
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 1

Beyond Skill Rating: Advanced Matchmaking in
Ghost Recon Online

Olivier Delalleau, Emile Contal, Eric Thibodeau-Laufer, Raul Chandias Ferrari, Yoshua Bengio, and Frank Zhang

Abstract—Player satisfaction is particularly difficult to ensure
in online games, due to interactions with other players. In
adversarial multiplayer games, matchmaking typically consists in
trying to match together players of similar skill level. However,
this is usually based on a single skill value, and assumes the only
factor of “fun” is the game balance. We present a more advanced
matchmaking strategy developed for Ghost Recon Online, an
upcoming team-focused First Person Shooter from Ubisoft. We
first show how incorporating more information about players
than their raw skill can lead to more balanced matches. We
also argue that balance is not the only factor that matters, and
present a strategy to explicitly maximize the players’ fun, taking
advantage of a rich player profile that includes information about
player behavior and personal preferences. Ultimately, our goal
is to ask players to provide direct feedback on match quality
through an in-game survey. However, because such data was not
available for this study, we rely here on heuristics tailored to this
specific game. Experiments on data collected during Ghost Recon
Online’s beta tests show that neural networks can effectively be
used to predict both balance and player enjoyment.

Index Terms—Matchmaking, first person shooters, neural
networks, player satisfaction, game balance

I. INTRODUCTION

MAKING games appealing to a wide audience is a core
objective of modern video games [1]. This objective

has been driving a significant amount on research on “player-
centered” game design [2]. Most of this research has been
focused on adapting games to players individually, e.g. by
dynamically generating quests in an online Role-Playing-
Game [3], adapting tracks in a racing game [4], or dynamically
adjusting the difficulty of an arcade game [5]. However,
making the game enjoyable for all players in a multiplayer
games requires taking into account player interactions. Those
are difficult to control, but a good matchmaking process can
increase the chance of players having fun with each other, thus
improving player retention [6].

The algorithms described in this paper have been designed
for the matchmaking system of Ghost Recon Online, an
online First Person Shooter (FPS) currently being developed
by Ubisoft. In this game players control elite soldiers with
modern weapons and high-tech equipment (Fig 1), and teams
fight against each other in various game modes. These modes
include for instance “Capture” (teams fight to capture and con-
trol a given number of points on the map) and “Assault” (one

Olivier Delalleau, Eric Thibodeau-Laufer, Raul Chandias Ferrari and
Yoshua Bengio are with the Department of Computer Science and Operations
Research, University of Montreal, Canada.

Emile Contal is with the Department of Computer Science of the Ecole
Normale Supérieure de Cachan, France.

Frank Zhang is with Ubisoft Montreal, Canada.

Fig. 1. In Ghost Recon Online, players have access to various character
classes, with unique powers, weapons and high-tech gear. This opens up a
wide array of potential playstyles, that basic skill rating algorithms are unable
to fully capture.

team is defending a position which the other team is attacking).
The matchmaking task consists in building teams from a pool
of players willing to join an adversarial multiplayer match,
in a way that maximizes players’ enjoyment1. This challenge
is traditionally solved by assigning a skill rating to each
player (inferred from his previous match results), deriving
team ratings from individual skills of all players in a team,
then having teams of similar strengths fight each other. This is
for instance the basic idea behind the TrueSkill matchmaking
system developed by Microsoft for their Xbox Live online
gaming service [7]. The motivation is that the game is not
fun if a match is unbalanced, as weaker players get frustrated
while experienced players get bored (even though getting easy
kills may initially be fun).

The research we present here aims to address two limitations
of such skill-based matchmaking systems:
• Because skill ratings are often used for player ranking

(e.g. online leaderboards) in addition to matchmaking,
such ratings are usually uni-dimensional (they result in a
single number representing a player’s overall proficiency
in the game). However, complex games like modern
FPS require skills in multiple areas like reflex, planning,
tactical analysis or teamwork. The relative importance
of these skills depends on the map, game mode (e.g.

1Note that here we focus on situations where only two teams face each
other and the game is balanced for teams of equal size, but our approach
could be generalized to more generic settings as well.



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 2

Deathmatch vs. Capture the Flag), player roles, team
compositions, etc. Since in this work our goal is to
match players together rather than rank them, we can take
advantage of a richer player profile and additional con-
textual information to predict the game balance, instead
of relying on a single skill number.

