
18 Large-Scale Algorithms

Olivier Delalleau

Yoshua Bengio

Nicolas Le Roux

In Chapter 11, it is shown how a number of graph-based semi-supervised learning

algorithms can be seen as the minimization of a specific cost function, leading to a

linear system with n equations and unknowns (with n the total number of labeled

and unlabeled examples). Solving such a linear system will in general require on the

order of O(kn2) time and O(kn) memory (for a sparse graph where each data point

has k neighbors), which can be prohibitive on large datasets (especially if k = n,

i.e. the graph is dense). We present in this chapter a subset selection method that

can be used to reduce the original system to one of size m� n. The idea is to solve

for the labels of a subset S ⊂ X of only m points, while still retaining information

from the rest of the data by approximating their label with a linear combination of

the labels in S (using the induction formula presented in Chapter 11). This leads

to an algorithm whose computational requirements scale as O(m2n) and memory

requirements as O(m2), thus allowing one to take advantage of significantly bigger

unlabeled datasets than with the original algorithms.

18.1 Introduction

The graph-based semi-supervised algorithms presented in Chapter 11 do not scale

well to very large datasets. In this chapter, we propose an approximation method

that significantly reduces the computational and memory requirements of such

algorithms. Notations will be the same as in Chapter 11, i.e:

Y = (Yl, Yu) is the set of “original” labels on labeled and unlabeled points (here,

Yu is filled with 0),

Ŷ = (Ŷl, Ŷu) is the set of estimated labels on labeled and unlabeled points,

ŷ is the function to learn, which assigns a label to each point of the input space,

88 Large-Scale Algorithms

ŷ(xi) = ŷi is the value of the function ŷ on training points (labeled and unlabeled).

In Chapter 11, we defined a quadratic cost (equation 11.11):

C(Ŷ) = ‖Ŷl − Yl‖2 + µŶ >LŶ + µε‖Ŷ ‖2. (18.1)

Minimizing this cost gives rise to the following linear system in Ŷ with regularization

hyper-parameters µ and ε:

(S + µL + µεI) Ŷ = SY (18.2)

where S is the (n × n) diagonal matrix defined by Sii = δi≤l, and L = D −W is

the un-normalized graph Laplacian. This linear system can be solved to obtain the

value of ŷi on the training points xi. We can extend the formula to obtain the value

of ŷ on every point x in the input space as shown in Section 11.4:

ŷ =

∑

j WX(x, xj)ŷj
∑

j WX(x, xj) + ε
(18.3)

where WX is the symmetric data-dependent edge weighting function (e.g. a Gaus-

sian kernel) such that Wij = WX(xi, xj). However, in case of very large training

sets, solving the linear system (18.2) may be computationally prohibitive, even us-

ing iterative techniques such as those described in Section 11.2. In this chapter we

consider how to approximate the cost using only a subset of the examples. Even

though this will not yield an exact solution to the original problem, it will make

the computation time much more reasonable.

18.2 Cost Approximations

18.2.1 Estimating the Cost from a Subset

A simple way to reduce the O(kn2) computational requirement and O(kn) memory

requirement for training the non-parametric semi-supervised algorithms of Chap-

ter 11 is to force the solutions to be expressed in terms of a subset of the ex-

amples. This idea has already been exploited successfully in a different form forreduced

parametrization

of solution

other kernel algorithms, e.g. for Gaussian processes (Williams and Seeger [2001])

or spectral embedding algorithms (Ouimet and Bengio [2005]).

Here we will take advantage of the induction formula (eq. 18.3) to simplify the

linear system to m � n equations and variables, where m is the size of a subset

of examples that will form a basis for expressing all the other function values. Let

S ⊂ {1, . . . , n} be a subset, with |S| = m and S ⊃ {1, . . . , l} (i.e. we take all

labeled examples in the subset). Define R = {1, . . . , n}\S (the rest of the data).

In the following, vector and matrices will be split into their S and R parts, e.g.

18.2 Cost Approximations 89

Ŷ = (ŶS , ŶR) and

L =

(

LSS LSR

LRS LRR

)

.

The idea is to force ŷi ∈ ŶR to be expressed as a linear combination of the ŷj ∈ ŶS

following (18.3):

∀i ∈ R, ŷi =

∑

j∈S Wij ŷj
∑

j∈S Wij + ε
(18.4)

or in matrix notation

ŶR = WRS ŶS (18.5)

with WRS the matrix of size ((n − m) × m) with entries Wij/(ε +
∑

k∈S Wik),

for i ∈ R and j ∈ S. We will then split the cost (18.1) in terms that involve only

the subset S or the rest R, or both of them. To do so, we must first split the

diagonal matrix D (whose elements are row sums of W) into D = DS + DR, with

DS and DR the (n× n) diagonal matrices whose elements are sums over S and R

respectively, i.e.

