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Abstract

Most machine learning researchers perform quantitative experiments to estimate generalization
error and compare the performance of different algorithms (in particular, their proposed algorithm).
In order to be able to draw statistically convincing conclusions, it is important to estimate the
uncertainty of such estimates. This paper studies the very commonly used K-fold cross-validation
estimator of generalization performance. The main theorem shows that there exists no universal
(valid under all distributions) unbiased estimator of the variance of K-fold cross-validation. The
analysis that accompanies this result is based on the eigen-decomposition of the covariance matrix
of errors, which has only three different eigenvalues corresponding to three degrees of freedom of
the matrix and three components of the total variance. This analysis helps to better understand the
nature of the problem and how it can make naive estimators (that don’t take into account the error
correlations due to the overlap between training and test sets) grossly underestimate variance. This
is confirmed by numerical experiments in which the three components of the variance are compared
when the difficulty of the learning problem and the number of folds are varied.

Keywords: cross-validation, variance estimators, k-fold cross-validation, statistical comparisons
of algorithms

1. Introduction

In machine learning, the standard measure of accuracy for trained models is the prediction error
(PE), i.e. the expected loss on future examples. Learning algorithms themselves are often com-
pared according to their average performance, which is formally defined as the expected value of
prediction error (EPE) over training sets.

When the data distribution is unknown, PE and EPE cannot be computed. If the amount of
data is large enough, PE can be estimated by the mean error over a hold-out test set. The usual
variance estimates for means of independent samples can then be computed to derive error bars
on the estimated prediction error, and to assess the statistical significance of differences between
models.

The hold-out technique does not account for the variance with respect to the training set, and
may thus be considered inappropriate for the purpose of algorithm comparison (Dietterich, 1999).
Moreover, it makes an inefficient use of data which forbids its application to small sample sizes. In
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this situation, one rather uses computer intensive resampling methods such as cross-validation or
bootstrap to estimate PE or EPE.

We focus here on K-fold cross-validation. While it is known that cross-validation provides an
unbiased estimate of EPE, it is also known that its variance may be very large (Breiman, 1996). This
variance should be estimated to provide faithful confidence intervals on PE or EPE, and to test the
significance of observed differences between algorithms. This paper provides theoretical arguments
showing the difficulty of this estimation.

The difficulties of the variance estimation have already been addressed (Dietterich, 1999; Ko-
havi, 1995; Nadeau and Bengio, 2003). Some distribution-free bounds on the deviations of cross-
validation are available, but they are specific to some locally defined decision rules, such as nearest
neighbors (Devroye et al., 1996). This paper builds upon the work of Nadeau and Bengio (2003),
which investigated in detail the theoretical and practical merits of several estimators of the variance
of cross-validation. Our analysis departs from this work in the sampling procedure defining the
cross-validation estimate. While Nadeau and Bengio (2003) consider K independent training and
test splits, we focus on the standard K-fold cross-validation procedure, where there is no overlap
between test sets: each example of the original data set is used once and only once as a test example.

This paper is organized as follows. Section 2 defines the measures of performance for algo-
rithms, their estimation by K-fold cross-validation and similar procedures such as delete-m jack-
knife. Our theoretical findings are summarized in Sections 3–6. They are followed in Section 7 by
experiments illustrating the effect of experimental conditions on the total variance and its decom-
position in three components, and confirming the underestimation of variance obtained by the naive
estimator commonly used by researchers.

2. General Framework

In machine learning, the performance measure differs according to the experimenter’s viewpoint. In
applications, we are interested in finding the best algorithm for solving the particular task at hand,
specified by one particular training set and some information about the data generating process. In
algorithm evaluation, we want to compare several learning algorithms for different learning tasks,
and we care about the sensitivity of the learning algorithm to the choice of training examples.

2.1 Measures of Performance

Formally, we have a training set D = {z1, . . . ,zn}, with zi ∈ Z, independently sampled from an
unknown distribution P. We also have a learning algorithm A, which maps a data set of (almost)
arbitrary size to a function A : Z∗ → F . Throughout this paper, we consider symmetric algorithms,
i.e. A is insensitive to the ordering of examples in the training set D. The discrepancy between the
prediction and the observation z is measured by a loss functional L : F ×Z → R. Typically, L is
the quadratic loss in regression (L( f ,(x,y)) = ( f (x)− y)2) and the misclassification {0,1}-loss in
classification ((L( f ,(x,y)) = 1 f (x)�=y).

