
Spectral Dimensionality Reduction

Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux

Jean-François Paiement, Pascal Vincent, and Marie Ouimet

Département d’Informatique et Recherche Opérationnelle
Centre de Recherches Mathématiques

Université de Montréal
Montréal, Québec, Canada, H3C 3J7

http://www.iro.umontreal.ca/∼bengioy

Abstract

In this chapter, we study and put under a common framework a number
of non-linear dimensionality reduction methods, such as Locally Linear Em-
bedding, Isomap, Laplacian eigenmaps and kernel PCA, which are based
on performing an eigen-decomposition (hence the name “spectral”). That
framework also includes classical methods such as PCA and metric multidi-
mensional scaling (MDS). It also includes the data transformation step used
in spectral clustering. We show that in all of these cases the learning algo-
rithm estimates the principal eigenfunctions of an operator that depends on
the unknown data density and on a kernel that is not necessarily positive
semi-definite. This helps to generalize some of these algorithms so as to pre-
dict an embedding for out-of-sample examples without having to retrain the
model. It also makes it more transparent what these algorithm are minimiz-
ing on the empirical data and gives a corresponding notion of generalization
error.

1 Introduction

Unsupervised learning algorithms attempt to extract important characteristics of the
unknown data distribution from the given examples. High-density regions are such
salient features and they can be described by clustering algorithms (where typically
each cluster corresponds to a high density “blob”) or by manifold learning algorithms
(which discover high-density low-dimensional surfaces). A more generic description of
the density is given by algorithms that estimate the density function.
In the context of supervised learning (each example is associated with a target label)
or semi-supervised learning (a few examples are labeled but most are not), manifold

1

learning algorithms can be used as pre-processing methods to perform dimensionality
reduction. Each input example is then associated with a low-dimensional representa-
tion which corresponds to its estimated coordinates on the manifold. Since the manifold
learning can be done without using the target labels, it can be applied on all of the in-
put examples (both those labeled and those unlabeled). If there are many unlabeled
examples, it has been shown that they can help to learn a more useful low-dimensional
representation of the data (Belkin and Niyogi, 2003b). Dimensionality reduction is
an interesting alternative to feature selection. Like feature selection it yields a low-
dimensional representation which helps to build lower capacity predictors in order to
improve generalization. However, unlike feature selection it may preserve information
from all the original input variables. In fact, if the data really lie on a low-dimensional
manifold, it may preserve almost all of the original information while representing it
in a way that eases learning. For example, manifold learning algorithms such as those
described in this chapter often have the property of “unfolding” the manifold, i.e. flat-
tening it out, as shown in figure 1. On the other hand, these techniques being purely
unsupervised, they may throw away low variance variations that are highly predictive
of the target label. In addition to being useful as a preprocessing step for supervised or
semi-supervised learning, linear and non-linear dimensionality reduction is often used for
data analysis and visualization, e.g. (Vlachos et al., 2002), since visualizing the projected
data (two or three dimensions at a time) can help to better understand them.
In the last few years, many unsupervised learning algorithms have been proposed which
share the use of an eigen-decomposition for obtaining a lower-dimensional embedding of
the data that characterizes a non-linear manifold near which the data would lie: Locally
Linear Embedding (LLE) (Roweis and Saul, 2000), Isomap (Tenenbaum, de Silva and
Langford, 2000) and Laplacian eigenmaps (Belkin and Niyogi, 2003a). There are also
many variants of spectral clustering (Weiss, 1999; Ng, Jordan and Weiss, 2002), in
which such an embedding is an intermediate step before obtaining a clustering of the
data that can capture flat, elongated and even curved clusters. The two tasks (manifold
learning and clustering) are linked because the clusters that spectral clustering manages
to capture can be arbitrary curved manifolds (as long as there is enough data to locally
capture the curvature of the manifold): clusters and manifold both are zones of high
density. An interesting advantage of the family of manifold learning algorithms described
in this chapter is that they can easily be applied in the case of non-vectorial data as
well as data for which no vectorial representation is available but for which a similarity
function between objects can be computed, as in the MDS (multi-dimensional scaling)
algorithms (Torgerson, 1952; Cox and Cox, 1994).
There are of course several dimensionality reduction methods that do not fall in the
spectral framework described here, but which may have interesting connections nonethe-
less. For example, the principal curves algorithms (Hastie and Stuetzle, 1989; Kegl
and Krzyzak, 2002) have been introduced based on geometric grounds, mostly for 1-
dimensional manifolds. Although they optimize a different type of criterion, their spirit
is close to that of LLE and Isomap. Another very interesting family of algorithms is
the Self-Organizing Map (Kohonen, 1990). With these algorithms, the low dimensional

2

embedding space is discretized (into topologically organized centers) and one learns
the coordinates in the raw high-dimensional space of each of these centers. Another
neural network like approach to dimensionality reduction is the auto-associative neu-
ral network (Rumelhart, Hinton and Williams, 1986; ?; Saund, 1989), in which one
trains a multi-layer neural network to predict its input, but forcing the intermediate
representation of the hidden units to be a compact code. In section 2.7 we discuss in
more detail a family of density estimation algorithms that can be written as mixtures
of Gaussians with low-rank covariance matrices, having intimate connections with the
LLE and Isomap algorithms.
An interesting question that will not be studied further in this chapter is that of se-
lecting the dimensionality of the embedding. This is fundamentally a question of model
selection. It could be addressed using traditional model selection methods (such as
cross-validation) when the low-dimensional representation is used as input for a super-
vised learning algorithm. Another approach is that of inferring the dimensionality based
on purely unsupervised grounds, using the geometric properties of the empirical data
distribution (Kégl, 2003).

1.1 Transduction and Induction

The end result of most inductive machine learning algorithms is a function that mini-
mizes the empirical average of a loss criterion (possibly plus regularization). The func-
tion can be applied on new points and for such learning algorithms it is clear that the
ideal solution is a function that minimizes the expected value of that loss criterion under
the unknown true distribution from which the data was sampled. That expected loss is
known as the generalization error.
However, such a characterization was missing for spectral embedding algorithms such as
metric Multi-Dimensional Scaling (MDS) (Torgerson, 1952; Cox and Cox, 1994), spec-
tral clustering (see (Weiss, 1999) for a review), Laplacian eigenmaps (Belkin and Niyogi,
2003a), Locally Linear Embedding (LLE) (Roweis and Saul, 2000) and Isomap (Tenen-
baum, de Silva and Langford, 2000), which are used either for dimensionality reduction
or for clustering. As such these algorithms are therefore really transduction algorithms:
any test data for which an embedding is desired must be included in the (unlabeled)
“training set” on which the algorithm is applied. For example, if the embedding ob-
tained is used as an input representation for a supervised learning algorithm, the input
part of the test examples must be provided at the time of learning the embedding. The
basic form of these algorithms does not provide a generic function that can be applied
to new points in order to obtain an embedding or a cluster membership, and the notion
of generalization error that would be implicitly minimized is not clearly defined either.
As a natural consequence of providing a unifying framework for these algorithms, we
provide an answer to these questions. A loss criterion for spectral embedding algorithms
can be defined. It is a reconstruction error that depends on pairs of examples. Minimiz-
ing its average value yields the eigenvectors that provide the classical output of these
algorithms, i.e. the embeddings. Minimizing its expected value over the true underlying
distribution yields the eigenfunctions of a linear operator (called L here) that is defined

3

with a similarity function (a kernel, but not necessarily positive semi-definite) and the
data-generating density. When the kernel is positive semi-definite and we work with the
empirical density there is a direct correspondence between these algorithms and kernel
Principal Component Analysis (PCA) (Schölkopf, Smola and Müller, 1998). Our work is
also a direct continuation of previous work (Williams and Seeger, 2000) noting that the
Nyström formula and the kernel PCA projection (which are equivalent) represent an ap-
proximation of the eigenfunctions of the above linear operator. Previous analysis of the
convergence of generalization error of kernel PCA (Shawe-Taylor, Cristianini and Kan-
dola, 2002; Shawe-Taylor and Williams, 2003; Zwald, Bousquet and Blanchard, 2004)
also help to justify the view that these methods are estimating the convergent limit of
some eigenvectors (at least when the kernel is positive semi-definite). The eigenvectors
can then be turned into estimators of eigenfunctions, which can therefore be applied
to new points, turning the spectral embedding algorithms into function induction algo-
rithms. The Nyström formula obtained this way is well known (Baker, 1977), and will
be given in eq. 2 below. This formula has been used previously for estimating extensions
of eigenvectors in Gaussian process regression (Williams and Seeger, 2001), and it was
noted (Williams and Seeger, 2000) that it corresponds to the projection of a test point
computed with kernel PCA.
In order to extend spectral embedding algorithms such as LLE and Isomap to out-of-
sample examples, this chapter defines for these spectral embedding algorithms data-
dependent kernels km that can be applied outside of the training set. See also the
independent work (Ham et al., 2003) for a kernel view of LLE and Isomap, but where
the kernels are only applied on the training set.
Obtaining an induced function that can be applied to out-of-sample examples is not only
interesting from a theoretical point of view, it is also computationally useful. It allows
to say something about new examples without having to re-do the kernel computations
(building the Gram matrix, normalizing it, and computing the principal eigenvectors,
which all take at least time quadratic in the number of training examples). The formula
proposed requires time linear in the training set size.
Additional contributions of this chapter include a characterization of the empirically
estimated eigenfunctions in terms of eigenvectors in the case where the kernel is not
positive semi-definite (which is often the case for MDS and Isomap), a convergence
theorem linking the Nyström formula to the eigenfunctions of L, as well as experiments
on MDS, Isomap, LLE and spectral clustering / Laplacian eigenmaps showing that the
Nyström formula for out-of-sample examples is accurate.

