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The problem of semi-supervised induction consists in learning a decision rule from

labeled and unlabeled data. This task can be undertaken by discriminative methods,

provided that learning criteria are adapted consequently. In this chapter, we moti-

vate the use of entropy regularization as a means to benefit from unlabeled data in

the framework of maximum a posteriori estimation. The learning criterion is derived

from clearly stated assumptions and can be applied to any smoothly parametrized

model of posterior probabilities. The regularization scheme favors low density sep-

aration, without any modeling of the density of input features. The contribution

of unlabeled data to the learning criterion induces local optima, but this problem

can be alleviated by deterministic annealing. For well-behaved models of posterior

probabilities, deterministic annealing EM provides a decomposition of the learning

problem in a series of concave subproblems. Other approaches to the semi-supervised

problem are shown to be close relatives or limiting cases of entropy regularization.

A series of experiments illustrates the good behavior of the algorithm in terms of

performance and robustness with respect to the violation of the postulated low den-

sity separation assumption. The minimum entropy solution benefits from unlabeled

data and is able to challenge mixture models and manifold learning in a number of

situations.

9.1 Introduction

This chapter addresses semi-supervised induction, which refers to the learning of

a decision rule, on the entire input domain X, from labeled and unlabeled data.

The objective is identical to the one of supervised classification: generalize fromsemi-supervised

induction examples. The problem differs in the respect that the supervisor’s responses are

missing for some training examples. This characteristic is shared with transduction,

which has however a different goal, that is, of predicting labels on a set of predefined
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patterns.

In the probabilistic framework, semi-supervised induction is a missing data

problem, which can be addressed by generative methods such as mixture models

thanks to the EM algorithm and extensions thereof [McLachlan, 1992]. Generative

models apply to the joint density of patterns x and class y. They have appealing

features, but they also have major drawbacks. First, the modeling effort is much

more demanding than for discriminative methods, since the model of p(x, y) is

necessarily more complex than the model of P (y|x). Being more precise, the

generative model is also more likely to be misspecified. Second, the fitness measure

is not discriminative, so that better models are not necessarily better predictors of

class labels (this issue is addressed in chapter 2).

These difficulties have lead to proposals where unlabeled data are processed

by supervised classification algorithms. Here, we describe an estimation principle

applicable to any probabilistic classifier, aiming at making the most of unlabeled

data when they should be beneficial to the learning process, that is, when classes are

well apart. The method enables to control the contribution of unlabeled examples,

thus providing robustness with respect to the violation of the postulated low density

separation assumption.

Section 9.2 motivates the estimation criterion. It is followed by the description

of the optimization algorithms in section 9.3. The connections with some other

principles or algorithms are then detailed in section 9.4. Finally, the experiments of

section 9.5 offer a test bed to evaluate the behavior of entropy regularization, with

comparisons to generative models and manifold learning.

9.2 Derivation of the Criterion

In this section, we first show that unlabeled data do not contribute to the maximum

likelihood estimation of discriminative models. The belief that “unlabeled data

should be informative” should then be encoded as a prior to modify the estimation

process. We argue that assuming high entropy for P (y|x) is a sensible encoding of

this belief, and finally describe the learning criterion derived from this assumption.

9.2.1 Likelihood

The maximum likelihood principle is one of the main estimation technique in

supervised learning, which is closely related to the more recent margin maximization

techniques such as boosting and support vector machines [Friedman et al., 2000]. We

start here by looking at the contribution of unlabeled examples to the (conditional)

likelihood.

The learning set is denoted Ln = {(x1, y1), . . . , (xl, yl), xl+1, . . . , xn}, where the

l first examples are labeled, and the u = n − l last ones are unlabeled. We

assume that labels are missing at random, that is, the missingness mechanismmissing value

mechanism is independent from the missing class information. Let h be the random variable
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encoding missingness: h = 1 if y is hidden and h = 0 if y is observed. The missing

at random assumption readsmissing at

random
P (h|x, y) = P (h|x) . (9.1)

This assumption excludes cases where missingness may indicate a preference for

a particular class (this can happen for example in opinion polls where the “refuse

to answer” option may hide an inclination towards a shameful answer). Assuming

independent examples, the conditional log-likelihood is then

L(θ;Ln) =

l∑

i=1

ln P (yi|xi; θ) +

n∑

i=1

ln P (hi|xi) , (9.2)

Maximizing (9.2) with respect to θ can be performed by dropping the second

term of the right-hand side. It corresponds to maximizing the complete likelihood

when no assumption whatsoever is made on p(x) [McLachlan, 1992]. As unlabeled

data are not processed by the model of posterior probabilities, they do not convey

information regarding P (y|x). In the maximum a posteriori (MAP) framework,

unlabeled data are useless regarding discrimination when the priors on p(x) and

P (y|x) factorize and are not tied (see chapter 2): observing x does not inform

about y, unless the modeler assumes so. Benefiting from unlabeled data requires

assumptions of some sort on the relationship between x and y. In the MAP

framework, this will be encoded by a prior distribution. As there is no such thing

like a universally relevant prior, we should look for an induction bias allowing to

process unlabeled data when the latter are known to convey information.