• Although it seems safe to assume that an unbalanced
match is not fun (at least for the weaker team), skill-
based matchmaking systems implicitly assume the reverse
is also true (“a balanced match is fun”), which is not as
obvious. For instance in an FPS, having two teams of
campers2 will most likely lead to a boring match where
no action ever happens, even if the match is perfectly
balanced.

Our methodology to tackle these challenges consists in
using machine learning algorithms (more specifically neural
networks) to predict the match winner and a measure of
individual player enjoyment. These predictions are based on
information about players involved in the match as well as
on the match’s specific settings. The information on players is
derived from historical data, taking into account both previous
match results and player attributes collected by tracking player
behavior over time. Defining what makes a game fun is an
interesting but challenging task that has been a research topic
for a long time [8], [9], and we do not intend to solve it here.
Instead, we plan to rely on user input, by asking players to
regularly provide feedback on their online gaming experience
through in-game surveys. However, such survey data was not
available yet for this study, so instead we handcrafted a “fun
formula” that we used to validate our approach. This formula
is based on events tracked during each match (like kills and
deaths in an FPS). We will show in our experimental results
that our neural network model for fun prediction outperforms
skill-based systems like TrueSkill and our own match balance
predictor, on the task of finding the matches most likely to be
fun for all players involved.

II. NEURAL NETWORK MODELS

In this section we describe the neural network architectures
we have been using. The two opposing teams are denoted by
team A and team B respectively. Note that team order is not
random: it is arbitrarily fixed by the map settings, for instance
on a given map the team starting from the South area would
always be team A, while the team starting from the North area
would always be team B. This allows the network to take into
account the fact that maps may not be symmetric.

In the following we assume that each team can have up
to eight players to keep notations simple, but in general
the maximum number of players per team depends on the
game mode. Note also that although the matchmaking system
(described in Section III) attempts to find matches where teams
are balanced and at full size, it may sometimes be forced to
start a match with fewer players when not enough players are
available.

2Campers are players who tend to stay still, waiting to ambush enemies.

A. Predicting Match Balance

In order to estimate match balance, we train a neural
network whose output is the probability that team A wins
over team B (the idea is that a match is balanced when this
probability is close to 50%). The network’s architecture is
shown in Fig. 2.

Hidden layer

TEAM A

Inputs Intermediate representations

P(team A wins)

Features Team A...

Embedding P1

Attributes P1
Features P1

Embedding P8

Attributes P8
Features P8

Features Team B...

Embedding P9

Attributes P9
Features P9

Embedding P16

Attributes P16
Features P16

TEAM B

Output

Fig. 2. Neural network computing the probability that team A wins, based on
the profiles (embeddings and attributes) of all players involved in the match
(players P1 to P8 in team A, and players P9 to P16 in team B).

The network’s inputs are the player profiles. A profile is the
combination of an embedding and an attributes vectors:

• The ne-dimensional embedding vector ei of player i is
automatically learned during the training phase, and can
be seen as a set of numbers that summarize previous
matches in which a player participated. These numbers
cannot be easily interpreted by a human, but the neural
network can use them to tweak its predictions so that
they better match the players’ individual playstyles. For
instance, in this architecture, the embedding vector is
expected to contain information about the player skill
in various aspects of the game (“good sniper”, “poor
assault”, etc.).

• The na-dimensional attributes vector ai of player i is
a set of normalized statistics that are extracted from the
game logs. It contains for instance the average kill / death
ratio of the player, the number of matches he played, his
firing accuracy, etc.

The input profiles are successively transformed as follows:

1) The profile information (embedding and attributes) are
linearly combined into a single vector of player features

pi = ei + Wai (1)

with W an (ne × na) matrix. One may think of these
features as a summary of the profile, containing an
estimate of a player’s skills in various areas of the game,
given his history.



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 3

2) For each team j ∈ {A,B}, team features tj are
computed as the sum of all player features in the team:

tj =
∑

i∈team j

pi. (2)

3) Team features are compared and summarized by a non-
linear transformation into the hidden layer h defined as

h = tanh

b +
∑

j∈{A,B}

Vjtj

 (3)

with b an nh-dimensional vector and VA and VB two
(nh × ne) matrices. Note that here, the tanh function
is applied on a vector: this is a shortcut notation to rep-
resent an element-wise tanh operation on each element
of this vector.