1.2 Notation

To simplify the presentation, we will consider the vector-space versions of these algo-
rithms, in which we start from a data set X = (x1, . . . ,xm) with xi ∈ R

n sampled i.i.d.
from an unknown distribution with density p(·). However, the results in this chapter
can be readily extended to the case of arbitrary objects, with p(x)dx replaced by dµ(x)
with µ(x) an appropriate measure, and the only quantity that is required in the algo-
rithms is the similarity or distance between pairs of objects (e.g. similarity km(xi,xj)

4

below). See for example the treatment of pairwise measurement data for LLE (Saul and
Roweis, 2002) and Isomap (Tenenbaum, de Silva and Langford, 2000), and for MDS in
section 2.2.
Below we will use the notation

Ex[f(x)] =

∫

f(x)p(x)dx

for averaging over p(x) and

Êx[f(x)] =
1

m

m
∑

i=1

f(xi)

for averaging over the data in X, i.e. over the empirical distribution denoted p̂(x). We
will denote kernels with km(x,y) or k̃(x,y), symmetric functions, not always positive
semi-definite, that may depend not only on x and y but also on the data X. The
spectral embedding algorithms construct an affinity matrix K, either explicitly through

Kij = km(xi,xj) (1)

or implicitly through a procedure that takes the data X and computes K. We denote
by vr,i the i-th coordinate of the r-th eigenvector of K (sorted in order of decreasing
eigenvalues), associated with the eigenvalue `r. With these notations, the Nyström
formula discussed above can be written:

fr,m(x) =

√
m

`r

m
∑

i=1

vr,ikm(x,xi) (2)

where fr,m is the r-th Nyström estimator with m samples. We will show in section 3
that it estimates the r-th eigenfunction of a linear operator and that it provides an
embedding for a new example x.

2 Data-Dependent Kernels for Spectral Embedding

Algorithms

The first and foremost observation to make is that many spectral embedding algorithms
can be cast in a common framework. The spectral embedding algorithms can be seen
to build a (m×m) similarity matrix K (also called the Gram matrix)1 and compute its
principal eigenvectors vr = (vr,1, . . . , vr,m)T (one entry per exemple) with eigenvalues `r
(sorted by decreasing order). The embedding associated with the i-th training example
is given by the i-th element of the principal eigenvectors, up to some scaling:

P(xi) = (v1,i, v2,i, . . . , vN,i)
T (3)

1For Laplacian eigenmaps (section 2.4) and LLE (section 2.6), the matrix K discussed here is not
the one defined in the original papers on these algorithms, but a transformation of it to reverse the
order of eigenvalues, as we see below.

5

where N ≤ m is the desired number of embedding coordinates. The scaling factor de-
pends on the algorithm: for instance, in kernel PCA, MDS and Isomap, vr,i is multiplied
by
√
`r, and in LLE it is multiplied by

√
m to obtain the actual embedding coordinates.

In general, we will see thatKij depends not only on (xi,xj) but also on the other training
examples. Nonetheless, as we show below, it can always be written Kij = km(xi,xj)
where km is a “data-dependent” kernel (i.e. it is a function of the m elements of the
training set X, and not just of its two arguments). In many algorithms a matrix K̃

is first formed from a simpler, often data-independent kernel (such as the Gaussian
kernel), and then transformed into K. We want to think of the entries of K as being
generated by applying km to the pairs (xi,xj) because this will help us to generalize to
new examples not in the training set X, and it will help us to think about what happens
as m increases.
For each of these methods, by defining a kernel km that can be applied outside of the
training set, we will be able to generalize the embedding to a new point x, via the
Nyström formula (eq. 2 above, and section 3.2). This will only require computations of
the form km(x,xi) with xi a training point.

2.1 Kernel Principal Component Analysis

Kernel PCA is an unsupervised manifold learning technique that maps data points
to a new space, generally lower-dimensional (but not necessarily). It generalizes the
Principal Component Analysis approach to non-linear transformations using the kernel
trick (Schölkopf, Smola and Müller, 1996; Schölkopf, Smola and Müller, 1998; Schölkopf,
Burges and Smola, 1999). One considers the data mapped into a “feature space”, a
Hilbert space of possibly infinite dimension such that if x is mapped to φ̃(x), we have
〈φ̃(x), φ̃(y)〉 = k̃(x,y). Here, k̃ must be a positive (semi)-definite kernel, and is often
taken as the Gaussian kernel2, i.e.

k̃(x,y) = e−
‖x−y‖2

σ2 . (4)

The kernel PCA algorithm consists in performing PCA in the feature space: it implicitly
finds the leading eigenvectors and eigenvalues of the covariance of the projection φ̃(x)
of the data. If the data is centered in feature space (Êx[φ̃(x)] = 0), the (empirical)
feature space covariance matrix is C = Êx[φ̃(x)φ̃(x)T]. In general, however, the data
is not centered, and we need to define a “centered” mapping

φm(x) = φ̃(x)− 1

m

m
∑

i=1

φ̃(xi)

and an associated data-dependent kernel km such that km(x,y) = 〈φm(x),φm(y)〉,
which rewrites:

km(x,y) = k̃(x,y)− Êx′ [k̃(x′,y)]− Êy′ [k̃(x,y′)] + Êx′,y′ [k̃(x′,y′)]. (5)

2Using the Gaussian kernel is not always a good idea, as seen in section 5.1, and other nonlinear
kernels, such as polynomial kernels, may be more suited.

6

The empirical covariance matrix C in “feature space” is thus actually defined by

C = Êx[φm(x)φm(x)T] (6)

with eigenvectors wr associated with eigenvalues λr. As shown in (Schölkopf, Smola
and Müller, 1998), this eigen-decomposition of C is related to the one of K (the Gram
matrix defined by eq. 1) through λr = `r/m and

wr =
1√
`r

m
∑

i=1

vr,iφm(xi)

where vr are the eigenvectors of K, associated with eigenvalues `r. As in PCA, one can
then obtain the embedding of a training point xi by the projection of φm(xi) on the
leading eigenvectors (w1, . . . ,wN) of C, which yields exactly the embedding of eq. 3, if
we multiply vr,i by

√
`r.

Note that, as in PCA, we can also compute the projection P(x) = (P1(x), . . . , PN (x))T

for a new point x, which is written

Pr(x) = 〈wr,φm(x)〉 =
1√
`r

m
∑

i=1

vr,ikm(xi,x). (7)

This is the key observation that will allow us, in section 3.2, to extend to new points
the embedding obtained with other spectral algorithms.

2.2 Multi-Dimensional Scaling

Metric Multi-Dimensional Scaling (MDS) (Torgerson, 1952; Cox and Cox, 1994) starts
from a notion of distance d(x,y) that is computed between each pair of training examples
to fill a matrix K̃ij = d2(xi,xj). The idea is to find a low-dimensional embedding of
the dataset X that preserves the given distances between training points. To do so, the
distances are converted to equivalent dot products using the “double-centering” formula,
which makes Kij depend not only on (xi,xj) but also on all the other examples:

Kij = −1

2

(

K̃ij −
1

m
Si −

1

m
Sj +

1

m2

∑

k

Sk

)

(8)

where the Si are the row sums of K̃:

Si =
m
∑

j=1

K̃ij. (9)

Eq. 8 is used to obtain for Kij the centered dot product between xi and xj from the
pairwise squared distances given by d2, just as eq. 5 yields the centered dot product (in
feature space) from the pairwise non-centered dot products given by k̃. The embedding

7

of the example xi is then given by eq. 3 with vr,i multiplied by
√
`r. If d is the Euclidean

distance, this is the same embedding as in classical (linear) PCA.
A corresponding data-dependent kernel which generates the matrix K is:

km(x,y) = −1

2

(

d2(x,y)− Êx′ [d2(x′,y)]− Êy′ [d2(x,y′)] + Êx′,y′ [d2(x′,y′)]
)

. (10)

2.3 Spectral Clustering

Several variants of spectral clustering have been proposed (Weiss, 1999). They can yield
impressively good results where traditional clustering looking for “round blobs” in the
data, such as k-means, would fail miserably (see figure 1). It is based on two main steps:
first embedding the data points in a space in which clusters are more “obvious” (using
the eigenvectors of a Gram matrix), and then applying a classical clustering algorithm
such as k-means, e.g. as in (Ng, Jordan and Weiss, 2002). To construct the spectral
clustering affinity matrix K, we first apply a data-independent kernel k̃ such as the
Gaussian kernel to each pair of examples: K̃ij = k̃(xi,xj). The matrix K̃ is then
normalized, e.g. using “divisive” normalization (Weiss, 1999; Ng, Jordan and Weiss,
2002)3 :