9.2.2 When Are Unlabeled Examples Informative?

Theory provides little support to the numerous experimental evidences showing

that unlabeled examples can help the learning process. Learning theory is mostly

developed at the two extremes of the statistical paradigm: in parametric statistics

where examples are known to be generated from a known class of distribution,

and in the distribution-free Structural Risk Minimization (SRM) or Probably Ap-

proximately Correct (PAC) frameworks. Semi-supervised induction does not fit the

distribution-free frameworks: no positive statement can be made without distri-

butional assumptions, as for some distributions p(x, y), unlabeled data are non-

informative while supervised learning is an easy task. In this regard, generalizing

from labeled and unlabeled data may differ from transductive inference.

In parametric statistics, theory has shown the benefit of unlabeled examples,

either for specific distributions [O’Neill, 1978], or for mixtures of the form p(x) =

πp(x|y = 1)+(1−π)p(x|y = 2), where the estimation problem is essentially reduced

to the one of estimating the mixture parameter π [Castelli and Cover, 1996]. These

studies conclude that the (asymptotic) information content of unlabeled examples

decreases as classes overlap.1 Hence, in the absence of general results, postulatinginformation

content of

unlabeled

examples
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that classes are well apart, separated by a low density area, is sensible when one

expects to take advantage of unlabeled examples.

9.2.3 A Measure of Class Overlap

There are many possible measures of class overlap. We chose Shannon’s conditional

entropy, which is invariant to the parameterization of the model, but the framework

developped below could be applied to other measures of class overlap, such as Renyi

entropies. Note however that the algorithms detailed in section 9.3.1 are specific to

this choice. Obviously, the conditional entropy may only be related to the usefulnessconditional

entropy of unlabeled data where labeling is indeed ambiguous. Hence, the measure of class

overlap should be conditioned on missingness

H(y|x, h = 1) = −Exy [ln P (y|x, h = 1)] (9.3)

= −
∫ M∑

m=1

ln P (y = m|x, h = 1)p(x, y = m|h = 1) dx .

In the MAP framework, assumptions are encoded by means of a prior on the

model parameters. Stating that we expect a high conditional entropy does not

uniquely define the form of the prior distribution, but the latter can be derived by

resorting to the maximum entropy principle.2

The maximum entropy prior verifying Eθ [H(y|x, h = 1)] = c, where the constant

c quantifies how small the entropy should be on average, takes the form

p(θ) ∝ exp (−λH(y|x, h = 1))) , (9.4)

where λ is the positive Lagrange multiplier corresponding to the constant c.

Computing H(y|x, h = 1) requires a model of p(x, y|h = 1) whereas the choice

of supervised classification is motivated by the possibility to limit modeling to con-

ditional probabilities. We circumvent the need of additional modeling by applying

the plug-in principle, which consists in replacing the expectation with respect toplug-in principle

(x|h = 1) by the sample average. This substitution, which can be interpreted as

“modeling” p(x|h = 1) by its empirical distribution, yields

Hemp(y|x, h = 1;Ln) = − 1

u

n∑

i=l+1

M∑

m=1

P (m|xi, ti = 1) ln P (m|xi, ti = 1) . (9.5)

1. This statement, given explicitly by O’Neill [1978], is also formalized, though not
stressed, by Castelli and Cover [1996], where the Fisher information for unlabeled examples
at the estimate π̂ is clearly a measure of the overlap between class conditional densities:

Iu(π̂) =
R (p(x|y=1)−p(x|y=2))2

π̂p(x|y=1)+(1−π̂)p(x|y=2)
dx.

2. Here, maximum entropy refers to the construction principle which enables to derive
distributions from constraints, not to the content of priors regarding entropy.
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The missing at random assumption (9.1) yields P (y|x, h = 1) = P (y|x), hence

Hemp(y|x, h = 1;Ln) = − 1

u

n∑

i=l+1

M∑

m=1

P (m|xi) ln P (m|xi) . (9.6)

This empirical functional is plugged in (9.4) to define an empirical prior on param-

eters θ, that is, a prior whose form is partly defined from data [Berger, 1985].

9.2.4 Entropy Regularization

The MAP estimate is defined as the maximizer of the posterior distribution, that

is, the maximizer of

C(θ, λ;Ln) = L(θ;Ln)− λHemp(y|x, h = 1;Ln)

=

l∑

i=1

ln P (yi|xi; θ) + λ

n∑

i=l+1

M∑

m=1

P (m|xi; θ) ln P (m|xi; θ) , (9.7)

where the constant terms in the log-likelihood (9.2) and log-prior (9.4) have been

dropped.

While L(θ;Ln) is only sensitive to labeled data, Hemp(y|x, h = 1;Ln) is only

affected by the value of P (m|x; θ) on unlabeled data. Since these two components of

the learning criterion are concave in P (m|x; θ), their weighted difference is usually

not concave, except for λ = 0. Hence, the optimization surface is expected to

possess local maxima, which are likely to be more numerous as u and λ grow. Semi-

supervised induction is half-way between classification and clustering, hence, the

progressive loss of concavity in the shift from supervised to unsupervised learning

is not surprising, as most clustering optimization problems are nonconvex [Rose

et al., 1990].