DS
ii =

∑

j∈S

Wij

DR
ii =

∑

j∈R

Wij .

The un-normalized Laplacian L = D−W can then be written

L =

(

DS
SS + DR

SS −WSS −WSR

−WRS DS
RR + DR

RR −WRR

)

. (18.6)

Using (18.6), the cost (18.1) can now be expanded as follows:

C(Ŷ) = µŶ >LŶ + µε‖Ŷ ‖2 + ‖Ŷl − Yl‖2

= µŶ >
S

(
DS

SS −WSS

)
ŶS + µε‖ŶS‖2

︸ ︷︷ ︸

CSS

+µŶ >
R

(
DR

RR −WRR

)
ŶR + µε‖ŶR‖2

︸ ︷︷ ︸

CRR

+ µ
(

Ŷ >
S DR

SS ŶS + Ŷ >
R DS

RRŶR − Ŷ >
R WRS ŶS − Ŷ >

S WSRŶR

)

︸ ︷︷ ︸

CRS

+ ‖Ŷl − Yl‖2
︸ ︷︷ ︸

CL

(18.7)

90 Large-Scale Algorithms

18.2.2 Resolution

Using the approximation ŶR = WRS ŶS (18.5), the gradient of the different parts

of the above cost with respect to ŶS is then

∂CSS

∂ŶS

=
[
2µ
(
DS

SS −WSS + εI
)]

ŶS

∂CRR

∂ŶS

=
[

2µW
>
RS

(
DR

RR −WRR + εI
)
WRS

]

ŶS

∂CRS

∂ŶS

=
[

2µ
(

DR
SS + W

>
RSDS

RRWRS −W
>
RSWRS −WSRWRS

)]

ŶS

=
[
2µ
(
DR

SS −WSRWRS

)]
ŶS (18.8)

∂CL

∂ŶS

= 2SSS(ŶS − Y)

where to obtain (18.8) we have used the equality DS
RRWRS = WRS , which follows

from the definition of WRS .

Recall the original linear system in Ŷ was (S + µL + µεI) Ŷ = SY (18.2). Here

it is replaced by a new system in ŶS , written AŶS = SSSYS with

A = µ
(
DS

SS −WSS + εI + DR
SS −WSRWRS

)

+ µW
>
RS

(
DR

RR −WRR + εI
)
WRS

+ SSS .

Since the system’s size has been reduced from n to |S| = m, it can be solved much

faster, even if A is not guaranteed1 to be sparse anymore (we assume m� n).

Unfortunately, in order to obtain the matrix A, we need to compute DR
RR, which

costs O(n2) in time, as well as products of matrices that cost O(mn2) if W is not

sparse. A simple way to get rid of the quadratic complexity in n is to ignore CRRsimplified cost

function in the total cost. If we remember that CRR can be written

CRR = µ

1

2

∑

i,j∈R

Wij(ŷi − ŷj)
2 + ε‖ŶR‖2

this corresponds to ignoring the Smoothness Assumption between points in R, as

well as the regularization term on R. Even if it may look like a bad idea, it turns

out it usually preserves (and even improves) the performance of the semi-supervised

classifier, for various reasons:

assuming the subset S is chosen to correctly “fill” the space, smoothness between

points in S and points in R (encouraged by the part CRS of the cost) also enforces

smoothness between points in R only,

1. In practice, if W is sparse, A is also likely to be sparse, even if additional assumptions
on W are needed if one wants to prove it.

18.3 Subset Selection 91

when reducing to a subset, the loss in capacity (we can choose m values instead of

n when working with the full set) suggests we should weaken regularization, and the

smoothness constraints are a form of regularization, thus dropping some of them is

a way to achieve this goal,

for some points i ∈ R, the approximation (18.4)

ŷi =

∑

j∈S Wij ŷj
∑

j∈S Wij + ε

may be poor (e.g. for a point far from all points in S, i.e.
∑

j∈S Wij very small),

thus smoothness constraints between points in R could be noisy and detrimental

to the optimization process (this is not a big issue when considering smoothness

between a point xi in R and a point xj in S as the smoothness penalty is weighted

by Wij , which will be small if xi is far from all points in S).

Given the above considerations, ignoring the part CRR leads to the new system

(
SSS + µ

(
DSS −WSS −WSRWRS + εI

))
ŶS = SSSYS

which in general can be solved in O(m3) time (less if the system matrix is sparse).