4) The last step of the computation is a single sigmoid unit
computing the probability α that team A wins by

α = σ(u · h + c) (4)

where u is an nh-dimensional vector, c is a scalar, and
σ is the sigmoid function σ(x) = 1

1+e−x .
The model described above is one of the most basic that

fits our approach, but we will see in experiments that it
can already yield a significant improvement when compared
to a rating-based system like TrueSkill [7]. It is likely that
more complex architectures will be able to reach even higher
accuracy. Potential improvements include:
• Performing feature extraction on player attributes to ex-

tract high-level information on playstyle, e.g. through
unsupervised pre-training of deep neural networks [10],
[11]. This may be especially useful as more player
attributes are added to the player profile.

• Trying more pooling operations than the sum performed
in eq. 2, e.g. also concatenating the mean, standard
deviation, (soft)min, (soft)max, ...

• Adding additional hidden layers to learn a decision func-
tion more complex than eqs. 3-4. Recent work on discrim-
inative deep networks may be useful in this regard [12].

Note also that in order to take map and game mode into
account, we propose to learn different matrices VA and VB

(see eq. 3) for each map and game mode. This will allow
different maps / modes to favor specific skills, as well as to
weigh differently the contributions of the two teams (which
may be important in unbalanced maps, or in an asymmetric
game mode like “Assault”). However, this strategy could not be
evaluated yet because our current dataset is limited to a single
map and game mode (see experiments in Section IV-A).

B. Predicting Player Enjoyment

For the purpose of fun prediction, we assume that each
match in the training set is labeled with a target vector f
such that fi is 1 if player i had fun during the match, and
0 otherwise. This label may come from an in-game player
survey, or could be computed from prior knowledge on what
makes the game fun. Note that some elements of f may be
missing, either because some players skipped the survey in the

first case, or because we did not have enough confidence in our
“fun estimator” in the second. The neural network architecture
we use, depicted in Fig. 3, differs from the one used for
balance (Fig. 2) in that it predicts a player-dependent output
(the probability that a specific player has fun in the match),
instead of a single global value.

Hidden layer

TEAM A

Inputs Intermediate representations

P(P1 has fun)

Features Team A 
without P1...

Embedding P2

Attributes P2
Features P2

Embedding P8

Attributes P8
Features P8

Features Team B

Embedding
&

Attributes
P9 - P16

Features
P9 - P16

TEAM B

Output

Features Team A

Embedding P1

Attributes P1
Features P1

Fig. 3. Neural network computing the probability that player P1 has fun,
based on the profiles (embeddings and attributes) of all players involved in the
match (players P1 to P8 in team A, and players P9 to P16 in team B). Team B
computations are identical to those in Fig. 2 and are not shown in details
here. Note that similar networks are defined to compute the probabilities that
players P2 to P16 have fun (and all these networks share the same weight
parameters).

In particular, in this architecture the hidden layer takes as
input the feature vector of the player whose fun is being
estimated and the feature vector of the rest of his team,
in addition to the feature vectors of both (full) teams. The
motivation behind this specific connectivity pattern is that in
order to compute in the hidden layer useful information about
how likely a player is to have fun, we would like to take into
account (i) the player’s individual profile, (ii) the profiles of
his teammates, and (iii) the global profiles of the two teams.

The inputs (profiles ei and attributes ai) are the same as in
Section II-A, and player features are also computed by eq. 1.
However, if for instance we want to estimate the fun of player
i in team A, the hidden layer h is now computed by

h = tanh

b + Ypi + V1tA + V2tB + U
∑

k∈team j,k 6=i

pk

 .

Note that if player i was in team B, this formula would
instead use V1tB + V2tA. Finally, the output probability
P (Player i has fun) = α is given again by eq. 4. The
extensions of the balance predictor mentioned at the end of
Section II-A can also be considered for this model, in particu-
lar matrices V1, V2, Y, U may be learned independently for
each unique map and game mode.

III. ARCHITECTURE

Although the main focus of this paper is on the new
machine learning models described above, it is also important



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 4

to understand how they are integrated into the game. In this
section we briefly answer the three following questions:
• How are players matched together?
• Where does the training data come from?
• How are the model parameters optimized?

A. Matchmaking

Once the models described above have been trained, how
should they be used in the matchmaking process? Fig. 4
gives a simplified view of the global architecture (with only
1v1 matches for the sake of clarity). Players who want to
join an online match are placed in a queue from which
the matchmaking algorithm randomly samples to try various
team combinations. Match candidates are scored by one of
the neural network models described in Section II to obtain
an estimate of match quality. The matchmaking server then
launches those with highest scores.