The empirical approximation Hemp (9.5) of H (9.3) breaks down for wiggly

functions P (m|·) with abrupt changes between data points (where p(x) is bounded

from below). As a result, it is important to constrain P (m|·) in order to enforce the

closeness of the two functionals. In the following experimental section, we imposed

such a constraint on P (m|·) by adding a smoothness penalty to the criterion C

(9.7). Note that this penalty also provides a means to control the capacity of the

classifier.

9.3 Optimization Algorithms

9.3.1 Deterministic Annealing EM and IRLS

In its application to semi-supervised learning, the EM algorithm is generally used

to maximize the joint likelihood from labeled and unlabeled data. This iterative

algorithm increases the likelihood at each step and converges towards a stationary
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point of the likelihood surface.

The criterion C(θ, λ;Ln) (9.7) departs from the conditional likelihood by its

entropy term. It is in fact formulated as each intermediate optimization subproblem

solved in the deterministic annealing EM algorithm. This scheme was originally

proposed to alleviate the difficulties raised by local maxima in joint likelihood

for some clustering problems [Rose et al., 1990, Yuille et al., 1994]. It consistsDeterministic

annealing in optimizing the likelihood subject to a constraint on the level of randomness,

measured by the entropy of the model of P (y|x). The Lagrangian formulation of

this optimization problem is precisely (9.7), where T = 1 − λ is the analogue of a

temperature. Deterministic annealing is the cooling process defining the continuous

path of solutions indexed by the temperature. Following this path is expected to

lead to a final solution with lower free energy, that is, higher likelihood.

If the optimization criteria are identical, the goals, and the hyper-parameters used

are different. On the one hand, in deterministic annealing EM, one aims at reaching

the global maximum (or at least a good local optimum) of the joint likelihood. For

this purpose, one starts from a concave function (T →∞) and the temperature is

gradually lowered down to T = 1, in order to reach a state with high likelihood.

On the other hand, the goal of entropy regularization is to alter the maximum

likelihood solution, by biasing it towards low entropy. One starts from a possibly

concave conditional likelihood (λ = 0, i.e., T = 1) and the temperature is gradually

lowered until it reaches some predetermined value 1 − λ0 = T0 ≥ 0, to return a

good local maximum of C(θ, λ0;Ln).

Despite these differences, the analogy with deterministic annealing EM is useful

because it provides an optimization algorithm for maximizing C(θ, λ;Ln) (9.7).

Deterministic annealing EM [Yuille et al., 1994] is a simple generalization ofDeterministic

annealing EM the standard EM algorithm. Starting from the solution obtained at the highest

temperature, the path of solution is computed by gradually increasing λ. For each

trial value of λ, the corresponding solution is computed by a two-step iterative

procedure, where the expected log-likelihood is maximized at the M-step, and where

soft (expected) assignments are imputed at the E-step for unlabeled data. The only

difference with standard EM takes place at the E-step, where the expected value

of labels is computed using the Gibbs distribution

gm(xi; θ) =
P (m|xi; θ)

1
1−λ

∑M
`=1 P (`|xi; θ)

1
1−λ

,

which distributes the probability mass according to the current estimated posterior

P (m|·) (for labeled examples, the assignment is clamped at the original label

gm(xi; θ) = δmyi
). For 0 < λ ≤ 1, the Gibbs distribution is more peaked than

the estimated posterior. One recovers EM for λ = 0, and the hard assignments of

classification EM (CEM) [Celeux and Govaert, 1992] correspond to λ = 1.

The M-step then consists in maximizing the expected log-likelihood with respect
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to θ,

θs+1 = arg max
θ

n∑

i=1

M∑

m=1

gm(xi; θ
s) ln P (m|xi; θ) , (9.8)

where the expectation is taken with respect to the distribution (g1(·; θs), . . . , gM (·; θs)),

and θs is the current estimate of θ.

The optimization problem (9.8) is concave in P (m|x; θ) and also in θ for logistic

regression models. Hence it can be solved by second-order optimization algorithm,

such as the Newton-Raphson algorithm, which is often referred to as iteratively

reweighted least squares or IRLS in statistical textbooks [Friedman et al., 2000].IRLS

We omit the detailed derivation of IRLS, and provide only the update equation

for θ in the standard logistic regression model for binary classification problems. 3

The model of posterior distribution is defined as

P (1|x; θ) =
1

1 + e−(w>x+b)
, (9.9)

where θ = (w, b). In the binary classification problem, the M-step (9.8) reduces to

θs+1 = arg max
θ

n∑

i=1

g1(xi; θ
s) ln P (1|xi; θ) + (1− g1(xi; θ

s)) ln(1− P (1|xi; θ)) ,

where

g1(xi; θ) =
P (1|xi; θ)

1
1−λ

P (1|xi; θ)
1

1−λ + (1− P (1|xi; θ))
1

1−λ

for unlabeled data and g1(xi; θ) = δ1yi
for labeled examples. Let pθ and g denote

the vector of P (1|xi; θ) and g1(xi; θ
s) values respectively, X the (n×(d+1)) matrix

of xi values concatenated with the vector 1, and Wθ the (n × n) diagonal matrix

with ith diagonal entry P (1|xi; θ)(1− P (1|xi; θ)). The Newton-Raphson update is

θ ← θ +
(
X>WθX

)−1
X>(g − pθ) . (9.10)

Each Newton-Raphson update can be interpreted as solving a weighted least squares

problem, and the scheme is iteratively reweighted by updating pθ (and hence Wθ)

and applying (9.10) until convergence.