18.3 Subset Selection

18.3.1 Random Selection

In general, training using only a subset of m� n samples will not perform as well

as using the whole dataset. Carefully choosing the subset S can help in limiting

this loss in performance. Even if random selection is certainly the easiest way to

choose the points in S, it has two main drawbacks:

It may not pick points in some regions of the space, resulting in the approximation

(18.4) being very poor in these regions.

It may pick uninteresting points: the region near the decision surface is the one

where we are more likely to make mistakes by assigning the wrong label. Therefore,

we would like to have as many points as possible in S being in that region, while

we do not need points which are far away from that surface.

As a result, it is worthwhile considering more elaborate subset selection schemes,

such as the one presented in the next section.

18.3.2 Smart Data Sampling

There could be many ways of choosing which points to take in the subset. The

algorithm described below is one solution, based on the previous considerations

about the random selection weaknesses. The first step of the algorithm will be

92 Large-Scale Algorithms

to select points somewhat uniformly in order to get a first estimate of the decision

surface, while the second step will consist in the choice of points near that estimated

surface.

18.3.2.1 First step

Equation (18.4)

ŷi =

∑

j∈S Wij ŷj
∑

j∈S Wij + ε

suggests that the value of ŷi is well approximated when there is a point in S near

xi (two points xi and xj are nearby if Wij is high). The idea will therefore be to

cover the manifold where the data lie as well as possible, that is to say ensure thatcovering the

manifold every point in R is near a point (or a set of points) in S. There is another issue we

should be taking care of: as we discard the part CRR of the cost, we must now be

careful not to modify the structure of the manifold. If there are some parts of the

manifold without any point of S, then the smoothness of ŷ will not be enforced at

such parts (and the labels will be poorly estimated).

This suggests to start with S = {1, . . . , l} and R = {l + 1, . . . , n}, then add

samples xi by iteratively choosing the point farthest from the current subset, i.e.

the one that minimizes
∑

j∈S Wij . The idea behind this method is that it is useless

to have two points nearby each other in S, as this will not give extra information

while increasing the cost. However, one can note that this method may tend to

select outliers, which are far from all other points (and especially those from S).

A way to avoid this is to consider the quantity
∑

j∈R\{i} Wij for a given xi. If xiavoiding outliers

is such an outlier, this quantity will be very low (as all Wij are small). Thus, if it

is smaller than a given threshold δ, we do not take xi in the subset. The cost of

this additional check is of O((m + o)n) where o is the number of outliers: assuming

there are only a few of them (less than m), it scales as O(mn).

18.3.2.2 Second step

Once this first subset is selected, it can be refined by training the algorithm

presented in Section 11.3.2 on the subset S, in order to get an approximation of

the ŷi for i ∈ S, and by using the induction formula (18.4) to get an approximation

of the ŷj for j ∈ R. Samples in S which are far away from the estimated decisiondiscarding

uninformative

samples

surface can then be discarded, as they will be correctly classified no matter whether

they belong to S or not, and they are unlikely to give any information on the shape

of the decision surface. These discarded samples are then replaced by other samples

that are near the decision surface, in order to be able to estimate it more accurately.

The distance from a point xi to the decision surface is estimated by the confidence

we have in its estimated label ŷi. In the binary classification case considered here

(with targets −1 and 1), this confidence is given by |ŷi|, while in a multi-class

setting it would be the absolute value of the difference between the predicted scores

18.3 Subset Selection 93

of the two highest-scoring classes. One should be careful when removing samples,

though: we must make sure we do not leave “empty” regions. This can be done by

ensuring that
∑

j∈S Wij stays above some threshold for all i ∈ R after a point has

been removed.

Overall, the cost of this selection phase is on the order of O(mn + m3). It is

summarized in Algorithm 18.1.