Let f = A(D) be the function returned by algorithm A on the training set D. In application based
evaluation, the goal of learning is usually stated as the minimization of the prediction error, i.e. the
expected loss on future test examples

PE(D) = E[L( f ,z)], (1)
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where the expectation is taken with respect to z sampled from P.1

In algorithm based evaluation, we are not really interested in performances on a specific training
set; we would like comparisons on a more general basis. In this context, the lowest level of gen-
erality can be stated as “training sets of size n sampled from P”, and the performance of learning
algorithm A can be measured by the expected performance of the functions returned in this situation

EPE(n) = E[L(A(D),z)], (2)

where the expectation is taken with respect to D sampled from Pn and z independently sampled
from P.

Note that other types of performances measure can be proposed, based for example on parame-
ters, or defined by the predictability in other frameworks, such as the prequential analysis (Dawid,
1997).

When the data distribution is unknown, PE and EPE cannot be computed. They have to be
estimated, and it is often crucial to assess the uncertainty attached to this estimation:

• in application-oriented experiments, to give a confidence interval on PE;

• in algorithm-oriented experiments, to take into account the stability of a given algorithm.
For comparisons between algorithms, it is essential to assess the statistical significance of
observed differences in the estimate ÊPE.

Although this point is often overlooked, estimating the variance of the estimates P̂E and ÊPE re-
quires caution.

2.2 Hold-Out Estimates of Performance

If the amount of data is large enough, PE can be estimated by the mean error over a hold-out test set,
and the usual variance estimate for means of independent variables can then be computed. However,
even in the ideal situation where several independent training and test sets would be available, this
estimate should not be applied to compute the variance of ÊPE: even though training and test
examples are independent, the test errors are correlated, since many test errors are computed for
each training set, now considered as a random variable.

Figure 1 illustrates how crucial it is to take these correlations into account. The mean of two
variance estimators is reported vs. the empirical variance of the hold-out estimate, in an ideal situ-
ation where 10 independent training and test sets are available. The variance of ÊPE(n) (estimated
on 100,000 independent experiments) is displayed for reference by the dotted line. The average of
θ̂1, the variance estimator ignoring correlations, shows that this estimate is highly biased, even for
large sample sizes, whereas the variance estimator θ̂2, taking into account correlations, is unbiased.
The details of this experiment are given below.

Experiment 1 Ideal hold-out estimate of EPE.
We have K = 10 independent training sets D1, . . . ,DK of n independent examples zi = (xi,yi),

where xi = (xi1, . . . ,xid)′ is a d-dimensional centered, unit covariance Gaussian variable (d = 30),

1. Note that we are using the same notation for random variables and their realization. The intended meaning will be
specified when not clear from the context.
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Figure 1: Estimates of the variance of ÊPE(n) vs. empirical variance of ÊPE(n) (shown by bold
curve) on 100,000 experiments. The average of the variance estimators θ̂1 (ignoring
correlations, dashed curve) and θ̂2 (taking into account correlations, dotted curve) are
displayed for different training sample size n.

yi =
√

3/d∑d
k=1 xik +εi with εi being independent, centered, unit variance Gaussian variables.2 We

also have K independent test sets T1, . . . ,TK of size n sampled from the same distribution.
The learning algorithm consists in fitting a line by ordinary least squares, and the estimate of

EPE is the average quadratic loss on test examples ÊPE = L̄ = 1
K ∑K

k=1
1
n ∑zi∈Tk

Lki, where Lki =
L(A(Dk),zi).

The first estimate of variance of ÊPE is θ̂1 = 1
Kn(Kn−1) ∑

K
k=1∑i(Lki − L̄)2, which is un-

biased provided there is no correlation between test errors. The second estimate is θ̂2 =
1

K(K−1)n2 ∑
K
k=1∑i, j(Lki − L̄)(Lk j − L̄), which takes into account correlations between test errors.

Looking at Figure 1 suggests that asymptotically the naive estimator of variance converges to
the true variance. This can be shown formally by taking advantage of the results in this paper,
as long as the learning algorithm converges as the amount of training data goes to infinity (i.e. as
n→∞ the function A(D) obtained does not depend on the particular training set D). In that limit, the
correlations between test errors converge to 0. The rate of convergence will depend on the stability
of the learning algorithm as well as on the nature of the data distribution (e.g., the presence of thick
tails and outliers will slow down convergence).

The hold-out technique makes an inefficient use of data which forbids its application in most
real-life applications with small samples. Then, K-fold cross-validation can provide estimates of PE
or EPE.