9.3.2 Conjugate Gradient

Depending on how P (y|x) is modeled, the M-step (9.8) may not be concave, and

other gradient-based optimization algorithms should be used. Even in the case

3. The generalization to kernelized logistic regression is straightforward, and the gener-
alization to more than two classes results in similar expressions, but they would require
numerous extra notations.
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where a logistic regression model is used, conjugate gradient may turn out being

computationally more efficient than the IRLS procedure. Indeed, even if each M-step

of the deterministic annealing EM algorithm consists in solving a convex problem,

this problem is non-quadratic. IRLS solves exactly each quadratic subproblem, a

strategy which becomes computationally expensive for high dimensional data or

kernelized logistic regression. The approximate solution provided by a few steps of

conjugate gradient may turn out to be more efficient, especially since the solution

θs+1 returned at the sth M-step is not required to be accurate.

Depending on whether memory is an issue or not, conjugate gradient updates

may use the optimal steps computed from the Hessian, or approximations returned

by a line search. Theses alternatives have experimentally been shown to be much

more efficient than IRLS on large problems [Komarek and Moore, 2003].

Finally, when EM does not provide a useful decomposition of the learning task,

one can directly address the minimization of the learning criterion (9.7) with

conjugate gradient, or other gradient-based algorithms. Here also, it is useful to

define an annealing scheme, where λ is gradually increased from 0 to 1, in order to

avoid poor local maxima of the optimization surface.

9.4 Related Methods

9.4.1 Minimum Entropy in Pattern Recognition

Minimum entropy regularizers have been used in other contexts to encode learn-

ability priors [Brand, 1999]. In a sense, Hemp can be seen as a poor’s man way

to generalize this approach to continuous input spaces. This empirical functional

was also used as a criterion to learn scale parameters in the context of transductive

manifold learning [Zhu et al., 2003]. During learning, discrepancies between H (9.3)

and Hemp (9.5) are prevented to avoid hard unstable solutions by smoothing the

estimate of posterior probabilities.

9.4.2 Input-Dependent and Information Regularization

Input-dependent regularization, introduced by Seeger [2001] and detailed in chap-

ter 2, aims at incorporating some knowledge about the density p(x) in the modeling

of P (y|x). In the framework of Bayesian inference, this knowledge is encoded by

structural dependencies in the prior distributions.

Information regularization introduced by Szummer and Jaakkola [2002], and

extended as detailed in chapter ?? is another approach, where the density p(x) is

assumed to be known, and where the mutual information between variables x and

y is penalized within predefined small neighborhoods. As the mutual information

I(x; y) is related to the conditional entropy by I(x; y) = H(y)−H(y|x), low entropy

and low mutual information are nearly opposite quantities. However, penalizing

mutual information locally, subject to the class constraints provided by labeled
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examples, highly penalizes the variations of P (y|x) in the high density regions.

Hence, like entropy regularization, information regularization favors solution where

label switching is restricted to low density areas between disagreeing labels.

Entropy regularization differs from these schemes in that it is expressed only in

terms of P (y|x) and does not involve a model of p(x). However, we stress that

for unlabeled data, the MAP minimum entropy estimation is consistent with the

maximum (complete) likelihood approach when p(x) is small near the decision

surface. Indeed, whereas the complete likelihood maximizes ln p(x) on unlabeled

data, the regularizer minimizes the conditional entropy on the same points. Hence,

the two criteria agree provided the class assignments are confident in high density

regions, or conversely, when label switching occurs in a low density area.

9.4.3 Self-Training

Self-training is an iterative process, where a learner imputes the labels of examples

which have been classified with confidence in the previous step. This idea, which

predates EM, was independently proposed by several authors (see chapter 1). Amini

and Gallinari [2002] analyzed this technique and have shown that it is equivalent

to a version of the classification EM algorithm [Celeux and Govaert, 1992], which

minimizes the likelihood deprived of the entropy of the partition.

In the context of conditional likelihood estimation from labeled and unlabeled

examples, self-training minimizes C (9.7) with λ = 1. The optimization process itself

is identical to the generalized EM described in section 9.3.1 with hard assignments

[Grandvalet, 2002, Jin and Ghahramani, 2003].

Minimum entropy regularization is expected to have two benefits. First, the

influence of unlabeled examples can be controlled, in the spirit of EM-λ [Nigam

et al., 2000] Second, the deterministic annealing process, by which λ is slowly

increased, is expected to help the optimization process to avoid poor local minima

of the criterion. This scheme bears some similarity with the increase of the C∗

parameter in the transductive SVM algorithm of Joachims [1999].

