
'

&

$

%

Combining Generative and Discriminative
Models

•Abalone dataset (regression task) with a various proportion
of missing values being added

•Train a mixture of Gaussians to model the data (including
the target value)

•Test error when varying the
proportion of missing val-
ues: the mixture directly
used as a regressor does not
work as well as a neural net-
work or kernel ridge regres-
sor trainedwith missing val-
ues imputed by the mixture

•Test error with neural net-
work: imputing the Gaussian
mixture’s conditional mean
works better than nearest
neighbor or global mean im-
putation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

 

 

Gaussian mixture
Neural network
Kernel ridge regression

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

 

 

Global mean
Nearest neighbor
Conditional mean

'

&

$

%

Experiment: Missing Values Imputation
•Randomly set as missing 5x5 patches in MNIST digits

database (28x28 images)

•For each class (digit), train a mixture of Gaussians

•Use the model with best NLL to impute missing values

•Compare speed with naive EM

⇒ speedup from 8 to 20(architecture-dependent)

'

&

$

%

Proposed Algorithm
Desired quantities for samplexj can be obtained byupdating
quantities previously computed for another samplexi. This
update ischeapas long as both samples have similar missing
patterns⇒ speed-up on the order ofO(nm/nd) with nd the
number of differences between missing patterns. The optimal
path is aminimum spanning treeover missing patterns:

1. Compute minimum spanning tree on the graph of unique
missing patterns (edge weight = cost of update)

2. Use K-means to initialize mixture means

3. Use empirical covariance in each cluster to initialize covari-
ances (e.g. imputing missing values with cluster mean)

4. Perform EM, where at each iteration we go through the
training set traversing the tree obtained in step 1, in order
to perform computationally efficient updates

'

&

$

%

EM Computational Bottleneck
At each iteration of EM, for samplexi with no observed and
nm missing variables, the main computational cost consists in:

1. the computation ofpij: O(n3
o)

2. the computation of its contribution toCj: O(n3
m) (roughly)

⇒ cubic in the dimension!

•Basic observation: two samples having the samemissing
pattern share the same expensive computations

•This is not enough: there may be (almost) as many different
missing patterns as training samples!'

&

$

%

EM Algorithm with Missing Values

1.E-Step: Compute posteriors

pij = P (G = j|Xo = xi
o) =

P (Xo = xi
o|G = j)

∑M
k=1 P (Xo = xi

o|G = k)

2.M-Step: For each Gaussianj:

•Fill-in missing values by setting

xi
m← E[Xm|Xo = xi

o, G = j]

•Update mean and covariance

µj =

∑n
i=1 pijx

i

∑n
i=1 pij

Σj =

∑n
i=1 pij(x

i − µj)(x
i − µj))

T

∑n
i=1 pij

+ Cj

'

&

$

%

Outlook
•A mixture of Gaussiansis a

standard probabilistic model
for high dimensional data

• It is straightforward to
handle missing values in
the classic Expectation-
Maximization (EM) training
algorithm...

•But to do it efficiently with
many missing values, you
must read this poster!

Olivier Delalleau
Aaron Courville
Yoshua Bengio

Gaussian Mixtures with Missing Data:
an Efficient EM Training Algorithm