2.3 K-Fold Cross-Validation Estimates of Performance

Cross-validation is a computer intensive technique, using all available examples as training and test
examples. It mimics the use of training and test sets by repeatedly training the algorithm K times
with a fraction 1/K of training examples left out for testing purposes. This kind of hold-out estimate
of performance lacks computational efficiency due to the repeated training, but the latter are meant
to lower the variance of the estimate (Stone, 1974).

2. The
√

3/d factor provides an R2 of approximately 3/4.

1092



VARIANCE OF K-FOLD CROSS-VALIDATION

In practice, the data set D is first chunked into K disjoint subsets (or blocks) of the same size3

m
∆= n/K. Let us write Tk for the k-th such block, and Dk the training set obtained by removing the

elements in Tk from D. The cross-validation estimator is defined as the average of the errors on test
block Tk obtained when the training set is deprived from Tk:

CV(D) =
1
K

K

∑
k=1

1
m ∑

zi∈Tk

L(A(Dk),zi). (3)

Does CV estimate PE or EPE? Such a question may seem pointless considering that PE(D) is
an estimate of EPE(n), but it becomes relevant when considering the variance of CV: does it inform
us of the uncertainty about PE or EPE?

On the one hand, only one training set, D, enters the definition of CV, which can be, up to an
approximation, an unbiased estimate of PE(D) (Hastie and Tibshirani, 1990).4 Some distribution-
free bounds on the expected deviations of |CV(D)−PE(D)| are available for leave-one-out cross-
validation applied to specific algorithms A such as nearest neighbors (Devroye et al., 1996). In
a more general context, it has also been proved that, under suitable stability assumptions on the
algorithm A, CV(D) estimates PE(D) at least as accurately as the training error (Kearns and Ron,
1996; Anthony and Holden, 1998). A more appealing result states that CV is a more accurate
estimate of PE than hold-out testing (Blum et al., 1999). However, this statement does not apply
to PE(D), but to the prediction error of a randomized algorithm picking solutions uniformly within
{A(Dk)}K

k=1.
On the other hand, CV is explicitly defined from the learning algorithm A, and not from the

function f = A(D). The inner average in the definition of CV (3) is an average test loss for A(Dk)
which thus estimates unbiasedly PE(Dk). The training sets D1, . . . ,DK are clearly not independent,
but they are sampled from Pn−m. Hence, the outer average of (3) estimates unbiasedly EPE(n−m).5

Here, following Dietterich (1999) and Nadeau and Bengio (2003), we will adopt this latter point of
view.

The variance estimate of ÊPE provided by the hold-out estimate has to account for test error
dependencies due to the choice of training set, which cannot be estimated using a single training/test
experiment. Here, the situation is more complex, since there are additional dependencies due to the
overlapping training sets D1, . . . ,DK . Before describing this situation in detail and summarizing
the results of our theoretical analysis in Sections 3–6, we detail some procedures similar to K-fold
cross-validation, for which the forthcoming analysis will also hold.

2.4 Other Estimates of the K-Fold Cross-Validation Type

One of the main use of variance estimates of ÊPE is to compare learning algorithms. The analysis
presented in this paper also applies to the version of cross-validation dedicated to this purpose: if
we want to compare the performances of algorithms A1 and A2, cross-validation with matched pairs

3. To simplify the analysis below we assume that n is a multiple of K.
4. More precisely, following Hastie and Tibshirani (1990), when L is the quadratic loss, and writing f = A(D), f−k =

A(Dk), assuming that for (xi,yi) = zi ∈ Tk, 1
K ∑K

k=1 f−k(xi) ≈ f (xi) (which is weaker than f−k ≈ f ) yields E[CV] ≈
E[ 1

n ∑
n
i=1( f (xi)− yi)2], where the expectation is taken with respect to y1, . . . ,yn.

5. Note that leave-one-out cross-validation is known to fail to estimate EPE for unsmooth statistics (e.g. Breiman, 1996;
Efron and Tibshirani, 1993). This failure is due to the similarity of the training sets D1, . . . ,DK which are far from
being representative samples drawn from Pn−m.
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should be the method of choice

∆CV(D) =
1
K

K

∑
k=1

1
m ∑

zi∈Tk

L(A1(Dk),zi)−L(A2(Dk),zi). (4)

Compared to the difference of two independent cross-validation estimates, ∆CV avoids the addi-
tional variability due to train/test splits.