9.4.4 Maximal Margin Separators

Maximal margin separators are theoretically well founded models which have shown

great success in supervised classification. For linearly separable data, they have been

shown to be a limiting case of probabilistic hyperplane separators [Tong and Koller,

2000].

In the framework of transductive learning, Vapnik [1998] proposed to broaden the

margin definition to unlabeled examples, by taking the smallest Euclidean distance

between any (labeled and unlabeled) training point to the classification boundary.

The following theorem, whose proof is given in Appendix 9.7, generalizes Theorem 5,
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Corollary 6 of Tong and Koller [2000] to the margin defined in transductive learning4

when using the proposed minimum entropy criterion.

Theorem 9.1 Consider the two-class linear classification problem with linearly

separable labeled examples, where the classifier is obtained by optimizing

P (1|x; (w, b)) = 1/(1 + e−(w>x+b)) with the semi-supervised minimum entropy cri-

terion (9.7), under the constraint that ||w|| ≤ B. The margin of that linear classifier

converges towards the maximum possible margin among all such linear classifiers,

as the bound B goes to infinity.

Hence, the minimum entropy solution can approach semi-supervised SVM [Vap-

nik, 1998, Bennett and Demiriz, 1998]. We however recall that the MAP criterion

is not concave in P (m|x; θ), so that the convergence toward the global maximum

cannot be guaranteed with the algorithms presented in section 9.3. This problem

is shared by all inductive semi-supervised algorithms dealing with a large number

of unlabeled data in reasonable time, such as mixture models or the transductive

SVM of Joachims [1999]. Explicitly or implicitly, inductive semi-supervised algo-

rithms impute labels which are somehow consistent with the decision rule returned

by the learning algorithm. The enumeration of all possible configurations is only

avoided thanks to a heuristic process, such as deterministic annealing, which may

fail.

Most graph-based transduction algorithms avoid this enumeration problem be-

cause their labeling process is not required to comply with a parameterized deci-

sion rule. This clear computational advantage has however its counterpart: label

propagation is performed via a user-defined similarity measure. The selection of

a discriminant similarity measure is thus left to the user, or to an outer loop, in

which case the overall optimization process is not convex anymore. The experimen-

tal section below illustrates that the choice of discriminant similarity measures is

difficult in high dimensional spaces, and when a priori similar patterns should be

discriminated.

9.5 Experiments

9.5.1 Artificial Data

In this section, we chose a simple experimental setup in order to avoid artifacts

stemming from optimization problems. This setting enables to check to what

extent supervised learning can be improved by unlabeled examples, and when

minimum entropy can compete with generative methods which are traditionally

advocated in this framework. The minimum entropy criterion is applied to the

4. That is, the margin on an unlabeled example is defined as the absolute value of the
margin on a labeled example at the same location.
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logistic regression model. It is compared to logistic regression fitted by maximum

likelihood (ignoring unlabeled data) and logistic regression with all labels known.

The former shows what has been gained by handling unlabeled data, and the latter

provides the “crystal ball” ultimate performance obtained by guessing correctly all

labels. All hyper-parameters (weight-decay for all logistic regression models plus

the λ parameter (9.7) for minimum entropy) are tuned by ten-fold cross-validation.

These discriminative methods are compared to generative models. Throughout

all experiments, a two-components Gaussian mixture model was fitted by the EM

algorithm (two means and one common covariance matrix estimated by maximum

likelihood on labeled and unlabeled examples [McLachlan, 1992]). The problem

of local maxima in the likelihood surface is artificially avoided by initializing

EM with the parameters of the true distribution when the latter is truly a two-

component Gaussian mixture, or with maximum likelihood parameters on the

(fully labeled) test sample when the distribution departs from the model. This

initialization advantages EM, which is guaranteed to pick, among all local maxima

of the likelihood, the one which is in the basin of attraction of the optimal

value. In particular, this initialization prevents interferences that may result from

the “pseudo-labels” given to unlabeled examples at the first E-step. The “label

switching” problem (badly labeled clusters) is prevented at this stage.

Correct joint density model In the first series of experiments, we consider two-

class problems in a 50-dimensional input space. Each class is generated with equal

probability from a normal distribution. Class 1 is normal with mean (a a . . . a)

and unit covariance matrix. Class 2 is normal with mean −(a a . . . a) and unit

covariance matrix. Parameter a tunes the Bayes error which varies from 1 % to 20

% (1 %, 2.5 %, 5 %, 10 %, 20 %). The learning sets comprise l labeled examples,

(l = 50, 100, 200) and u unlabeled examples, (u = l× (1, 3, 10, 30, 100)). Overall, 75

different setups are evaluated, and for each one, 10 different training samples are

generated. Generalization performances are estimated on a test set of size 10 000.

This first benchmark provides a comparison for the algorithms in a situation

where unlabeled data are known to convey information. Besides the favorable

initialization of the EM algorithm to the optimal parameters, the generative models

benefit from the correctness of the model: data were generated according to the

model, that is, two Gaussian subpopulations with identical covariances. The logistic

regression model is only compatible with the joint distribution, which is a weaker

fulfillment than correctness.

