
'

&

$

%

Conclusion
1. Training a NN can be seen as a convex optimization problem.

2. Even though we never limit the number of hidden neurons, the final number will be no more than
the number of examples (and less in practice, depending on the value of λ) with L1 regularization.

3. We proved the existence of an exact algorithm to find the global optimum of a neural net.

4. With an approximate minimization to find the next hyperplane, continuing to optimize the pre-
vious ones helps getting out of local minima and speeds up convergence.

References
Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. J. American Statistical Association, 76(376):817–

823.

Gallant, S. (1990). Perceptron-based learning algorithms.

Hettich, R. and Kortanek, K. (1993). Semi-infinite programming: theory, methods, and applications. SIAM Review,
35(3):380–429.

Marcotte, P. and Savard, G. (1992). Novel approaches to the discrimination problem. Zeitschrift fr Operations Research
(Theory), 36:517–545.

Muselli, M. (1997). On convergence properties of pocket algorithm. IEEE Transactions on Neural Networks, 8:623–629.

Rätsch, G., Demiriz, A., and Bennett, K. P. (2001). Sparse regression ensembles in infinite and finite hypothesis spaces.

'

&

$

%

Extension to multiple output neurons
1. A neural network with p output neurons can be represented as p neural networks with 1 output
neuron each (even though this is not of great interest).

2. Therefore, the stopping criterion remains (one for each output neuron).

3. If we prefer to have fewer hidden units (and we do), then the function to consider to find the
optimal hidden unit is a bit trickier, yet optimizable.

'

&

$

%

Continuous neural networks: L2 ⇒ Kernel
1. As it seemed impossible to have all input weights at the same time, we performed in the former
algorithm a constructive iterative procedure.

2. With an L2-norm regularization, it is possible to optimize over all output weights at the same time.

3. It becomes a kernel method whose kernel depends on the transfer function of the hidden units.
O1 . . . Op

. . . hv1
. . . hv2

. . . hvk
. . .

xt,1 xt,2 . . . xt,d

O(x) =
∫
v
w(v)hv(x) dv

'

&

$

%

Example: the double-moon problem

Top: Output value for each sample (color = sign and size = amplitude).
Middle: The decision surface of the network.
Bottom: The optimal linear classifier found at step i.

'

&

$

%

Exact and approximate minimization
1. The exact algorithm to find the best separating hyperplane is in O(nd log(n)).

2. Need for an approximate algorithm: linear SVM, logistic regression classifier, variants of
the perceptron algorithm, ...

3. Might be stuck in local minimum and thus no guarantee of reaching the global optimum.

4. When a new hidden unit is added, we train the entire neural network for a few iterations.

5. In practice, the test error is very similar to the one obtained with the exact algorithm.

'

&

$

%

Algorithm ConvexNNL1(D,Q,λ,s)
Input: training set D = {(x1, y1), . . . , (xn, yn)}, convex loss function Q, and scalar L1

regularization penalty λ. s is either the sign function or the tanh function, so that the hidden
units can be written h(xt) = s(v · x̃t) with x̃t = (xT

t , 1)T .
(1) Set i = 1, v1 = (0, 0, . . . , 1) and select w1 = argminw1

∑
t Q(w1s(1), yt) + λ|w1|.

(2) Repeat
(3) Set i = i + 1.
(4) Let qt = Q′(

∑i−1
j=1 wjhj(xt), yt)

(5) If s = sign
(5a) train linear classifier hi(x) = sign(vi · x̃) with examples {(xt, sign(qt))} and errors
weighted by |qt|, t = 1 . . . n (i.e., maximize

∑
t qthi(xt))

(5b) else (s = tanh)
(5c) train “linear classifier” hi(x) = tanh(vi · x̃) to maximize

∑
t qthi(xt).

(6) If
∑

t qthi(xt) < λ then set i = i − 1 and stop.
(7) Select w1, . . . , wi (and optionally v1, . . . , vi) minimizing (exactly or approximately)
C =

∑
t Q(

∑i
j=1 wjhj(xt), yt) + λ

∑i
j=1 |wj|, so that ∂C

∂wj
= 0 for j = 1 . . . i.

(8) Return the predictor ŷ(x) =
∑i

j=1 wjhj(x).

Theorem 1: If there is no h such that
∑

t qth(xt) > λ, the optimum is obtained.
Theorem 2: At the optimum, there is no more than nsamples + 1 hidden units (Rätsch,
Demiriz and Bennett, 2001; Hettich and Kortanek, 1993) and this value is controlled by λ.

'

&

$

%

NNets only optimize output weights ?
1. We can see a usual neural net as a network with an infinite number of hidden neurons and the
output weights being almost all 0.

2. With this parametrization, optimizing an input weight (vj becomes vj ′) is equivalent to opti-
mizing the corresponding output weights (wj ′ takes the value of wj and wj becomes 0).

'

&

$

%

Incremental procedure
Ot =

∑
j wjhj(xt)

h1(xt) h2(xt) . . . hi(xt) hi+1(xt)

xt,1 xt,2 . . . xt,d

w1

w2
wi

wi+1

qt =
∂Q (Ot, yt)

∂Ot
hj(xt) = g(xt, vj)

vi+1 = argmaxv
∑
t

g(xt, v)qt

'

&

$

%

Core Ideas
1. Popularity of neural networks suffers from their lack of convexity.

Proposition 1: Let Q(w · h(xt), yt) be the cost associated with the network output w · h(xt) and
target yt, and Ω(w) the regularization term. If Q is convex in its first argument and if Ω is convex,
then the cost function C = λΩ(w) +

∑n
t=1 Q(w · h(xt), yt) is convex in w.

Consequence of proposition 1: With the usual cost functions, optimizing only the output weights
of a neural network is a convex problem.

2. A neural network with all possible hidden units has only its output weights to optimize.

3. Such a network can thus be optimized in a convex way.

3. With only a finite number of non-zero output weights, this becomes an ordinary neural network.

4. A convex neural network is a usual neural network where the number of hidden units is not fixed.

5. If the regularization term is the L1-norm, then at the optimum, the number of hidden units will be
finite and directly depending on the value of λ.

Yoshua Bengio
Nicolas Le Roux
Pascal Vincent
Olivier Delalleau
Patrice Marcotte

Convex Neural Networks