In application oriented experiments, we would like to estimate PE(D), the expected error when
training with the given D. We have seen in Section 2.3 that under stability assumptions, CV can be
used to estimate PE. Alternatively, we may resort to the jackknife or the delete-m jackknife (see e.g.
Efron and Tibshirani (1993)) to estimate the optimism (i.e. the bias of the mean error on training
examples, when the latter is used to estimate PE(D)). Ideally, the estimate of optimism should be
an average over all subsets of size n−m, but a less computationally intensive alternative is

(K−1)

(
1

K(n−m)

K

∑
k=1

∑
zi∈Dk

L(A(Dk),zi)− 1
n

n

∑
i=1

L(A(D),zi)

)
. (5)

The link with cross-validation is exhibited more clearly by the following expression of the (de-
biased) jackknife estimate of PE

JK = CV+
1
n

K

∑
k=1

n

∑
i=1

(L(A(D),zi)−L(A(Dk),zi)) . (6)

For additional information about jackknife estimates and clues on the derivation of (5) and (6), the
reader is referred to Efron and Tibshirani (1993).

2.5 Generic Notations

This paper studies the variance of statistics such as CV, ∆CV or JK. In what follows, these statistics
will be denoted by µ̂, a generic notation for means of observations ei split in K groups.

µ̂ =
1
n

n

∑
i=1

ei

=
1
K

K

∑
k=1

1
m ∑

i∈Tk

ei,

where, slightly abusing notation, i ∈ Tk means zi ∈ Tk and

∀i ∈ Tk, ei =


L(A(Dk),zi) for µ̂ = CV,
L(A1(Dk),zi)−L(A2(Dk),zi) for µ̂ = ∆CV,
KL(A(D),zi)−∑��=k L(A(D�),zi) for µ̂ = JK.

Note that µ̂ is the average of identically distributed (dependent) variables. Thus, it asymptoti-
cally converges to a normally distributed variable, which is completely characterized by its expec-
tation E[µ̂] and its variance Var[µ̂] = E[µ̂2]−E[µ̂]2.

1094



VARIANCE OF K-FOLD CROSS-VALIDATION

3. Structure of the Covariance Matrix

The variance of µ̂ is defined as follows

θ =
1
n2 ∑

i, j

Cov(ei,e j),

where Cov(ei,e j) = E[eie j]−E[ei]E[e j] is the covariance between variables ei and e j.
By using symmetry arguments over permutations of the examples in D, we show that many

distributions on ei and pairwise joint distributions on (ei,e j) are identical. As a result, the covariance
matrix Σ has a very particular block structure, with only three possible values for Σi j = Cov(ei,e j),
and the expression of θ is thus a linear combination of these three values.

Lemma 1 Using the notation introduced in section 2.5,

1. all ei are identically distributed:

there exists f such that, ∀i, P(ei = u) = f (u).

2. all pairs (ei,e j) belonging to the same test block are jointly identically distributed:

there exists g such that, ∀(i, j) ∈ T 2
k : j �= i, P(ei = u,e j = v) = g(u,v).

3. all pairs (ei,e j) belonging to different test blocks are jointly identically distributed:

there exists h such that, ∀i ∈ Tk, ∀ j ∈ T� : � �= k, P(ei = u,e j = v) = h(u,v).

Proof
These results are derived immediately from the permutation-invariance of P(D) and the symmetry
of A.

• invariance with respect to permutations within test blocks:

1. ∀(i, i′) ∈ T 2
k , P(ei = u) = P(ei′ = u) = fk(u);

∀(i, i′) ∈ T 2
k , ∀ j ∈ T�:

P(ei = u,e j = v) = P(ei′ = u,e j = v)
hence:

2. ∀(i, j) ∈ T 2
k : j �= i, P(ei = u,e j = v) = gk(u,v).

3. ∀i ∈ Tk, ∀ j ∈ T� : � �= k, P(ei = u,e j = v) = hk�(u,v).

• invariance with respect to permutations between test blocks.

1. ∀(k,k′), fk(u) = fk′(u) = f (u);

2. ∀(k,k′), gk(u,v) = gk′(u,v) = g(u,v);

3. ∀(k,k′), ∀(�,�′) : � �= k, � �= k′, �′ �= k, �′ �= k′, hk�(u,v) = hk�′(u,v) = hk′�′(u,v) =
hk′�(u,v) = h(u,v).

Q.E.D.
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Corollary 2 The covariance matrix Σ of cross-validation errors e = (e1, . . . ,en)′ has the simple
block structure depicted in Figure 2:

1. all diagonal elements are identical

∀i, Cov(ei,ei) = Var[ei] = σ2;

2. all the off-diagonal entries of the K m×m diagonal blocks are identical

∀(i, j) ∈ T 2
k : j �= i, Cov(ei,e j) = ω;

3. all the remaining entries are identical

∀i ∈ Tk, ∀ j ∈ T� : � �= k, Cov(ei,e j) = γ.
n︷ ︸︸ ︷

︸ ︷︷ ︸
m

Figure 2: Structure of the covariance matrix.