As there is no modeling bias, differences in error rates are only due to differences

in estimation efficiency. The overall error rates (averaged over all settings) are in

favor of minimum entropy logistic regression (14.1 ± 0.3 %). EM (15.7 ± 0.3 %)

does worse on average than logistic regression (14.9 ± 0.3 %). For reference, the

average Bayes error rate is 7.7 % and logistic regression reaches 10.4± 0.1 % when

all examples are labeled.

Figure 9.1 provides more informative summaries than these raw numbers. The

first plot represents the error rates (averaged over l) versus Bayes error rate and
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Figure 9.1 Left: test error of minimum entropy logistic regression (◦) and mixture
models (+) vs. Bayes error rate for u/l = 10. The errors of logistic regression (dashed),
and logistic regression with all labels known (dash-dotted) are shown for reference. right:
relative improvement to logistic regression vs. Bayes error rate.

the u/l ratio. The second plot represents the same performances on a common

scale along the abscissa, by showing the relative improvement of using unlabeled

examples when compared to logistic regression ignoring unlabeled examples. The

relative improvement is defined here as the ratio of the gap between test error and

Bayes error for the considered method to the same gap for logistic regression. This

plot shows that, as asymptotic theory suggests [O’Neill, 1978, Castelli and Cover,

1996], unlabeled examples are more beneficial when the Bayes error is low. This

observation supports the relevance of the minimum entropy assumption.

Figure 9.2 illustrates the consequence of the demanding parametrization of gen-

erative models. Mixture models are outperformed by the simple logistic regression

model when the sample size is low, since their number of parameters grows quadrat-

ically (vs. linearly) with the number of input features. This graph also shows that

the minimum entropy model takes quickly advantage of unlabeled data when classes

are well separated. With u = 3l, the model considerably improves upon the one

discarding unlabeled data. At this stage, the generative models do not perform well,

as the number of available examples is low compared to the number of parameters

in the model. However, for very large sample sizes, with 100 times more unlabeled

examples than labeled examples, the generative method eventually becomes more

accurate than the discriminative one.

These results are reminiscent of those of Efron [1975], in the respect that the

generative method is asymptotically slighly more efficient than the discriminative

one, mainly because logistic regression makes little use of examples far from the

decision surface. In the same respect, our observations differ from the comparison

of Ng and Jordan [2001], which shows that naive Bayes can be competitive in terms

of test error for small training sample sizes. This may be explained by the more

general generative model used here, which does not assume feature independance.



9.5 Experiments 41

  1   3  10  30 100
5

10

15

Ratio u/l

T
es

t E
rr

or
 (

%
)

Figure 9.2 Test error vs. u/l ratio for 5 % Bayes error (a = 0.23). Test errors of
minimum entropy logistic regression (◦) and mixture models (+). The errors of logistic
regression (dashed), and logistic regression with all labels known (dash-dotted) are shown
for reference.

Misspecified joint density model In a second series of experiments, the

setup is slightly modified by letting the class-conditional densities be corrupted by

outliers. For each class, the examples are generated from a mixture of two Gaussians

centered on the same mean: a unit variance component gathers 98 % of examples,

while the remaining 2 % are generated from a large variance component, where

each variable has a standard deviation of 10. The mixture model used by EM is

now slightly misspecified since the whole distribution is still modeled by a simple

two-components Gaussian mixture. The results, displayed in the left-hand-side of

Figure 9.3, should be compared with Figure 9.2. The generative model dramatically

suffers from the misspecification and behaves worse than logistic regression for all

sample sizes. The unlabeled examples have first a beneficial effect on test error, then

have a detrimental effect when they overwhelm the number of labeled examples.

On the other hand, the discriminative models behave smoothly as in the previous

case, and the minimum entropy criterion performance steadily improves with the

addition of unlabeled examples.

The last series of experiments illustrate the robustness with respect to the cluster

assumption, by which the decision boundary should be placed in low density regions.

The samples are drawn from a distribution such that unlabeled data do not convey

information, and where a low density p(x) does not indicate class separation.

This distribution is modeled by two Gaussian clusters, like in the first series of

experiment, but labeling is now independent from clustering: example xi belongs

to class 1 if xi2 > xi1 and belongs to class 2 otherwise: the Bayes decision boundary

now separates each cluster in its middle. The mixture model is unchanged. It is now

far from the model used to generate data. The right-hand-side plot of Figure 9.3

shows that the favorable initialization of EM does not prevent the model to be fooled

by unlabeled data: its test error steadily increases with the amount of unlabeled

data. Conversely, the discriminative models behave well, and the minimum entropy
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Figure 9.3 Test error vs. u/l ratio for a = 0.23. Average test errors for minimum entropy
logistic regression (◦) and mixture models (+). The test error rates of logistic regression
(dotted), and logistic regression with all labels known (dash-dotted) are shown for ref-
erence. Left: experiment with outliers; right: experiment with uninformative unlabeled
data.