Matchmaking

Team A Team B Match quality

0.3

0.7

0.6

0.9

Player 
queue

Dedicated 
servers

Join
session #2

Create
session #1Join

session #1

Join
session #1

Join
session #2 Create

session #2

Fig. 4. Sketch of the matchmaking process: various match compositions are
evaluated by random sampling from the player queue. The best matches are
launched on dedicated servers that chosen players are instructed to join.

Without going too deep into the details, the following points
are worth pointing out:
• The sampling strategy has an important role: in particular

it can ensure all players are in a compatible skill range
and have a good connection with the same dedicated
server. It should also favor players who have been waiting
for a longer time, to minimize the wait.

• There is a trade-off between sampling time and match
quality: we sample as many matches as possible while
maintaining matchmaking wait below a given threshold.

• This sampling scheme is well suited to distributed com-
putations, so the number of match candidates that can be
evaluated mostly depends on the amount of processing
power available.

• A similar approach is used for “hot-join” situations, i.e.
when selecting players best fit to fill open slots in ongoing
matches.

B. Data Collection

After each match, the game saves into a database all relevant
information like which team won, which objectives were
completed, who were the players in each team, when they
joined and left the game, how many kills they got, how many
deaths, etc. These statistics are accompanied by a “snapshot”

of the players’ state (for all players involved in the game that
just ended), which includes additional data like current gear,
level, special abilities, etc. Then, a parser reads these logs from
the database and generates the corresponding match results and
player attributes, which form the basis of the training data.

Another source of data collection is the in-game player
survey (which had not yet been activated at the time of writing
this paper). This survey pops up after every match (or less
frequently if needed), and asks in particular whether (i) the
player had fun, and (ii) he thought the match was balanced.
The first answer will be used to train and evaluate our model
for player enjoyment, while the second one will provide us
with another way to compare game balance models. Additional
survey questions may also be used for the purpose of player
modeling (see Section V-C).

C. Model Optimization

Training is split in two phases, which we call respectively
offline training and online update. Offline training may be
slow, and is meant to periodically provide a “fresh” model
optimized on a large amount of data, to be deployed for in-
stance during a weekly maintenance window. On the contrary,
the online update needs to be fast enough to update the model
in real time from the results of matches being played online.

The offline training phase consists in learning two kinds of
parameters:
• The parameters governing the network transforma-

tions. For instance for the winner prediction model
described in Section II-A, this set of parameters is
{W,VA,VB ,b,u, c}.

• The players’ embeddings.
We optimize our models by stochastic gradient descent, min-
imizing the Negative Log-Likelihood (NLL) of the model’s
prediction [13] (in the fun prediction task, missing targets are
ignored). The evolution of player embeddings through time
(modeling the fact that we expect players to evolve as they play
more matches) is currently considered linear in the number of
matches that have been played, i.e.

eik = e0
i + ke1

i

where eik is the embedding of player i after he has played
k matches, and the embedding parameters e0

i and e1
i are

optimized by the gradient descent algorithm. Note that a
linear evolution is most likely sub-optimal, and we plan to
experiment with other variants in future work.

The online update phase takes place once the model is
deployed and new matches are being played. At this point,
the network’s transformation parameters are kept fixed, but
we use the information available from new matches to update
the players’ embeddings. Whenever a match ends, we recover
from the database the composition of the last few3 matches
of all players involved in the match that just ended. The
prediction error is then minimized on this small subset of
the data, by a fast conjugate gradient descent optimization

3The number of matches to recover needs to be validated to obtain good
performance, both in terms of prediction accuracy and speed.



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 5

algorithm [14] optimizing only the players’ embeddings. This
ensures that embeddings always reflect the recent matches of
the players (since if they were kept fixed, or optimized with
a slow optimization method like stochastic gradient descent,
they would become outdated after a while).

IV. EXPERIMENTS

A. Dataset

The data at our disposal for this study consists in matches
played during an early Ghost Recon Online beta-test. All
matches were played on the same map and the same mul-
tiplayer mode (“Capture”), with up to eight players in each
team. After filtering out uninteresting matches (those that are
too short or involve less than two players per team), the dataset
contains 3937 matches involving 3444 unique players. The
histogram of the number of matches per player is shown in
Fig. 5. For each player we use the following attributes:
• number of matches played
• sum and mean of kills and deaths
• average kill / death ratio
• sum and mean of number of captures
• TrueSkill skill estimate
• mean and standard deviation of firing accuracy and head-

shot percentage

0 20 40 60 80 100
Number of matches

0

100

200

300

400

500

600

700

N
u
m

b
e
r 

o
f 

p
la

y
e
rs

Fig. 5. Distribution of the number of matches per player (truncated to a
maximum of 100 matches to keep the figure easy to read – very few players
played above 100 matches).