Corollary 3 The variance of the cross-validation estimator is a linear combination of three mo-
ments:

θ =
1
n2 ∑

i, j

Cov(ei,e j)

=
1
n
σ2 +

m−1
n

ω+
n−m

n
γ (7)

Hence, the problem of estimating θ does not involve estimating n(n + 1)/2 covariances, but it
cannot be reduced to that of estimating a single variance parameter. Three components intervene,
which may be interpreted as follows when µ̂ is the K-fold cross-validation estimate of EPE:

1. The variance σ2 is the average (taken over training sets) variance of errors for “true” test
examples when algorithm A is fed with training sets of size m(K−1).

2. The within-block covariance ω would also apply to “true” test examples; it arises from the
dependence of test errors stemming from the common training set.

3. The between-blocks covariance γ is due to the dependence of training sets (which share n(K−
2)/K examples) and the fact that test block Tk appears in all the training sets D� for � �= k.

The forthcoming section makes use of this structure to show that there is no universal unbiased
estimator of θ.

1096



VARIANCE OF K-FOLD CROSS-VALIDATION

4. No Unbiased Estimator of Var[µ̂] Exists

Consider a generic estimator θ̂ that depends on the sequence of cross-validation errors e =
(e1,e2, . . . ,en)′. Let us assume that θ̂ is an analytic function of the errors, so that we can write
its Taylor expansion

θ̂ = α0 +∑
i

α1(i)ei +∑
i, j

α2(i, j)eie j +∑
i, j,k

α3(i, j,k)eie jek + . . . . (8)

We first show that for unbiased variance estimates (i.e. E[θ̂] = Var[µ̂]), all the αi coefficients must
vanish except for the second order coefficients α2,i, j.

Lemma 4 There is no universal unbiased estimator of Var[µ̂] that involves the ei in a non-quadratic
way.
Proof
Take the expected value of θ̂ expressed as in (8), and equate it with Var[µ̂] (7): E[θ̂] =α0 +∑

i

α1(i)E[ei]+∑
i, j

α2(i, j)E[eie j]+∑
i, j,k

α3(i, j,k)E[eie jek]+ . . .

θ = 1
nσ

2 + m−1
n ω+ n−m

n γ.

For having E[θ̂] = θ for all possible values of the moments of e, one must have α0 = 0 because θ
has no such constant term, not depending on any of the moments of e. Similarly, α1(·) must be zero
because θ has no term in E[ei] = µ. Finally, the third and higher order coefficients α�(. . .), � > 2
must also be zero because θ has only quantities depending on the second order moments σ2, ω and
γ.

Q.E.D.

Since estimators that include moments other than the second moments in their expectation are
biased, we now focus on the class of estimators which are quadratic forms of the errors, i.e.

θ̂ = e′We =∑
i, j

Wi jeie j. (9)

Lemma 5 The expectation of quadratic estimators θ̂ defined as in (9) is a linear combination of
only three terms

E[θ̂] = a(σ2 +µ2)+b(ω+µ2)+ c(γ+µ2), (10)

where (a,b,c) are defined as follows:
a

∆= ∑n
i=1Wii,

b
∆= ∑K

k=1∑i∈Tk ∑ j∈Tk: j �=iWi j,

c
∆= ∑K

k=1∑��=k∑i∈Tk ∑ j∈T�
Wi j.

A “trivial” representer of estimators with this expected value is

θ̂ = as1 +bs2 + cs3, (11)
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where (s1,s2,s3) are the only quadratic statistics of e that are invariants to the within blocks and
between blocks permutations described in Lemma 1:

s1
∆=

1
n

n

∑
i=1

e2
i ,

s2
∆=

1
n(m−1)

K

∑
k=1

∑
i∈Tk

∑
j∈Tk: j �=i

eie j,

s3
∆=

1
n(n−m)

K

∑
k=1

∑
��=k

∑
i∈Tk

∑
j∈T�

eie j.

(12)

Proof
This result is obtained exploiting Corollary 2 and grouping the terms of θ̂ in Equation (9) that have
the same expected values.