Kij =
K̃ij
√

SiSj

(11)

with Si and Sj defined by eq. 9. To obtainN clusters, the firstN principal eigenvectors of
K are computed and k-means is applied on the embedding coordinates after normalizing
each embedding vector to have unit norm: the r-th coordinate of the i-th example is

vr,i/
√

∑N

l=1 v
2
l,i. Note that if one is interested in the embedding prior to normalization,

this embedding should be multiplied by
√
m to be stable (to keep the same order of

magnitude) as m varies.
To generalize spectral clustering to out-of-sample points, we will need a kernel that
could have generated that matrix K:

km(x,y) =
1

m

k̃(x,y)
√

Êx′ [k̃(x′,y)]Êy′ [k̃(x,y′)]
. (12)

Note that this divisive normalization comes out of the justification of spectral clustering
as a relaxed statement of the min-cut problem (Chung, 1997; Spielman and Teng, 1996)
(to divide the examples into two groups such as to minimize the sum of the “similar-
ities” between pairs of points straddling the two groups). The additive normalization
performed with kernel PCA (eq. 5) makes sense geometrically as a centering in feature
space. Both the divisive normalization and the additive normalization procedures make
use of a kernel row/column average. It would be interesting to find a similarly pleasing
geometric interpretation to the divisive normalization.

3Better embeddings for clustering are usually obtained if we define Si =
∑

j 6=i K̃ij : this alternative
normalization can also be cast into the general framework developed here, with a slightly different
kernel. Also, one could take the row average instead of the row sum, which seems more natural even if
it does not change the embedding.

8

⇒

Figure 1: Example of the transformation learned as part of spectral clustering. Input
data on the left, transformed data on the right. Gray level and cross/circle drawing
are only used to show which points get mapped where: the mapping reveals both the
clusters and the internal structure of the two manifolds.

2.4 Laplacian Eigenmaps

The Laplacian eigenmaps method is a recently proposed dimensionality reduction proce-
dure (Belkin and Niyogi, 2003a) that was found to be very successful for semi-supervised
learning, where one uses a large unlabeled dataset to learn the manifold structure, thus
reducing the dimensionality of labeled data (which can benefit to supervised learning
algorithms). Several variants have been proposed by the authors and we focus here on
the latest one, but they all share the same spirit.
The Laplacian operator has a natural interpretation as a smoothness functional: we look
for an embedding (y1, . . . ,ym) of the training points such that ‖yi−yj‖2 is small when

i and j are “near” each other, i.e. when k̃(xi,xj) is large (if k̃ can be interpreted as a
similarity function). This corresponds to minimizing

∑

ij ‖yi − yj‖2k̃(xi,xj). It has to
be done under a norm constraint, and an appropriate one is that, denoting Y the (m×N)
matrix whose i-th row is yi, we force Y T SY = I, where S is the diagonal matrix with
elements Si from eq. 9 (row sums of K̃, possibly ignoring diagonal terms). This norm
constraint has the advantage of giving an appropriate weight to examples which are
“connected” to more other examples. Rearranging this criterion, the solutions to the
constrained optimization problem correspond to the following generalized eigenproblem:

(S − K̃)zr = σrSzr (13)

with eigenvalues σr, and eigenvectors zr being the columns of Y . The solution with
smallest (zero) eigenvalue corresponds to the uninteresting solution with constant em-
bedding, so it is discarded. The eigenvalue corresponding to a solution quantifies the
above defined smoothness, so we keep the N solutions with smallest non-zero eigenval-
ues, yielding the desired embedding.
Here, the matrix S − K̃ is the so-called graph Laplacian, and it can be shown (Belkin
and Niyogi, 2003a) to be an approximation of the manifold Laplace Beltrami operator,
when using the Gaussian kernel or the k-nearest-neighbor kernel for the similarity k̃(·, ·)

9

on the graph. The k-nearest-neighbor kernel is represented by the symmetric matrix K̃

whose element (i, j) is 1 if xi and xj are k-nearest-neighbors (xi is among the k nearest
neighbors of xj or vice versa) and 0 otherwise. Approximating the Laplace Beltrami
operator is motivated by the fact that its eigenfunctions are mappings that optimally
preserve the “locality” of data (Belkin and Niyogi, 2003a).
It turns out that the above algorithm results in the same embedding (up to scaling)
that is computed with the spectral clustering algorithm from (Shi and Malik, 1997)
described in section 2.3: as noted in (Weiss, 1999) (Normalization Lemma 1), an equiv-
alent result (up to a component-wise scaling of the embedding) can be obtained by
considering the principal eigenvectors vr of the normalized matrix K defined in eq. 11.
To fit the common framework for spectral embedding in this chapter, we have used the
latter formulation. Therefore, the same data-dependent kernel can be defined as for
spectral clustering (eq. 12) to generate the matrix K, i.e. spectral clustering just adds
a clustering step after a Laplacian eigenmaps dimensionality reduction.

2.5 Isomap

Isomap (Tenenbaum, de Silva and Langford, 2000) generalizes MDS (section 2.2) to
non-linear manifolds. It is based on replacing the Euclidean distance by an empirical
approximation of the geodesic distance on the manifold. We define the geodesic distance
d̂(·, ·) with respect to a data set X, a distance d(·, ·) and a neighborhood k as follows:

d̂(x,y) = min
π

|π|
∑

i=1

d(πi,πi+1) (14)

where π is a sequence of points of length |π| = l ≥ 2 with π1 = x, πl = y, πi ∈X ∀i ∈
{2, . . . , l − 1} and (πi,πi+1) are k-nearest-neighbors of each other. The length |π| = l
is free in the minimization. The Isomap algorithm obtains the normalized matrix K

from which the embedding is derived by transforming the raw pairwise distances matrix
as follows: (1) compute the matrix K̃ij = d̂2(xi,xj) of squared geodesic distances with
respect to the data X and (2) apply to this matrix the double-centering transformation
(eq. 8), as for MDS. As in MDS, the embedding of xi is given by eq. 3 with vr,i multiplied
by
√
`r. Step (1) can be done in O(n3) operations very easily (e.g. by Floyd’s algorithm),

but in (Tenenbaum, de Silva and Langford, 2000) it is suggested to use more efficient
algorithms exploiting the sparse structure of the neighborhood graph, such as those
presented in (Kumar et al., 1994).
There are several ways to define a kernel that generates K and also generalizes out-of-
sample. The solution we have chosen simply computes the geodesic distances without
involving the out-of-sample point(s) along the geodesic distance sequence (except for
the last distance). This is automatically achieved with the above definition of geodesic
distance d̂, which only uses the training points to find the shortest path between x and
y. The double-centering kernel transformation of eq. 10 can then be applied to obtain
km, using the geodesic distance d̂ instead of the MDS distance d.

10

2.6 Locally Linear Embedding

The Locally Linear Embedding (LLE) algorithm (Roweis and Saul, 2000) looks for an
embedding that preserves the local geometry in the neighborhood of each data point.
The idea is to find a low-dimensional representation where the reconstruction of a data
point from its neighbors is similar to the one in input space. First, a sparse matrix of
local predictive weights Wij is computed, such that

∑

j Wij = 1, Wii = 0, Wij = 0 if xj

is not a k-nearest-neighbor of xi and ‖(∑j Wijxj) − xi‖2 is minimized. To find those
weights, for a given training point xi with neighbors (yi1, . . . ,yik), a local Gram matrix

K(i) is computed, such that K
(i)
rs = 〈yir − xi,yis − xi〉. To improve the condition of

this Gram matrix (to avoid potential issues when solving the linear system below), it is
recommended to add a small multiple of the identity matrix:

K(i)
rs ← K(i)

rs + δrs

∆2

k
Tr(K(i))

with Tr the trace operator, δ the Kronecker symbol, and ∆2 � 1. The weights are then
obtained by solving the linear system defined by

∑

r K
(i)
rs Wir = 1 for all s, then rescaling

the Wir so that they sum to 1 (Saul and Roweis, 2002).
From the weights Wij, the matrix K̃ = (I −W)T (I −W) is formed. The embedding
is obtained from the lowest eigenvectors of K̃, except for the eigenvector with the
smallest eigenvalue, which is uninteresting because it is proportional to (1, 1, . . . , 1)
(and its eigenvalue is 0). Since we want to select the principal eigenvectors, we define
our normalized matrix by K = cI − K̃ (c being any real number) and ignore the
top eigenvector (although one could apply an additive normalization to remove the
components along the (1, 1, . . . , 1) direction). The LLE embedding for xi is then given
by eq. 3 (multiplied by

√
m), starting at the second eigenvector (since the principal one

is constant). If one insists on having a positive semi-definite matrix K, one can take for
c the largest eigenvalue of K̃ (note that c only changes the eigenvalues additively and
has no influence on the embedding of the training set).
In order to define a kernel km generating K, we first denote by w(x,xi) the weight of
xi in the reconstruction of any point x ∈ R

n by its k nearest neighbors in the training
set. This is the same reconstruction as above, i.e. the w(x,xi) are such that they
sum to 1, ‖(

∑

iw(x,xi)xi) − x‖2 is minimized, and w(x,xi) = 0 if xi is not in the k
nearest neighbors of x. If x = xj ∈ X, we have w(x,xi) = δij. Let us now define a
kernel k′m by k′m(xi,x) = k′m(x,xi) = w(x,xi) and k′m(x,y) = 0 when neither x nor
y is in the training set X. Let k′′m be such that k′′m(xi,xj) = Wij +Wji −

∑

k WkiWkj

and k′′m(x,y) = 0 when either x or y is not in X. It can be shown that the kernel
km = (c− 1)k′m + k′′m is then such that

km(xi,xj) = (c− 1)δij +Wij +Wji −
∑

k

WkiWkj = Kij

so that it can be used to generate K. There could be other ways to obtain a data-
dependent kernel for LLE that can be applied out-of-sample: a justification for using
this specific kernel will be given in section 3.1.