Algorithm 18.1 Subset selection

Choose a small threshold δ (e.g. δ ← 10−10)
Choose a small regularization parameter ε (e.g. ε← 10−11).
(1) Greedy selection
S ← {1, . . . , l} {The subset we are going to build contains the labeled points}
R← {l + 1, . . . , n} {The rest of the unlabeled points}
while |S| < m do

Find i ∈ R s.t.
P

j∈R\{i} Wij ≥ δ and
P

j∈S Wij is minimum
S ← S ∪ {i}
R← R \ {i}

end while
(2) Decision surface improvement
Compute an approximate of ŷi with i ∈ S by applying the standard semi-supervised
minimization of Section 11.3.2 with the data set S.
Compute an approximate of ŷj with j ∈ R by (18.4)
SH ← the points in S with highest confidence (see Section 18.3.2.2)
RL ← the points in R with lowest confidence
for all i ∈ SH do

if minj∈R

P

k∈S\{i} Wjk ≥ δ then
{i can be safely removed from S without leaving empty regions}
k∗ ← argmink∈RL

P

j∈S Wjk {Find point with low confidence farthest from S}
Replace i by k∗ in S (and k∗ by i in R)

end if
end for

18.3.3 Computational Issues

We are now in position to present the overall computational requirements for the

different algorithms proposed in this chapter. As before, the subset size m is taken

to be much smaller than the total number of points n, and the weight matrix

W may either be dense or sparse (with k non-zero entries in each row or column).

Table 18.1 summarizes time and memory requirements for the following algorithms:

NoSub: the original transductive algorithm (using the whole dataset) that consists

in solving the system (18.2), as presented in Chapter 11 (Algorithm 11.2),

RandSub: the approximation algorithm discussed in Section 18.2.2, with the

subset S being randomly chosen (Section 18.3.1),

94 Large-Scale Algorithms

Table 18.1 Comparative computational requirements of NoSub, RandSub and SmartSub
(n = number of labeled and unlabeled training data, m = subset size with m � n, k =
number of neighbors for each point in W when W is sparse)

Time Memory

NoSub (sparse W) O(kn2) O(kn)

NoSub (dense W) O(n3) O(n2)

RandSub O(m2n) O(m2)

SmartSub O(m2n) O(m2)

SmartSub: the same approximation algorithm as RandSub, but with S being

chosen as in Section 18.3.2.

The table shows the approximation method described in this chapter is partic-

ularly useful when W is dense or n is very large. This is confirmed by empirical

experimentation in Figure 18.1, which compares the training times (on the bench-

mark dataset SecStr described in Chapter 21 of this book) of NoSub with a dense

kernel, NoSub with a sparse kernel, and SmartSub with a dense kernel. With a dense

kernel, NoSub becomes quickly impractical because of the need to store (and solve)

a linear system of size n = l + u, with l = 100 and u ∈ [2000, 50000]. With a sparse

kernel (and the iterative version presented in Algorithm 11.2) it scales much better,

but still exhibits a quadratic dependency in n. On the other hand, SmartSub can

handle much more unlabeled data as its training time scales only linearly in n. We

have not presented a sparse version of SmartSub since our current code cannot take

advantage of a sparse weighting function. However, this could be useful to obtain

further improvement, especially in terms of memory usage (working with full m×m

matrices can become problematic when m ≥ 10000).

18.4 Discussion

This chapter follows-up on Chapter 11 to allow large-scale applications of semi-

supervised learning algorithms presented previously. The idea is to express the cost

to be minimized as a function of only a subset of the unknown labels, in order to

reduce the number of free variables: this can be obtained thanks to the induction

formula introduced in Chapter 11. The form of this formula suggests it is only

accurate when the points in the subset cover the whole manifold on which the data

lie. This explains why choosing the subset randomly can lead to poor results, while

it is possible to design a simple heuristic algorithm (such as Algorithm 18.1) giving

much better classification performance. Better selection algorithms (e.g. explicitly

optimizing the cost we are interested in) are subject of future research.

One must note that the idea of expressing the cost from a subset of the data is not

equivalent to training a standard algorithm on the subset only, before extending

to the rest of the data with the induction formula. Here, the rest of the data is

18.4 Discussion 95

0 10,000 20,000 30,000 40,000 50,000
0

500

1000

1500

NoSub (dense W)

NoSub (sparse W)

SmartSub (dense W)

Figure 18.1 Training time (in seconds) w.r.t. the amount of unlabeled samples on
benchmark dataset SecStr (cf. Chapter 21). WX is a Gaussian kernel (combined with
an approximate 100-nearest-neighbor kernel in the sparse case). There are l = 100 labeled
samples, and SmartSub selects m = 500 unlabeled samples in the subset approximation
scheme. Note how the dependence of SmartSub in the total number of unlabeled samples
u ∈ [2000, 50000] is only linear. NoSub with dense W fails for u ≥ 10000 because of memory
shortage. Experiments were performed on a 3.2 GHz P4 CPU with 2 Gb of RAM.

96 Large-Scale Algorithms

explicitly used in the part of the cost enforcing the smoothness between points in

the subset and points in the rest (part CRS of the cost), which helps to obtain a

smoother labeling function, usually giving better generalization.