E[θ̂] =
K

∑
k=1

∑
i∈Tk

(
WiiE[e2

i ]+ ∑
j∈Tk: j �=i

Wi jE[eie j]+∑
��=k

∑
j∈T�

Wi jE[eie j]

)

= (σ2 +µ2)
n

∑
i=1

Wii +(ω+µ2)
K

∑
k=1

∑
i∈Tk

∑
j∈Tk: j �=i

Wi j +

(γ+µ2)
K

∑
k=1

∑
��=k

∑
i∈Tk

∑
j∈T�

Wi j

= a(σ2 +µ2)+b(ω+µ2)+ c(γ+µ2)
= aE[s1]+bE[s2]+ cE[s3],

which is recognized as the expectation of the estimator defined in Equation (11).

Q.E.D.

We now use Lemma 5 to prove that there is no universally unbiased estimator of Var[µ̂], i.e.
there is no estimator θ̂ such that E[θ̂] = Var[µ̂] for all possible distributions of e.

Theorem 6 There exists no universally unbiased estimator of Var[µ̂].
Proof
Because of Lemma 4 and 5, it is enough to prove the result for estimators that are quadratic forms
expressed as in Equation (11). To obtain unbiasedness, the expected value of that estimator must be
equated with Var[µ̂] (7):

a(σ2 +µ2)+b(ω+µ2)+ c(γ+µ2) =
1
n
σ2 +

m−1
n

ω+
n−m

n
γ. (13)

For this equality to be satisfied for all distributions of cross-validation errors, it must be satisfied
for all admissible values of µ, σ2, ω, and γ. This imposes the following unsatisfiable constraints on
(a,b,c): 

a = 1
n ,

b = m−1
n ,

c = n−m
n ,

a+b+ c = 0.

(14)

Q.E.D.
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5. Eigenanalysis of the Covariance Matrix

One way to gain insight on the origin of the negative statement of Theorem 6 is via the eigenanalysis
of Σ, the covariance of e. This decomposition can be performed analytically thanks to the very
particular block structure displayed in Figure 2.

Lemma 7 Let vk be the binary vector indicating the membership of each example to test block k.
The eigensystem of Σ is as follows:

• λ1 = σ2 − ω with multiplicity n − K and eigenspace defined by the orthogonal of basis
{vk}K

k=1;

• λ2 = σ2 +(m−1)ω−mγ with multiplicity K−1 and eigenspace defined in the orthogonal of
1 by the basis {vk}K

k=1;

• λ3 = σ2 +(m−1)ω+(n−m)γ with eigenvector 1.

Proof
From Corollary 2, the covariance matrix Σ = E[ee′]−E[e]E[e]′ can be decomposed as

Σ = (σ2 −ω)Σ1 +m(ω− γ)Σ2 +nγΣ3,

where Σ1 = I, Σ2 = 1
m (v1 . . .vK)(v1 . . .vK)′ and Σ3 = 1

n11′.
Σ1, Σ2 and Σ3 share the same eigenvectors, with eigenvalues being equal either to zero or one:

• the eigenvector 1 has eigenvalue 1 for Σ1, Σ2 and Σ3;

• the eigenspace defined in the orthogonal of 1 by the basis {vk}K
k=1 defines K−1 eigenvectors

with eigenvalues 1 for Σ1 and Σ2 and 0 for Σ3;

• all remaining eigenvectors have eigenvalues 1 for Σ1 and 0 for Σ2 and Σ3.

Q.E.D.

Lemma 7 states that the vector e can be decomposed into three uncorrelated parts: n−K projec-
tions to the subspace orthogonal to {vk}K

k=1, K−1 projections to the subspace spanned by {vk}K
k=1 in

the orthogonal of 1, and one projection on 1. A single vector example with n independent elements
can be seen as n independent examples. Similarly, these projections of e can be equivalently repre-
sented by respectively n−K, K−1 and one uncorrelated one-dimensional examples, corresponding
to the coordinates of e in these subspaces.

In particular, for the projection on 1, with only a single one-dimensional point, the sample
variance is null, resulting in the absence of an unbiased variance estimator of λ3. The projection
of e on the eigenvector 1

n1 is precisely µ̂. Hence there is no unbiased estimate of Var[µ̂] = λ3
n when

we have only one realization of the vector e. For the same reason, even with simple parametric
assumptions on e (such as e Gaussian), the maximum likelihood estimate of θ is not defined. Only
λ1 and λ2 can be estimated unbiasedly. Note that this problem cannot be addressed by performing
multiple K-fold splits of the data set. Such a procedure would not provide independent realizations
of e.
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6. Possible Values for ω and γ

Theorem 6 states that no estimator is unbiased, and in its demonstration, it is shown that the bias of
any quadratic estimator is a linear combination of µ2, σ2, ω and γ. Regarding estimation, it is thus
interesting to see what constraints restrict the possible range of these quantities.