11

As noted independently in (Ham et al., 2003), LLE can thus be seen as performing kernel
PCA with a particular kernel matrix. This identification becomes even more accurate
when one notes that getting rid of the constant eigenvector (principal eigenvector of K)
is equivalent to the centering operation in feature space required for kernel PCA (Ham
et al., 2003).
It is interesting to note a recent descendant of Laplacian eigenmaps, Isomap and LLE,
called Hessian eigenmaps (Donoho and Grimes, 2003), which considers the limit case of
the continuum of the manifold, and replaces the Laplacian in Laplacian eigenmaps by
a Hessian. Despite attractive theoretical properties, the Hessian eigenmaps algorithm,
being based on estimation of second order derivatives (which is difficult with sparse
noisy data), has yet to be applied successfully on real-world high-dimensional data.

2.7 Mixtures of Low-Rank Gaussians

Isomap and LLE are two instances of a larger family of unsupervised learning algorithms
which characterize the data distribution by a large set of locally linear low-dimensional
patches. A simple example of this type of model is a mixture of Gaussians (centered
on each example in the standard non-parametric setting) whose covariance matrices are
summarized by a few eigenvectors (i.e. principal directions). The mixture of factor
analyzers (Ghahramani and Hinton, 1996) is a parametric version of this type of model,
in which the EM algorithm is used to estimate the means and the low-rank covariance
matrices. A non-parametric version of the mixture of factor analyzers aimed at capturing
manifold structure is the Manifold Parzen Windows algorithm (Vincent and Bengio,
2003), which does not require an iterative algorithm for training. With such models,
one can obtain a local low-dimensional representation of examples falling near a Gaussian
center, but it may be incomparable to the representation obtained for a nearby Gaussian
center, because the eigenvectors of the covariance matrices of neighboring Gaussians may
not be aligned. In order to perform dimensionality reduction from such models, several
algorithms have thus been proposed (Teh and Roweis, 2003; Brand, 2003; Verbeek,
Roweis and Vlassis, 2004), which look for a global representation that agrees with each
local patch. Although these algorithms do not fall into the “spectral manifold learning”
family studied in more detailed in this chapter, they are very close in spirit.

3 Kernel Eigenfunctions for Induction

With the exception of kernel PCA, the spectral manifold learning algorithms presented
in section 2 do not provide us with an immediate way to obtain the embedding for
a new point x /∈ X. However, for some of them, extensions have already been pro-
posed. We briefly review them in section 3.1. In section 3.2, we take advantage of
the common framework developed in section 2: each algorithm being associated with
a data-dependent kernel km generating a Gram matrix K, we can apply the Nyström
formula (eq. 2) to obtain the embedding for a new point x.

12

3.1 Extensions to Spectral Embedding Algorithms

For metric MDS, it is suggested in (Gower, 1968) to solve exactly for the coordinates of
the new point such that its distances to the training points are the same in the original
input space and in the computed embedding, but in general this requires adding a new
dimension. Note also that (Williams, 2001) makes a connection between kernel PCA
and metric MDS, remarking that kernel PCA is a form of MDS when the kernel is
isotropic. In the following, we will pursue this connection in order to obtain out-of-
sample embeddings.
A formula has been proposed (de Silva and Tenenbaum, 2003) to approximate Isomap
using only a subset of the examples (the “landmark” points) to compute the eigenvectors.
Using the notation of this chapter, that formula is

er(x) =
1

2
√
`r

∑

i

vr,i(Êx′ [d̂2(x′,xi)]− d̂2(xi,x)) (15)

which is applied to obtain an embedding for the non-landmark examples. One can
show (Bengio et al., 2004) that er(x) is the Nyström formula when km(x,y) is defined
as in section 2.5. Landmark Isomap is thus equivalent to performing Isomap on the
landmark points only and then predicting the embedding of the other points using the
Nyström formula, which is the solution we also propose in what follows.
For LLE, with the notations of section 2.6, an extension suggested in (Saul and Roweis,
2002) is to take for a new point x the embedding P(x) = (P1(x), . . . , PN (x))T , where

Pr(x) =
m
∑

i=1

Pr(xi)w(x,xi).

Interestingly, the same embedding can be obtained from the Nyström formula and the
kernel km defined in section 2.6, when the constant c→ +∞ (Bengio et al., 2004).

3.2 From Eigenvectors to Eigenfunctions

From the common framework developed in section 2, one can see spectral algorithms as
performing a kind of kernel PCA with a specific kernel. (Ng, Jordan and Weiss, 2002)
had already noted the link between kernel PCA and spectral clustering. Recently, (Ham
et al., 2003) have also shown how Isomap, LLE and Laplacian eigenmaps can be inter-
preted as performing a form of kernel PCA. Here, we propose a similar view, extending
the framework to allow negative eigenvalues (which may be the case for Isomap). In
addition, those papers did not propose to use this link in order to perform function
induction, i.e. obtain an embedding for out-of-sample points. Indeed, since there exists
a natural extension to new points for kernel PCA (the projection onto the eigenspaces
of the covariance matrix, see eq. 7), it is natural to ask whether it makes sense to use
such a formula in the more general setting where the kernel may be data-dependent and
may have negative eigenvalues.

13

As noted in (Williams and Seeger, 2000), the kernel PCA projection formula (eq. 7)
is proportional to the so-called Nyström formula (Baker, 1977; Williams and Seeger,
2000) (eq. 2), which has been used successfully to “predict” the value of an eigenvector
on a new data point, in order to speed-up kernel methods computations by focusing
the heavier computations (the eigen-decomposition) on a subset of examples (Williams
and Seeger, 2001). The use of this formula can be justified by considering the con-
vergence of eigenvectors and eigenvalues, as the number of examples increases (Baker,
1977; Koltchinskii, 1998; Koltchinskii and Giné, 2000; Williams and Seeger, 2000). In
particular, (Shawe-Taylor, Cristianini and Kandola, 2002; Shawe-Taylor and Williams,
2003; Zwald, Bousquet and Blanchard, 2004) give bounds on the kernel PCA conver-
gence error (in the sense of the projection error with respect to the subspace spanned
by the eigenvectors), using concentration inequalities.
Based on this kernel PCA convergence results, we conjecture that in the limit, each
eigenvector would converge to an eigenfunction for a linear operator (defined below), in
the sense that the i-th element of the r-th eigenvector converges to the application of
the r-th eigenfunction to xi. Proposition 2 below formalizes this statement and provides
sufficient conditions for such a convergence.
In the following we will assume that the (possibly data-dependent) kernel km is bounded
(i.e. ∃kmax, ∀x,y |km(x,y)| < kmax) and has a discrete spectrum, i.e. that it can be
written as a discrete expansion

km(x,y) =
∞
∑

r=1

αr,mψr,m(x)ψr,m(y).

Consider the space Hp of continuous functions f on R
n that are square integrable as

follows:
∫

f 2(x)p(x)dx <∞

with the data-generating density function p(x). One must note that we actually do
not work on functions but on equivalence classes: we say two continuous functions f
and g belong to the same equivalence class (with respect to p) if and only if

∫

(f(x) −
g(x))2p(x)dx = 0 (if p is strictly positive, then each equivalence class contains only one
function).
We will assume that km converges uniformly in its arguments (in some probabilistic
manner, e.g. almost surely or in probability) to its limit k as m→∞. We will associate
with each km a linear operator Lm and with k a linear operator L, such that for any
f ∈ Hp,

Lmf =
1

m

m
∑

i=1

km(·,xi)f(xi) (16)

and

Lf =

∫

k(·,y)f(y)p(y)dy (17)

which makes sense because we work in a space of functions defined everywhere. Fur-
thermore, as km(·,y) and k(·,y) are square-integrable in the sense defined above, for

14

each f and each m, the functions Lmf and Lf are square-integrable in the sense defined
above. We will show that the Nyström formula (eq. 2) gives the eigenfunctions of Lm

(proposition 1), that their value on the training examples corresponds to the spectral
embedding, and that they converge to the eigenfunctions of L (proposition 2). These
results will hold even if km has negative eigenvalues.
The eigensystems of interest are thus the following:

Lfr = λrfr (18)

and
Lmfr,m = λr,mfr,m (19)

where (λr, fr) and (λr,m, fr,m) are the corresponding eigenvalues and eigenfunctions.
Note that when eq. 19 is evaluated only at the xi ∈ X, the set of equations reduces to
the eigensystem

Kvr = mλr,mvr.