Table 9.1 Error rates (%) of minimum entropy (ME) vs. consistency method (CM), for
a = 0.23, l = 50, and a) pure Gaussian clusters b) Gaussian clusters corrupted by outliers
c) class boundary separating one Gaussian cluster

nu 50 150 500 1500

a) ME 10.8± 1.5 9.8± 1.9 8.8± 2.0 8.3± 2.6

a) CM 21.4± 7.2 25.5± 8.1 29.6± 9.0 26.8± 7.2

b) ME 8.5± 0.9 8.3± 1.5 7.5± 1.5 6.6± 1.5

b) CM 22.0± 6.7 25.6± 7.4 29.8± 9.7 27.7± 6.8

c) ME 8.7± 0.8 8.3± 1.1 7.2± 1.0 7.2± 1.7

c) CM 51.6± 7.9 50.5± 4.0 49.3± 2.6 50.2± 2.2

algorithm is not distracted by the two clusters; its performance is nearly identical

to the one of training with labeled data only (cross-validation provides λ values

close to zero), which can be regarded as the ultimate achievable performance in

this situation.

Comparison with manifold transduction Although this chapter focuses on

inductive classification, we also provide comparisons with a transduction algorithm

relying on the manifold assumption. The consistency method [Zhou et al., 2004]

is a very simple label propagation algorithm with only two tuning parameters. As

suggested by Zhou et al. [2004], we set α = 0.99 and the scale parameter σ2 was

optimized on test results. The results are reported in Table 9.1. The experiments

are limited due to the memory requirements of the consistency method in our naive

implementation.
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Anger Fear Disgust Joy Sadness Surprise Neutral

Figure 9.4 Examples from the facial expression recognition database.

The results are extremely poor for the consistency method, whose error is way

above minimum entropy, and which does not show any sign of improvement as the

sample of unlabeled data grows. In particular, when classes do not correspond to

clusters, the consistency method performs random class assignments.

In fact, the experimental setup, which was designed for the comparison of global

classifiers, is not favorable to manifold methods, since the input data are truly

50-dimensional. In this situation, finding a discriminant similarity measure may

require numerous degrees of freedom, and the consistency method provides only

one tuning parameter: the scale parameter σ2. Hence, these results illustrate that

manifold learning requires more tuning efforts for truly high dimensional data, and

some recent techniques may respond to this need [Sindhwani et al., 2005].

9.5.2 Facial Expression Recognition

We now consider an image recognition problem, consisting in recognizing seven

(balanced) classes corresponding to the universal emotions (anger, fear, disgust, joy,

sadness, surprise and neutral). The patterns are gray level images of frontal faces,

with standardized positions, as displayed in figure 9.4. The data set comprises 375

such pictures made of 140× 100 pixels [Abboud et al., 2003, Kanade et al., 2000]

We tested kernelized logistic regression (Gaussian kernel), its minimum entropy

version, nearest neigbor and the consistency method. We repeatedly (10 times)

sampled 1/10 of the data set for providing the labeled part, and the remainder for

testing. Although (α, σ2) were chosen to minimize the test error, the consistency

method performed poorly with 63.8± 1.3 % test error (compared to 86 % error for

random assignments). Nearest-neighbor get similar results with 63.1 ± 1.3 % test

error, and Kernelized logistic regression (ignoring unlabeled examples) improved

to reach 53.6 ± 1.3 %. Minimum entropy kernelized logistic regression regression

achieves 52.0 ± 1.9 % error (compared to about 20 % errors for human on this

database). The scale parameter chosen for kernelized logistic regression (by ten-

fold cross-validation) amount to use a global classifier.

The failure of local methods may be explained by the fact that the database

contains several pictures of each person, with different facial expressions. Hence,

local methods are likely to pick the same identity instead of the same expression,

while global methods are able to learn the discriminating directions.
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9.6 Conclusion

Although discriminative methods do not benefit from unlabeled data in the maxi-

mum likelihoood framework, maximum a posteriori estimation enables to address

the semi-supervised induction problem. The information content of unlabeled data

decreases with class overlap, which can be measured by the conditional entropy

of labels given patterns. Hence, the minimum entropy prior encodes a premise of

semi-supervised induction, that is, the belief that unlabeled data may be useful.

The postulate is optimistic in some problems where unlabeled data do not convey

information regarding labels, but the strength of the prior is controlled by a tun-

ing parameter, so that the contribution of unlabeled examples to the estimate may

vanish.

Minimum entropy regularization is related to self-training in general and to

transductive SVMs in particular. It promotes classifiers with high confidence on

the unlabeled examples. A deterministic annealing process smoothly drives the

decision boundary away from unlabeled examples, favoring low density separation.

The regularizer can be applied to local and global model of posterior probabilities.

As a result, it can improve over local models when they suffer from the curse of

dimensionality. Minimum entropy regularization may also be a serious contender

to generative methods. It compares favorably to these mixture models in three

situations: for small sample sizes, where the generative model cannot completely

benefit from the knowledge of the correct joint model; when the joint distribution

is (even slightly) misspecified; when the unlabeled examples turn out to be non-

informative regarding class probabilities.

Finally, the algorithms presented in this chapter can be applied to a generalized

version of the semi-supervised induction problem, where the examples may be

labeled by any subset of labels, representing the set of plausible classes. This kind of

information is sometimes a more faithful description of the true state of knowledge

when labeling is performed by an expert.