Lemma 8 For µ̂ = CV and µ̂ = ∆CV, the following inequalities hold:{
0 ≤ ω ≤ σ2

− 1
n−m(σ2 +(m−1)ω) ≤ γ ≤ 1

m(σ2 +(m−1)ω)

⇒
{

0 ≤ ω ≤ σ2

− m
n−mσ

2 ≤ γ ≤ σ2.

The shape of the admissible (ω,γ) region corresponding to the first set of (tighter) inequalities is
displayed in Figure 3.

K = 2

−σ2 0 σ2
ω

−σ2

0

σ2

γ

K = 5

−σ2 0 σ2
ω

−σ2

0

σ2
γ

K = 10

−σ2 0 σ2
ω

−σ2

0

σ2

γ

K = 100

−σ2 0 σ2
ω

−σ2

0

σ2

γ

Figure 3: Possible values of (ω,γ) according to σ2 for n = 200 and K = {2,5,10,100}.

Proof
The constraints on ω result from the Cauchy-Schwartz inequality which provides Cov(u,v)2 ≤
Var[u]Var[v], hence

−σ2 ≤ ω≤ σ2.

Moreover, the following reasoning shows that, for µ̂ = CV and µ̂ = ∆CV, ω is non-negative: ω is
the covariance of (differences in) test errors for training sets of size n−m and test sets of size � = m.
The variance of the average test error is given by the mean of covariances 1

� (σ
2 +(�− 1)ω). The

variance σ2 and covariance ω of test errors are not affected by �, and the variance of the average
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test error should be non-negative for any test set size �. Hence ω is bound to be non-negative.
When this type of reasoning cannot be used, as for µ̂ = JK, ω can only be proved to be greater than
−σ2/(m−1).

The constraints on γ simply rephrase that the eigenvalues λ2 and λ3 of the covariance matrix Σ
should be non-negative. The simpler (and looser) form is obtained by using ω≤ σ2.

Q.E.D.

The admissible (ω,γ) region obtained in Lemma 8 is very large. Furthermore, there is no con-
straint linking µ and σ2, the mean and variance of ei. Hence we cannot propose a variance estimate
with universally small bias.

7. Experiments

We already mentioned that the bias of any quadratic estimator is a linear combination of µ2, σ2,
ω and γ. The admissible values provided in the preceding section suggest that ω and γ cannot be
proved to be negligible compared to σ2. This section illustrates that in practice, the contribution to
the variance of µ̂ due to ω and γ (see Equation (7)) can be of same order than the one due σ2. It
therefore suggests that the estimators of θ should indeed take into account the correlations of ei.

Experiment 2 True variance of K-fold cross-validation.
We repeat the experimental setup of Experiment 1, except that now, we are in the more realistic

situation where only one sample of size n is available. Since cross-validation is known to be sensitive
to the instability of algorithms, in addition to this standard setup, we also consider another one with
outliers:

The input xi = (xi1, . . . ,xid)′ is still 30-dimensional, but it is now a mixture of two centered
Gaussian variables: let ti be a binary variable, with P(ti = 1) = p = 0.95; when ti = 1, xi ∼N (0,I);
when ti = 0, xi ∼ N (0,100I); yi =

√
3/(d(p+100(1− p)))∑d

k=1 xik + εi with εi ∼ N (0,1/(p +
100(1− p))) when ti = 1 and εi ∼ N (0,100/(p+100(1− p))) when ti = 0.

We now look at the variance of K-fold cross-validation (K = 10), and decompose in the three
orthogonal components σ2, ω and γ. The results are shown in Figure 4.

When there are no outliers, the contribution of γ is very important for small sample sizes. For
large sample sizes, the overall variance is considerably reduced and is mainly caused by σ2. In these
situations, the learning algorithm returns very similar answers for all training sets. When there are
outliers, ω has little effect, but the contribution of γ is of same order as the one of σ2, even when
the ratio of examples to free parameters is large (here up to 20). Thus, in difficult situations, where
A(D) varies according to the realization of D, neglecting the effect of ω and γ can be expected to
introduce a bias of the order of the true variance.