The following proposition gives a more complete characterization of the eigenfunctions
of Lm, even in the case where eigenvalues may be negative. The next two propositions
formalize the link already made in (Williams and Seeger, 2000) between the Nyström
formula and eigenfunctions of L.

Proposition 1 Lm has in its image N ≤ m eigenfunctions of the form:

fr,m(x) =

√
m

`r

m
∑

i=1

vr,ikm(x,xi) (20)

with corresponding non-zero eigenvalues λr,m = `r

m
, where vr = (vr,1, . . . , vr,m)T is the

r-th eigenvector of the Gram matrix K, associated with the eigenvalue `r.
For xi ∈ X these functions coincide with the corresponding eigenvectors, in the sense
that fr,m(xi) =

√
mvr,i.

Proof

First, we show that the fr,m defined by eq. 20 coincide with the eigenvectors of K at
xi ∈X. For fr,m associated with a non-zero eigenvalue,

fr,m(xi) =

√
m

`r

m
∑

j=1

vr,jkm(xi,xj) =

√
m

`r
`rvr,i =

√
mvr,i. (21)

The vr being orthonormal the fr,m (for different values of r) are therefore different from
each other.
Then for any x ∈ R

n

(Lmfr,m)(x) =
1

m

m
∑

i=1

km(x,xi)fr,m(xi) =
1√
m

m
∑

i=1

km(x,xi)vr,i =
`r
m
fr,m(x) (22)

15

which shows that fr,m is an eigenfunction of Lm with eigenvalue λr,m = `r/m. �

Discussion

The previous result shows that the Nyström formula generalizes the spectral embedding
outside of the training set. This means the embedding P(x) = (P1(x), . . . , PN (x))T for
a new point x is given (up to some scaling) by

Pr(x) =
fr,m(x)√

m
=

1

`r

m
∑

i=1

vr,ikm(x,xi) (23)

where the scaling is the same as the one described in section 2 (so that the embedding
obtained on the training set is coherent with the one obtained from the eigenvectors,
thanks to eq. 21).
However, there could be many possible generalizations. To justify the use of this par-
ticular generalization, the following proposition helps to understand the convergence of
these functions as m increases. We would like the out-of-sample embedding predictions
obtained with the Nyström formula to be somehow close to the asymptotic embedding
(the embedding one would obtain as m→∞).
Note also that the convergence of eigenvectors to eigenfunctions shown in (Baker, 1977)
applies to data xi which are deterministically chosen to span a domain, whereas here
the xi form a random sample from an unknown distribution.

Proposition 2 If km = k is bounded and not data-dependent, then the eigenfunctions
fr,m of Lm associated with non-zero eigenvalues of multiplicity 1 converge to the corre-
sponding eigenfunctions of L (almost surely, and up to the sign).
For km data-dependent but bounded (almost surely, and independently of m) and con-
verging uniformly to k, if the eigen-decomposition of the Gram matrix (km(xi,xj)) con-
verges4 to the eigen-decomposition of the Gram matrix (k(xi,xj)) then a similar result
holds: the eigenfunctions fr,m of Lm associated with non-zero eigenvalues of multiplicity
1 converge to the corresponding eigenfunctions of L (almost surely, and up to the sign).

Proof

In the following, we will denote by f̂ ∈ Hp̂ the restriction of a function f ∈ Hp to the

training set X = {x1, . . . ,xm}, and by L̂m the operator in Hp̂ defined as in eq. 16,
which has the same eigenvalues and eigenfunctions as Lm (except the eigenfunctions are
restricted to X). We start with the case where km = k. We first take advantage of
(Koltchinskii and Giné, 2000), theorem 3.1, that shows that the distance between the
eigenvalue spectra of L̂m and L converges to 0 almost surely. We then use theorem 2.1
from (Koltchinskii, 1998), which is stated as follows. Let k be a symmetric kernel such
that E[|k(X,X)|] < +∞ and E[k2(X,Y)] < +∞ (so that the operator L defined by
eq. 17 is Hilbert-Schmidt and k can be written k(x,y) =

∑

i∈I µiψi(x)ψi(y) with I a
discrete set). Suppose that F is a class of measurable functions such that there exists

4The convergences should be almost sure, otherwise the result may hold with a different kind of
probabilistic convergence, e.g. in probability.

16

F ∈ Hp verifying |f(x)| ≤ F (x) for all f ∈ F . Moreover, suppose that for all i ∈ I,
{fψi : f ∈ F} ∈ GC(p), where GC(p) denotes the set of p-Glivenko-Cantelli classes
(see, e.g., (van der Vaart and Wellner, 1996)). Then, for all non-zero eigenvalue λr

sup
f,g∈F

∣

∣

∣
〈Pr(L̂m)f̂ , ĝ〉Hp̂

− 〈Pr(L)f, g〉Hp

∣

∣

∣
→ 0 (24)

almost surely when m → +∞, with Pr(L) the projection on the r-th eigenspace of
L, and Pr(L̂m), with probability 1 and for m sufficiently large, the projection on the
corresponding eigenspace of L̂m (for more details see (Koltchinskii, 1998)).
Let us consider the r-th eigenspace of L (of dimension 1 because we have considered
eigenvalues of multiplicity 1), i.e. the eigenspace spanned by the eigenfunction fr: the
r-th eigenspace of L̂m is also 1-dimensional, almost surely (because of the convergence
of the spectrum), and spanned by fr,m. Let x ∈ R

n be any point in the input space,
and F = {hx} with hx = k(x, ·) ∈ Hp. For any i ∈ I

∣

∣

∣

∣

∣

1

m

m
∑

j=1

hx(xj)ψi(xj)−
∫

hx(y)ψi(y)p(y)dy

∣

∣

∣

∣

∣

→ 0

almost surely (thanks to the strong law of large numbers), so that F verifies the hy-
pothesis needed to apply the theorem above. In addition,

〈Pr(L)hx, hx〉Hp
= 〈〈hx, fr〉fr, hx〉 = 〈hx, fr〉2Hp

= (Lfr)(x)2 = λ2
rfr(x)2

and similarly, using eq. 22, we have with probability 1 and for m large enough:

〈Pr(L̂m)ĥx, ĥx〉Hp̂
= 〈ĥx, f̂r,m〉2Hp̂

= (Lmfr,m)(x)2 = λ2
r,mfr,m(x)2. (25)

The conclusion of the theorem thus tells us that
∣

∣λ2
r,mfr,m(x)2 − λ2

rfr(x)2
∣

∣→ 0

almost surely. Since we have the convergence of the eigenvalues, this implies
∣

∣fr,m(x)2 − fr(x)2
∣

∣→ 0 (26)

almost surely, which shows the (simple) convergence of the eigenfunctions, up to the
sign. To get the convergence in Hp, we need to show that ‖|fr,m| − |fr|‖Hp

→ 0, i.e.
∫

gr,m(x)dx→ 0 (27)

with gr,m(x) = (|fr,m(x)|−|fr(x)|)2p(x). We will need to show that both fr,m and fr are
bounded (independently of m). Since fr is an eigenfunction of L, we have |λrfr(x)| =
|(Lfr)(x)| = |

∫

k(x,y)fr(y)p(y)dy| ≤ c|
∫

fr(y)p(y)dy|, so that |fr(x)| ≤ c′r. For fr,m,
we have

|λr,mfr,m(x)| = |(Lmfr,m(x))| =

∣

∣

∣

∣

∣

1

m

m
∑

i=1

k(x,xi)
√
mvr,i

∣

∣

∣

∣

∣

≤ c√
m

m
∑

i=1

|vr,i| ≤ c

17

because the maximum of
∑m

i=1 |vr,i| subject to ‖vr‖2 = 1 is
√
m, so that |fr,m(x)| ≤ c′′r al-

most surely (thanks to the convergence of λr,m). Therefore, we have that (almost surely)
gr,m(x) ≤ (c′r + c′′r)

2p(x) which is an integrable function, and from eq. 26, gr,m(x) → 0
for all x. The theorem of dominated convergence can thus be applied, which proves
eq. 27 is true (almost surely), and there is convergence of the eigenfunctions in Hp.
If km is data-dependent but converges, in a way such that the eigen-decomposition of
the Gram matrix (km(xi,xj)) converges to the eigen-decomposition of the Gram matrix
(k(xi,xj)), with k the limit of km, we want to apply the same reasoning. Because of the
convergence of the eigen-decomposition of the Gram matrix, eq. 24 still holds. However,
eq. 25 has to be replaced with a limit, because hx = k(x, ·) 6= km(x, ·). This limit
still allows to write eq. 26 (possibly with a different form of probabilistic convergence,
depending on the convergence of km to k), and the same result is obtained. �

Discussion

Kernel PCA has already been shown to be a stable and convergent algorithm (Shawe-
Taylor, Cristianini and Kandola, 2002; Shawe-Taylor and Williams, 2003; Zwald, Bous-
quet and Blanchard, 2004). These papers characterize the rate of convergence of the
projection error on the subspace spanned by the first N eigenvectors of the feature space
covariance matrix. When we perform the PCA or kernel PCA projection on an out-of-
sample point, we are taking advantage of the above convergence and stability properties:
we trust that a principal eigenvector of the empirical covariance matrix estimates well a
corresponding eigenvector of the true covariance matrix. Another justification for apply-
ing the Nyström formula outside of the training examples is therefore, as already noted
earlier and in (Williams and Seeger, 2000), in the case where km is positive semi-definite,
that it corresponds to the kernel PCA projection (on a corresponding eigenvector of the
feature space covariance matrix C).
Clearly, we thus have with the Nyström formula a method to generalize spectral em-
bedding algorithms to out-of-sample examples, whereas the original spectral embedding
methods only provide the transformed coordinates of training points (i.e. an embed-
ding of the training points). The experiments described in section 5 show empirically
the good generalization of this out-of-sample embedding. Note however that it is not
always clear whether the assumptions needed to apply proposition 2 are verified or not
(especially because of the data-dependency of km). This proposition mainly gives an
intuition of what a spectral embedding technique is doing (estimating eigenfunctions of
a linear operator) in the case of ideal convergence.
(Williams and Seeger, 2000) have shown an interesting justification for estimating the
eigenfunctions of L. When an unknown function f is to be estimated with an ap-
proximation g that is a finite linear combination of basis functions, if f is assumed to
come from a zero-mean Gaussian process prior with covariance Ef [f(x)f(y)] = k(x,y),
then the best choices of basis functions, in terms of expected squared error, are (up to
rotation/scaling) the leading eigenfunctions of the linear operator L defined by eq 17.

18

4 Learning Criterion for the Leading Eigenfunctions

Using an expansion into orthonormal bases (e.g. generalized Fourier decomposition in
the case where p is continuous), the best approximation of k(x,y) (in the sense of
minimizing expected squared error) using only N terms is the expansion that uses the
first N eigenfunctions of L (in the order of decreasing eigenvalues):

N
∑

r=1

λrfr(x)fr(y) ≈ k(x,y).

This simple observation allows us to define a loss criterion for spectral embedding algo-
rithms, something that was lacking up to now for such algorithms. The limit of this loss
converges toward an expected loss whose minimization gives rise to the eigenfunctions
of L. One could thus conceivably estimate this generalization error using the average of
the loss on a test set. That criterion is simply the kernel reconstruction error

Rkm
(xi,xj) =

(

km(xi,xj)−
N
∑

r=1

λr,mfr,m(xi)fr,m(xj)

)2

.

Proposition 3 The spectral embedding for a continous kernel k with discrete spectrum
is the solution of a sequential minimization problem, iteratively minimizing for N =
1, 2, . . . the expected value of the loss criterion

Rk(x,y) =

(

k(x,y)−
N
∑

r=1

λrfr(x)fr(y)

)2

.

First, with {(fr, λr)}N−1
k=1 already obtained, one gets recursively (λN , fN) by minimizing

JN(λ′, f ′) =

∫

(

k(x,y)− λ′f ′(x)f ′(y)−
N−1
∑

r=1

λrfr(x)fr(y)

)2

p(x)p(y)dxdy (28)

where by convention we scale f ′ such that
∫

f ′(x)2p(x) = 1 (any other scaling can be
transferred into λ′).
Secondly, if the same hypothesis on km as in proposition 2 are verified, the Monte-Carlo
average of the criterion Rkm

1

m2

m
∑

i=1

m
∑

j=1

(

km(xi,xj)−
N
∑

r=1

λr,mfr,m(xi)fr,m(xj)

)2

converges in probability to the asymptotic expectation of Rk.

Sketch of proof

The first part of the proposition concerning the sequential minimization of the loss
criterion follows from classical linear algebra (Strang, 1980; Kreyszig, 1990). It is an

19

extension of the well-known result stating that the best rank N approximation (for the
Frobenius norm) of a symmetric matrix is given by its expansion in terms of its first N
eigenvectors. A proof can be found in (Bengio et al., 2003).
To prove the second part, a reasoning similar to the one in the proof of proposition 2
can be done, in order to obtain that (in probability, when m→∞)

∫

(λr,mfr,m(x)fr,m(y)− λrfr(x)fr(y)) p(x)p(y)dxdy → 0

which, combined with the central limit theorem, leads to the desired convergence. �

Discussion

Note that the empirical criterion is indifferent to the value of the solutions fr,m outside
of the training set. Therefore, although the Nyström formula gives a possible solution to
the empirical criterion, there are other solutions. Remember that the task we consider
is that of estimating the eigenfunctions of L, i.e. approximating a similarity function k
where it matters according to the unknown density p. Solutions other than the Nyström
formula might also converge to the eigenfunctions of L. For example one could use a
non-parametric estimator (such as a neural network) to estimate the eigenfunctions.
Even if such a solution does not yield the exact eigenvectors on the training examples
(i.e. does not yield the lowest possible error on the training set), it might still be a
good solution in terms of generalization, in the sense of good approximation of the
eigenfunctions of L. It would be interesting to investigate whether the Nyström formula
achieves the fastest possible rate of convergence to the eigenfunctions of L.

5 Experiments

5.1 Toy Data Example

We first show on a toy dataset what kind of structure can be discovered from the
eigenfunctions defined in the previous sections. In figure 2, we display with gray levels
the value5 of the first eigenfunction computed for kernel PCA, spectral clustering (same
as Laplacian eigenmaps), Isomap and LLE, on a toy dataset of 500 examples (remember
that the first eigenfunction is proportional to the first coordinate of the projection,
as seen in eq. 23). This toy dataset is formed of two clusters (white dots) with a
similar form, one (top-left) with 100 points, and the other (bottom-right) with 400
points. The clusters are connected (through a low-density region) in such a way that the
data lie approximately on a one-dimensional manifold. Our C++ code for performing
those spectral dimensionality reduction algorithms can be found in the PLearn library
(http://plearn.org).
Although such a toy example does not provide a deep understanding of what these
algorithms do, it reveals several characteristics worth pointing out. First of all, kernel

5In the case of spectral clustering, this is the logarithm of the eigenfunction that is displayed, so as
to be able to actually see its variations.

20

−1.5 −1 −0.5 0 0.5 1 1.5

−3

−2

−1

0

1

2

(a) Kernel PCA

−1.5 −1 −0.5 0 0.5 1 1.5

−3

−2

−1

0

1

2

(b) Spectral clustering

−1.5 −1 −0.5 0 0.5 1 1.5

−3

−2

−1

0

1

2

(c) Isomap

−1.5 −1 −0.5 0 0.5 1 1.5

−3

−2

−1

0

1

2

(d) LLE

Figure 2: First eigenfunction (gray levels) for various non-linear spectral dimensionality
reduction algorithms, on a toy dataset of 500 samples (white dots). Kernel PCA and
spectral clustering use the same Gaussian kernel (eq. 4) with bandwidth σ = 0.2, while
Isomap and LLE use 20 neighbors.

PCA should not be used with a Gaussian kernel in order to discover a low-dimensional
non-linear manifold. Indeed, one may think kernel PCA does some kind of “local” PCA
within neighborhoods of size of the order of the Gaussian kernel’s bandwidth, but it
is not the case. It actually tends to discriminate smaller regions of the data as the
bandwidth decreases (and a high bandwidth makes it equivalent to linear PCA). The
spectral clustering / Laplacian eigenmaps eigenfunction is more satisfying, in that it
obviously reveals the clustered nature of our data (see footnote 5). Note that, even
though in this case only one eigenfunction may be enough to discriminate between the
two clusters, one should in general compute as many eigenfunctions as desired clusters
(because each eigenfunction will tend to map to the same point all clusters but one, e.g.
in figure 2(b) almost all points in the bottom-right cluster are given the same value).
As for Isomap and LLE, they give very similar results, showing they correctly captured
the underlying one-dimensional non-linear manifold. Although it cannot be seen in this
particular example, one should keep in mind that LLE, because it is based only on local
computations, does not respect as well as Isomap the global structure of the data.

5.2 Discovering Structure in Face Images

Experiments in this section are done over a subset of the database of 698 synthetic face
images available at http://isomap.stanford.edu. By selecting only images whose
illumination is between 180 and 200, this yields a dataset of 113 examples in 4096
dimensions, which approximately form a 2-dimensional manifold (the two degrees of
freedom are the rotation angles of the camera). The Isomap algorithm with 10 nearest

21

Figure 3: 2-dimensional embedding learned by Isomap from 70 high-dimensional syn-
thetic faces. A few faces from the train set (black background) and from the test set
(light gray background) are projected using the Nyström formula.

neighbors is run on the first 70 examples, while the remaining 43 are projected by the
Nyström formula. The embedding thus obtained (figure 3) clearly demonstrates that
Isomap captured the intrinsic 2-dimensional manifold, and that the Nyström formula
generalizes well. This is a typical example where such a non-linear spectral embedding
algorithm can prove very useful for data visualization as well as for dimensionality
reduction.

