reconstruction

error gradient can thus be seen as a more biased approximation of the log-likelihood gradient than CD-1.

Comparative experiments between reconstruction error training and CD-1 training confirm this view (Ben-

gio et al., 2007; Larochelle et al., 2007): CD-1 updating generally has a slight advantage over reconstruc-

tion error gradient.
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However, reconstruction error can be computed deterministically and has been used as an easy method

to monitor the progress of training RBMs with CD, whereas the CD-k itself is generally not the gradient

of anything and is stochastic.

6 Conclusion

This paper provides a theoretical and empirical analysis ofthe log-likelihood gradient in graphical mod-

els involving a hidden variableh in addition to the observed variablex, and where conditionalsP(h|x)

andP(x|h) are easy to compute and sample from. That includes the case of Contrastive Divergence for

Restricted Boltzmann Machines (RBM). The analysis justifies theuse of a short Gibbs chain of length

k to obtain a biased estimator of the log-likelihood gradient. Even though our results do not guarantee

that the bias decreases monotically withk, we prove a bound that does, and observe this decrease experi-

mentally. Moreover, although this bias may be large when using only few steps in the Gibbs chain (as is

usually done in practice), our empirical analysis indicates this estimator remains a good update direction

compared to the true (but intractable) log-likelihood gradient.

The analysis also shows a connection between reconstruction error, log-likelihood and Contrastive

Divergence (CD), which helps understand the better results generally obtained with CD and justify the

use of reconstruction error as a monitoring device when training an RBM by CD. The generality of the

analysis also opens the door to other learning algorithms inwhich P(h|x) and P(x|h) do not have the

parametric forms of RBMs.
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