B. Algorithms

In the experimental results that follow, we call BalanceNet
the neural network model that is trained to predict the proba-
bility that team A wins (Section II-A) and FunNet the one
that predicts the probabilities that players have fun in the
match (Section II-B). We compare them to two variants of
the TrueSkill algorithm [7]:
• TrueSkill-Team only takes match results into account (i.e.

“vanilla” TrueSkill).

• TrueSkill-Player actually ignores the winning team, fo-
cusing instead of individual player performance by rank-
ing players according to their in-game score (a function
of their achievements during the match, i.e. for instance
kills and captures). This amounts to pretending that an
8v8 match is actually a free-for-all (each player is a team
by himself)4.

Each algorithm has a number of hyper-parameters that
need to be set carefully. For instance, in TrueSkill the β
parameter (that gives the expected variability in a player’s
performance) and the dynamic factor τ (that ensures skills can
evolve over time) can make a significant difference in terms
of performance. Our algorithms’ most important parameters
are the learning rate in stochastic gradient optimization, and
capacity-related quantities that help fight overfitting: sizes of
the embeddings (ne) and of the hidden layer (nh), and weight
decay coefficients (we use `2 regularization on the network
matrices and on embeddings, with a separate regularization
coefficient for the online update phase). We use a “brute-
force” approach to model selection that consists in training a
large amount of model variants with randomly chosen hyper-
parameters (after running preliminary experiments to define
sensible ranges). We ensure we are not overfitting on these
hyper-parameters by a rigorous sequential validation setup
described below. To give a rough idea, the optimal network
sizes in these experiments are on the order of 10 for the
embedding size, and on the order of 100 for the hidden layer
size. The β parameter in TrueSkill had to be set around 10-20,
and τ around 5.

Our neural network models are implemented in Python,
using the Theano library [15] for efficient computations and
gradient-based optimization. For the TrueSkill models, we
use pure Python code based on a publicly available C#
implementation [16].

C. Experimental Setup

Most previous work on matchmaking and skill rating sys-
tems usually evaluate algorithms in either an “online” [7] or
a “batch” [17] setting:
• In an online setting, the algorithm starts from scratch

and is immediately evaluated in the prediction task (also
updating its parameters at the same time after each match
result).

• In a batch setting, parameters are first optimized on a
training set, then performance is evaluated on a disjoint
test dataset, keeping parameters fixed.

These settings do not reflect the way our algorithm is meant
to be used, so we rely on a different setup that generalizes
them. The algorithm is first trained on a training set (this
is the “offline training” phase described in Section III-C),
then its performance is evaluated on a disjoint test dataset
while also updating parameters after each test match result
(“online update” phase). Note that other algorithms can also
be evaluated in this setup, for instance the “offline training”

4Note that although we will show it helps getting better performance for
the purpose of matchmaking, we also argue in Section V that this approach
should be avoided for public player rankings, as it would promote selfish play.



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 6

step of a purely online learning algorithm like TrueSkill simply
consists in updating player skills by going through all matches
in the training set5.

In order to obtain an unbiased estimate of the generalization
ability of the algorithms being compared, we use sequential
validation with model selection. The first 25% of the dataset
(ordered chronologically) is isolated as a base training set
which is used to “seed” all algorithms. The remainder of the
data is split into five folds, and generalization error is estimated
by averaging the test error over folds 2 to 5. The test error on
fold k ∈ {2, 3, 4, 5} is computed as follows (Fig. 6 illustrates
the process for k = 3):

1) Training: train multiple variants of the model (“offline
training”) on the concatenation of the base training
set and folds 1, . . . , k − 2. Each variant corresponds
to a different random choice of hyper-parameters (e.g.
learning rate, number of hidden units, embedding size).

2) Validation: evaluate each variant by “online update” on
fold k − 1.

3) Re-training: re-train the best variant (“offline training”)
after adding fold k − 1 to the train set.

4) Test: evaluate the re-trained model by “online update”
on fold k.

Inputs Intermediate representations Output

Base training set Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

1 - Training 2 - Validation 4 - Test

3 - Retraining

time

Fig. 6. Five-fold sequential validation with model selection: illustration of
the computation of the third fold’s test error. Model variants are compared by
evaluating their validation error on the previous fold, and the one performing
best is evaluated on the test fold after re-training on all data available before
this point. Double arrows indicate “offline training” (which may perform
optimization based on all matches – past and future), while single arrows
represent “online update” (optimization is performed sequentially, one match
after the other).