5.3 Generalization Performance of Function Induction

Here we want to test one aspect of the theoretical results: does the function induction
achieved with the Nyström formula work well? We would like to know if the embedding
that it predicts on a new point x is close to the embedding that would have been obtained
on x if it had been in the training set. However, how do we evaluate the “error” thus
obtained? Our idea is to compare it to the variations in embedding that result from
small perturbations of the training set (such as replacing a subset of the examples by
others from the same distribution).
For this purpose we consider splits of the data in three sets, X = F ∪ R1 ∪ R2 and

22

training either with F ∪ R1 or F ∪ R2, comparing the embeddings on F . For each
algorithm described in section 2, we apply the following procedure:

1. We choose F ⊂ X with q = |F | samples. The remaining m − q samples in
X/F are split into two equal size subsets R1 and R2. We train (obtain the
eigenvectors) over F ∪R1 and F ∪R2 and we calculate the Euclidean distance
between the aligned embeddings obtained for each xi ∈ F . When eigenvalues
are close, the estimated eigenvectors are unstable and can rotate in the subspace
they span. Thus we estimate an alignment (by linear regression) between the two
embeddings using the points in F .

2. For each sample xi ∈ F , we also train over {F ∪R1}/{xi}. We apply the Nyström
formula to out-of-sample points to find the predicted embedding of xi and calcu-
late the Euclidean distance between this embedding and the one obtained when
training with F ∪R1, i.e. with xi in the training set (in this case no alignment is
done since the influence of adding a single point is very limited).

3. We calculate the mean difference δ (and its standard error) between the distance
obtained in step 1 and the one obtained in step 2 for each sample xi ∈ F , and we
repeat this experiment for various sizes of F .

The results obtained for MDS, Isomap, spectral clustering and LLE are shown in figure 4
for different values of |R1|/m (i.e the fraction of points exchanged). The vertical axis
is δ, the difference between perturbation error and induction error. The horizontal zero
line corresponds to no difference between the embedding error due to induction (vs
transduction) and the embedding error due to training set perturbation. For values
of δ above the zero line, the embedding error due to perturbation is greater than the
embedding error due to out-of-sample prediction. Clearly, the in-sample (transduction)
vs out-of-sample (induction) difference is of the same order of magnitude as the change
in embedding due to exchanging a small fraction of the data (1 to 5%).
Experiments are done over the same faces database as in the previous section, but with
the whole set of 698 images. Similar results have been obtained over other databases such
as Ionosphere6 and Swissroll7. Each algorithm generates a two-dimensional embedding
of the images, following the experiments reported for Isomap. The number of neighbors
is 10 for Isomap and LLE, and a Gaussian kernel with a bandwidth of 0.01 is used for
spectral clustering / Laplacian eigenmaps. 95% confidence intervals are drawn beside
each mean difference of error on the figure.
As expected, the mean difference between the two distances is almost monotonically
increasing as the number |R1| of substituted training samples grows, mostly because
the training set embedding variability increases. We find in most cases that the out-of-
sample error is less than or comparable to the training set embedding instability when
around 2% of the training examples are substituted randomly.

6http://www.ics.uci.edu/~mlearn/MLSummary.html
7http://www.cs.toronto.edu/~roweis/lle/

23

6 Conclusion

Manifold learning and dimensionality reduction are powerful machine learning tools for
which much progress has been achieved in recent years. This chapter sheds light on
a family of such algorithms, involving spectral embedding, which are all based on the
eigen-decomposition of a similarity matrix.
Spectral embedding algorithms such as spectral clustering, Isomap, LLE, metric MDS,
and Laplacian eigenmaps are very interesting dimensionality reduction or clustering
methods. However, they lacked up to now a notion of generalization that would allow
to easily extend the embedding out-of-sample without again solving an eigensystem.
This chapter has shown with various arguments that the well known Nyström formula
can be used for this purpose, and that it thus represents the result of a function induction
process. These arguments also help us to understand that these methods do essentially
the same thing, but with respect to different kernels: they estimate the eigenfunctions of
a linear operator L associated with a kernel and with the underlying distribution of the
data. This analysis also shows that these methods are minimizing an empirical loss, and
that the solutions toward which they converge are the minimizers of a corresponding
expected loss, which thus defines what good generalization should mean, for these meth-
ods. It shows that these unsupervised learning algorithms can be extended into function
induction algorithms. The Nyström formula is a possible extension but it does not ex-
clude other extensions which might be better or worse estimators of the eigenfunctions
of the asymptotic linear operator L. When the kernels are positive semi-definite, these
methods can also be immediately seen as performing kernel PCA. Note that Isomap
generally yields a Gram matrix with negative eigenvalues, and users of MDS, spectral
clustering or Laplacian eigenmaps may want to use a kernel that is not guaranteed
to be positive semi-definite. The analysis in this chapter can still be applied in that
case, even though the kernel PCA analogy does not hold anymore. This is important
to note because recent work (Laub and Müller, 2003) has shown that the coordinates
corresponding to large negative eigenvalues can carry very significant semantics about
the underlying objects. In fact, it is proposed in (Laub and Müller, 2003) to perform
dimensionality reduction by projecting on the eigenvectors corresponding to the largest
eigenvalues in magnitude (i.e. irrespective of sign).
In this chapter we have given theorems that provide justification for the Nyström for-
mula in the general case of data-dependent kernels which may not be positive-definite.
However, these theorems rely on strong assumptions which may not hold for particu-
lar spectral manifold learning algorithms. To help assess the practical validity of the
Nyström formula for predicting the embedding of out-of-sample points, we have per-
formed a series of comparative experiments.
The experiments performed here have shown empirically on several data sets that
(i) those spectral embedding algorithms capture different kinds of non-linearity in the
data, (ii) they can be useful for both data visualization and dimensionality reduction,
and (iii) the predicted out-of-sample embedding is generally not far from the one that
would be obtained by including the test point in the training set, the difference being
of the same order as the effect of small perturbations of the training set.

24

An interesting parallel can be drawn between the spectral embedding algorithms and the
view of PCA as finding the principal eigenvectors of a matrix obtained from the data.
The present chapter parallels for spectral embedding the view of PCA as an estimator
of the principal directions of the covariance matrix of the underlying unknown distri-
bution, thus introducing a convenient notion of generalization, relating to an unknown
distribution.
Finally, a better understanding of these methods opens the door to new and potentially
much more powerful unsupervised learning algorithms. Several directions remain to be
explored:

1. Using a smoother distribution than the empirical distribution to define the linear
operator Lm. Intuitively, a distribution that is closer to the true underlying distri-
bution would have a greater chance of yielding better generalization, in the sense
of better estimating eigenfunctions of L. This relates to putting priors on certain
parameters of the density, e.g. as in (Rosales and Frey, 2003).

2. All of these methods are capturing salient features of the unknown underlying
density. Can one use the representation learned through the estimated eigenfunc-
tions in order to construct a good density estimator? Looking at figure 1 suggests
that modeling the density in the transformed space (right hand side) should be
much easier (e.g. would require fewer Gaussians in a Gaussian mixture) than in
the original space.

3. These transformations discover abstract structures such as clusters and manifolds.
It might be possible to learn even more abstract (and less local) structures, starting
from these representations. Ultimately, the goal would be to learn higher-level ab-
stractions on top of lower-level abstractions by iterating the unsupervised learning
process in multiple “layers”.

Looking for extensions such as these is important because all of the manifold learning
algorithms studied here suffer from the following fundamental weakness: they are using
mostly the neighbors around each example to capture the local structure of the manifold,
i.e. the manifold is seen as a combination of linear patches around each training example.
This is very clear in LLE and Isomap, which have a simple geometric interpretation, and
it is also clear in non-spectral methods such as Manifold Parzen Windows (Vincent and
Bengio, 2003) and other mixtures of factor analyzers (Ghahramani and Hinton, 1996).
In low dimension or when the manifold is smooth enough, there may be enough examples
locally to characterize the plane tangent to the manifold. However, when the manifold
has high curvature with respect to the amount of training data (which can easily be the
case, especially with high-dimensional data), it is hopeless to try to capture the local
tangent directions based only on local information. Clearly, this is the topic for future
work, addressing a fundamental question about generalization in high-dimensional data,
and for which the traditional non-parametric approaches may be insufficient.

25

Acknowledgments

The authors would like to thank Léon Bottou, Christian Léger, Sam Roweis, Yann Le
Cun, and Yves Grandvalet for helpful discussions, and the following funding organiza-
tions: NSERC, MITACS, IRIS, and the Canada Research Chairs.

References

Baker, C. (1977). The numerical treatment of integral equations. Clarendon Press,
Oxford.

Belkin, M. and Niyogi, P. (2003a). Laplacian eigenmaps for dimensionality reduction
and data representation. Neural Computation, 15(6):1373–1396.

Belkin, M. and Niyogi, P. (2003b). Using manifold structure for partially labeled classi-
fication. In Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural
Information Processing Systems 15, Cambridge, MA. MIT Press.

Bengio, Y., Paiement, J., Vincent, P., Delalleau, O., Le Roux, N., and Ouimet, M.
(2004). Out-of-sample extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral
Clustering. In Thrun, S., Saul, L., and Schölkopf, B., editors, Advances in Neural
Information Processing Systems 16. MIT Press.