9.7 Proof of theorem 9.1

Theorem 9.1 Consider the two-class linear classification problem with lin-

early separable labeled examples, where the classifier is obtained by optimizing

P (1|x; (w, b)) = 1/(1 + e−(w>x+b)) with the semi-supervised minimum entropy cri-

terion (9.7), under the constraint that ||w|| ≤ B. The margin of that linear classifier

converges towards the maximum possible margin among all such linear classifiers,

as the bound B goes to infinity.

Proof.

Consider the logistic regression model P (1|x; θ) parameterized by θ = (w, b). Let

zi ∈ {−1,+1} be a binary variable defined as follows: if xi is a positive labeled

example, zi = +1; if xi is a negative labeled example, zi = −1; if xi is an unlabeled
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example, zi = sign(P (1|x; θ) − 1/2). The margin for the ith labeled or unlabeled

example is defined as mi(θ) = zi(w
>xi + b).

The criterion C (9.7) can be written as a function of mi = mi(θ) as follows:

C(θ) = −
l∑

i=1

ln(1 + e−mi)− λ

n∑

i=l+1

(

ln(1 + e−mi) +
mie

−mi

1 + e−mi

)

, (9.11)

where the indices [1, l] and [l + 1, n] correspond to labeled and unlabeled data,

respectively.

On the one hand, for all θ such that there exists an example with non-negative

margin, the cost (9.11) is trivially upper-bounded by − ln(2) if the example is

labeled and −λ ln(2) otherwise. On the other hand, by the linear separability

assumption, there exists θ = (w, b) with, say, ||w|| = 1 such that mi > 0. Consider

now the cost obtained with the admissible solution Bθ as B → +∞. In this limit,

since mi(Bθ) = Bmi(θ), all the terms of the finite sum (9.11) converge to zero, so

that the value of the cost converges to its maximum value (limB→+∞ C(Bθ) = 0).

Hence, in the limit of B → +∞ all margins of the maximizer of C are positive.

We now show that the maximizer of C achieves the largest minimal margin. The

cost (9.11) is simplified by using the following equivalence relations when B → +∞:

ln(1 + e−Bmi) ∼ e−Bmi

Bmie
−Bmi

1 + e−Bmi
∼ Bmie

−Bmi ,

which yields

C(Bθ) = −
l∑

i=1

e−Bmi + o(e−Bmi)− λ

n∑

i=l+1

Bmie
−Bmi + o(Bmie

−Bmi) .

Let us write m∗ > 0 the minimum margin among the labeled examples and

m∗ > 0 the minimum margin among the unlabeled examples, N ∗ the number of

minimum margin labeled examples (with mi = m∗) and N∗ the number of minimum

margin unlabeled examples (with mi = m∗). As e−Bmi = o(e−Bm∗

) when mi > m∗,
we obtain

C(Bθ) = −N∗e−Bm∗

+ o(e−Bm∗

)− λN∗Bm∗e
−Bm∗ + o(Bm∗e

−Bm∗) .

Now we note that if m∗ < m∗, then Bm∗e−Bm∗ = o(e−Bm∗

), and that if m∗ ≥ m∗
then e−Bm∗

= o(Bm∗e−Bm∗

). Hence, depending on whether m∗ < m∗ or m∗ ≥ m∗
we either obtain

C(Bθ) = −N∗e−Bm∗

+ o(e−Bm∗

) (9.12)

or

C(Bθ) = −λN∗Bm∗e
−Bm∗ + o(Bm∗e

−Bm∗

) . (9.13)
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Now, consider two different values of θ, θ1 and θ2, giving rise to minimum margins

M1 and M2 respectively, with M1 > M2. The solution Bθ1 will be prefered to Bθ2

if C(Bθ1)/C(Bθ2) < 1. From (9.12) and (9.13), we see that it does not matter

whether Mi is among the labels or the unlabeled, but only whether M1 > M2 or

M2 > M1. In all cases C(Bθ1)/C(Bθ2)→ 0 when M1 > M2. This allows to conclude

that as B →∞, the global maximum of C(Bθ) over θ tends to a maximum margin

solution, where the minimum margin M (over both labeled and unlabeled examples)

is maximized.



References

B. Abboud, F. Davoine, and M. Dang. Expressive face recognition and synthesis. In Computer
Vision and Pattern Recognition Workshop, volume 5, page 54, 2003.

Y. S. Abu-Mostafa. Machines that learn from hints. Scientific American, 272(4):64–69, 1995.

A. K. Agrawala. Learning with a probabilistic teacher. IEEE Transactions on Information Theory,
16:373–379, 1970.

S. Amari and S. Wu. Improving support vector machine classifiers by modifying kernel functions.
Neural Networks, 12(6):783–789, 1999.

M. Amini and P. Gallinari. Semi-supervised logistic regression. In ECAI, 2002.

M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised learning on large
graphs. In COLT, 2004.

M. Belkin and P. Niyogi. Using manifold structure for partially labeled classification. In S. Becker,
S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15,
Cambridge, MA, 2003. MIT Press.

R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press, New Jersey,
1961.

Y. Bengio, O. Delalleau, and N. Le Roux. The curse of dimensionality for local kernel machines.
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