It is also interesting to see how these quantities are affected by the number of folds K. The
decomposition of θ in σ2, ω and γ (7) does not imply that K should be set either to n or to 2
(according to the sign of ω− γ) in order to minimize the variance of µ̂. Modifying K affects σ2, ω
and γ through the size and overlaps of the training sets D1, . . . ,DK , as illustrated in Figure 5. For
a fixed sample size, the variance of µ̂ and the contribution of σ2, ω and γ effects varies smoothly
with K.6 The experiments with and without outliers illustrate that there is no general trend either in

6. Of course, the mean of µ̂ is also affected in the process.
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no outliers outliers

Figure 4: Bar plots of the contributions to total variance Var[CV] due to σ2, ω and γ vs. the number
of training examples n−m for Experiment 2.

variance or decomposition of the variance in its σ2, ω and γ components. The minimum variance
can be reached for K = n or for an intermediate value of K.

no outliers outliers

Figure 5: Bar plots of contributions of σ2, ω and γ to θ vs. K for n = 120 for Experiment 2.

We also report an experiment illustrating that the previous observations also apply to classi-
fication on real data. The variance of K-fold cross-validation (K = 10), decomposed in the three
orthogonal components σ2, ω and γ is displayed in Figure 6.

Experiment 3 Classification with trees on the Letter data set.
The Letter data set comprises 20,000 examples described by 16 numeric features. The original

setup considers 26 categories reprensenting the letters of the roman alphabet. Here, we used a
simplified setup with 2 classes (A to M) vs. (N to Z) in order to obtain sensible results for small
sample sizes.

Accurate estimates of σ2, ω and γ require many independent training samples. This was
achieved by considering the set of 20,000 examples to be the population, from which independent
training samples were drawn by uniform sampling with replacement.

Here again, the variance of CV is mainly due to σ2 and γ. According to the number of training
examples, σ2 is only responsible for 50 to 70 % of the total variance, so that a variance estimate
based solely on σ2 has a negative bias of the order of magnitude of the variance itself.
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Figure 6: Bar plots of the contributions to total variance Var[CV] due to σ2, ω and γ vs. the number
of training examples n for Experiment 3.

8. Special Cases

This section addresses how our main result can be transposed to hold-out estimates of generalization
error. We also detail how it applies to two specific instances of the general K-fold cross-validation
scheme: two-fold and leave-one-out cross validation.

8.1 Hold-Out Estimate of EPE

When having K independent training and test sets, the structure of hold-out errors resemble the one
of cross-validation errors, except that we know (from the independence of training and test sets) that
γ = 0. This knowledge allows to build the unbiased variance estimate θ̂2 described in 2.2. This can
be seen directly in the proof of Theorem 6: knowing that γ = 0 removes the third equation in the
linear system (14). In practice, one is often restricted to K = 1 (ordinary hold-out test), which allows
to estimate the variance due to the finite test set but not due to the particular choice of training set.

8.2 Two-Fold Cross-Validation

Two-fold cross-validation has been advocated to perform hypothesis testing (Dietterich, 1999; Al-
paydin, 1999). It is a special case of K-fold cross-validation since the training blocks are mutually
independent since they do not overlap. However, this independence does not modify the structure of
e in the sense that γ is not null. The between-block correlation stems from the fact that the training
block D1 is the test block T2 and vice-versa.

8.3 Leave-One-Out Cross-Validation

Leave-one-out cross-validation is a particular case of K-fold cross-validation, where K = n. The
structure of the covariance matrix is simplified, without diagonal blocks: Σ= (σ2−γ)Σ1+nγΣ3. The
estimation difficulties however remain: even in this particular case, there is no unbiased estimate of
variance. From the definition of b (Lemma 5), we have b = 0, and with m = 1 the linear system (14)
reads 

a = 1
n ,

c = n−1
n ,

a+ c = 0,
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which still admits no solution.

9. Conclusions

It is known that K-fold cross-validation may suffer from high variability, which can be responsible
for bad choices in model selection and erratic behavior in the estimated expected prediction error.

In this paper, we show that estimating the variance of K-fold cross-validation is difficult. Esti-
mating a variance can be done from independent realizations or from dependent realizations whose
correlation is known. K-fold cross-validation produces dependent test errors. Our analysis shows
that although the correlations are structured in a very simple manner, their values cannot be esti-
mated unbiasedly. Consequently, there is no unbiased estimator of the variance of K-fold cross-
validation.

Our experimental section shows that in very simple cases, the bias incurred by ignoring the
dependencies between test errors will be of the order of the variance itself. These experiments
illustrate thus that the assessment of the significance of observed differences in cross-validation
scores should be treated with much caution. The problem being unveiled, the next step of this study
consists in building and comparing variance estimators dedicated to the very specific structure of
the test error dependencies.
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