Bengio, Y., Vincent, P., Paiement, J., Delalleau, O., Ouimet, M., and Le Roux, N.
(2003). Spectral clustering and kernel PCA are learning eigenfunctions. Technical
Report 1239, Département d’informatique et recherche opérationnelle, Université
de Montréal.

Brand, M. (2003). Charting a manifold. In Becker, S., Thrun, S., and Obermayer, K.,
editors, Advances in Neural Information Processing Systems 15. MIT Press.

Chung, F. (1997). Spectral graph theory. In CBMS Regional Conference Series, vol-
ume 92. American Mathematical Society.

Cox, T. and Cox, M. (1994). Multidimensional Scaling. Chapman & Hall, London.

de Silva, V. and Tenenbaum, J. (2003). Global versus local methods in nonlinear dimen-
sionality reduction. In Becker, S., Thrun, S., and Obermayer, K., editors, Advances
in Neural Information Processing Systems 15, pages 705–712, Cambridge, MA. MIT
Press.

Donoho, D. and Grimes, C. (2003). Hessian eigenmaps: new locally linear embedding
techniques for high-dimensional data. Technical Report 2003-08, Dept. Statistics,
Stanford University.

Ghahramani, Z. and Hinton, G. (1996). The EM algorithm for mixtures of factor
analyzers. Technical Report CRG-TR-96-1, Dpt. of Comp. Sci., Univ. of Toronto.

26

Gower, J. (1968). Adding a point to vector diagrams in multivariate analysis.
Biometrika, 55(3):582–585.

Ham, J., Lee, D., Mika, S., and Schölkopf, B. (2003). A kernel view of the dimension-
ality reduction of manifolds. Technical Report TR-110, Max Planck Institute for
Biological Cybernetics, Germany.

Hastie, T. and Stuetzle, W. (1989). Principal curves. Journal of the American Statistical
Association, 84:502–516.

Kégl, B. (2003). Intrinsic dimension estimation using packing numbers. In Becker, S.,
Thrun, S., and Obermayer, K., editors, Advances in Neural Information Processing
Systems 15, pages 681–688. MIT Press, Cambridge, MA.

Kegl, B. and Krzyzak, A. (2002). Piecewise linear skeletonization using principal curves.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1):59–74.

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9):1464–
1480.

Koltchinskii, V. (1998). Asymptotics of spectral projections of some random matri-
ces approximating integral operators. In Eberlein, Hahn, and Talagrand, editors,
Progress in Probability, volume 43, pages 191–227, Basel. Birkhauser.

Koltchinskii, V. and Giné, E. (2000). Random matrix approximation of spectra of
integral operators. Bernoulli, 6(1):113–167.

Kreyszig, E. (1990). Introductory Functional Analysis with Applications. John Wiley &
Sons, Inc., New York, NY.

Kumar, V., Grama, A., Gupta, A., and Karypis, G. (1994). Introduction to Parallel
Computing: Design and Analysis of Algorithms. Benjamin Cummings, Redwood
City, CA.

Laub, J. and Müller, K.-R. (2003). Feature discovery: unraveling hidden structure in
non-metric pairwise data. Technical report, Fraunhofer FIRST.IDA, Germany.

Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). On spectral clustering: analysis and an
algorithm. In Dietterich, T., Becker, S., and Ghahramani, Z., editors, Advances in
Neural Information Processing Systems 14, Cambridge, MA. MIT Press.

Rosales, R. and Frey, B. (2003). Learning generative models of affinity matrices. In
Proceedings of the 19th Annual Conference on Uncertainty in Artificial Intelligence
(UAI-03), pages 485–492, San Francisco, CA. Morgan Kaufmann Publishers.

Roweis, S. and Saul, L. (2000). Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326.

27

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning internal representations
by error propagation. In Rumelhart, D. and McClelland, J., editors, Parallel Dis-
tributed Processing, volume 1, chapter 8, pages 318–362. MIT Press, Cambridge.

Saul, L. and Roweis, S. (2002). Think globally, fit locally: unsupervised learning of low
dimensional manifolds. Journal of Machine Learning Research, 4:119–155.

Saund, E. (1989). Dimensionality-reduction using connectionist networks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 11(3):304–314.

Schölkopf, B., Burges, C. J. C., and Smola, A. J. (1999). Advances in Kernel Methods
— Support Vector Learning. MIT Press, Cambridge, MA.

Schölkopf, B., Smola, A., and Müller, K.-R. (1996). Nonlinear component analysis as a
kernel eigenvalue problem. Technical Report 44, Max Planck Institute for Biological
Cybernetics, Tübingen, Germany.

Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299–1319.

Shawe-Taylor, J., Cristianini, N., and Kandola, J. (2002). On the concentration of
spectral properties. In Dietterich, T., Becker, S., and Ghahramani, Z., editors,
Advances in Neural Information Processing Systems 14. MIT Press.

Shawe-Taylor, J. and Williams, C. (2003). The stability of kernel principal components
analysis and its relation to the process eigenspectrum. In Becker, S., Thrun, S.,
and Obermayer, K., editors, Advances in Neural Information Processing Systems
15. MIT Press.

Shi, J. and Malik, J. (1997). Normalized cuts and image segmentation. In Proc. IEEE
Conf. Computer Vision and Pattern Recognition, pages 731–737.

Spielman, D. and Teng, S. (1996). Spectral partitioning works: planar graphs and finite
element meshes. In Proceedings of the 37th Annual Symposium on Foundations of
Computer Science.

Strang, G. (1980). Linear Algebra and Its Applications. Academic Press, New York.

Teh, Y. W. and Roweis, S. (2003). Automatic alignment of local representations. In
Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural Information
Processing Systems 15. MIT Press.

Tenenbaum, J., de Silva, V., and Langford, J. (2000). A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323.

Torgerson, W. (1952). Multidimensional scaling, 1: Theory and method. Psychome-
trika, 17:401–419.

28

van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical Processes
with applications to Statistics. Springer, New York.

Verbeek, J. J., Roweis, S. T., and Vlassis, N. (2004). Non-linear cca and pca by align-
ment of local models. In Thrun, S., Saul, L., and Schölkopf, B., editors, Advances
in Neural Information Processing Systems 16, Cambridge, MA. MIT Press.

Vincent, P. and Bengio, Y. (2003). Manifold parzen windows. In S. Becker, S. T. and
Obermayer, K., editors, Advances in Neural Information Processing Systems 15,
pages 825–832, Cambridge, MA. MIT Press.

Vlachos, M., Domeniconi, C., Gunopulos, D., Kollios, G., and Koudas, N. (2002). Non-
linear dimensionality reduction techniques for classification and visualization. In
Proc. of 8th SIGKDD, Edmonton, Canada.

Weiss, Y. (1999). Segmentation using eigenvectors: a unifying view. In Proceedings
IEEE International Conference on Computer Vision, pages 975–982.

Williams, C. (2001). On a connection between kernel pca and metric multidimensional
scaling. In Leen, T., Dietterich, T., and Tresp, V., editors, Advances in Neural
Information Processing Systems 13, pages 675–681. MIT Press.

Williams, C. and Seeger, M. (2000). The effect of the input density distribution on
kernel-based classifiers. In Proceedings of the Seventeenth International Conference
on Machine Learning. Morgan Kaufmann.

Williams, C. K. I. and Seeger, M. (2001). Using the Nyström method to speed up kernel
machines. In Leen, T., Dietterich, T., and Tresp, V., editors, Advances in Neural
Information Processing Systems 13, pages 682–688, Cambridge, MA. MIT Press.

Zwald, L., Bousquet, O., and Blanchard, G. (2004). Statistical properties of kernel
principal component analysis. In Shawe-Taylor, J. and Singer, Y., editors, Learning
Theory: 17th Annual Conference on Learning Theory, COLT 2004. Proceedings,
volume 3120 of Lecture Notes in Computer Science, pages 594–608. Springer-Verlag.

29

0 0.05 0.1 0.15 0.2 0.25-4

-2

0

2

4

6

8

10x 10 4

p

d
δ / 104

-2
0
2
4
6
8

0 5 10 15 20 25 ρ% 0 0.05 0.1 0.15 0.2 0.25 0.35 0.4-5

0

5

10

15

20

x 10 4

0.3

p

d
δ / 104

-5

0

5

10

15

20

0 5 10 15 20 25 30 35 ρ%

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14-3

-2

-1

0

1

2

3

4

5

6

7x 10 3

p

d
6
5
4
3
2
1
0

-1
-2

0 2 4 6 8 10 12

δ / 103

ρ% 0 0.05 0.1 0.15 0.2 0.25

0

1

0.8

0.4

0.6

0.2

-0.2

-0.4

p

d
δ

-0.2
0

0.2
0.4
0.6
0.8

0 5 10 15 20 25 ρ%

Figure 4: δ (training set variability minus out-of-sample error), w.r.t. ρ (proportion
of substituted training samples) on the “Faces” dataset (m = 698), obtained with a
two-dimensional embedding. Top left: MDS. Top right: spectral clustering or Laplacian
eigenmaps. Bottom left: Isomap. Bottom right: LLE. Error bars are 95% confidence
intervals. Exchanging about 2% of the training examples has an effect comparable to
using the Nyström formula.

30