D. Game Balance

We first evaluate the model presented in Section II-A, that
predicts the probability that team A wins. In our matchmaking
framework, this model is used by preferring matches for which
this probability is close to 50%. It is thus important to predict
an accurate probability, not just to predict which team will win
the match. For this reason, our main criterion for comparison
is the Negative Log-Likelihood (NLL). Following [17], we
truncate the model outputs so that they remain within the
(0.01, 0.99) range: this prevents a model’s NLL from growing
arbitrarily large when it is too confident in its prediction
(which often happened for TrueSkill in our experiments). We
also compute the classification error on the winner prediction
task since it is easier to interpret, and provides insight on the
overall balance of matches in our dataset (note in particular

5For the sake of fairness, we added a new hyper-parameter to TrueSkill
which is the number of times it iterates on the “offline training” set, in order
to potentially let it refine its skill estimates. This did not appear to help much.

TABLE I
WINNER PREDICTION TASK (WILL TEAM A WIN THIS MATCH?)

NLL Class. Error (%)

TrueSkill-Team 0.547± 0.019 26.6± 1.9

TrueSkill-Player 0.4785± 0.022 21.5± 1.8

BalanceNet 0.457± 0.020 19.2± 1.7

that if all matches were perfectly balanced, then all algorithms
would have 50% error).

Table I presents the results, with 95% confidence intervals
(two standard errors). The best results are shown in bold
(we performed a paired t-test to verify that BalanceNet is
significantly better than TrueSkill-Player in terms of both NLL
and classification error – with p-value of respectively 0.004
and 0.003). It is obvious that TrueSkill-Team is much worse
than the other two models. This is because it takes longer
for skills to converge when they are based only on the match
results, compared to TrueSkill-Player that has access to direct
player rankings through in-game scores. This supports our
argument that for the purpose of matchmaking, it is advised to
take advantage of individual statistics on players beyond the
global result of their teams.

BalanceNet outperforms TrueSkill-Player, but the difference
is not as striking. We believe the main reasons are related to
the current dataset we are experimenting with:
• As can be seen from the low error rate that can be

achieved (under 20%), the matches in the dataset are
not properly balanced. This is because the matchmaking
algorithm in this beta-test was not trying to match players
according to their skill. Thus the majority of the matches
are significantly unbalanced, making the task easy to
solve with simple algorithms6.

• Data comes from an early beta-test, where most players
are still learning the game on their own, without caring
much about teamwork. Consequently, there is not much
benefit to gain from a model that can deal with team
interactions.

• All the data comes from a single map and game mode,
and the map is symmetric: although our model is meant
to be able to take into account map and game mode
specificities, it is not needed here.

• Obviously, 3937 matches is quite small: it is not possible
to take full advantage of a high capacity model with this
amount of data.

As a result, we expect that as we collect more data (with more
variety), our neural network model’s advantage over TrueSkill-
Player will become even more significant.

E. Player Fun

Ultimately, we intend to make player enjoyment the main
criterion used in Ghost Recon Online’s matchmaking. Note
however that we believe a match balance predictor like the one
we discussed in the previous experiments would still remain

6As a baseline, a model that simply predicts the winning team as the team
with most players achieves 35% classification error.



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 7

useful, to (i) act as a safeguard against the fun predictor’s mis-
takes, and (ii) possibly speed up computations (the sampling
phase described in Section III-A) by pre-filtering matches in
order to fully evaluate only reasonable candidates. Thus we
envision a matchmaking system that would take advantage of
the unique benefits brought by both approaches.

As mentioned in the introduction, we are setting up an in-
game survey to gather player feedback about their gaming
experience. While waiting for this data to be collected, we
ran experiments by “simulating” a survey, based on our
assumptions on what makes the game fun. We did not put
a lot of efforts in designing the ultimate “fun formula” since
our goal is to replace it eventually, so we used the following
process:

• We started by defining 11 features such that we expect
a player to have more fun when these features increase.
Some of these features are local to the player (e.g. average
life span, number of bullets fired, whether he finished
the match or disconnected while in progress), some are
team-based (e.g. the ratio of our teammates kill/death
ratio compared to our own kill/death ratio, capped to 1
in order to mostly catch frustrating situations where we
are matched with less skilled players), and finally some
are global to a match (e.g. the match duration, and the
total number of kills in the match).

• These features were normalized between 0 and 1 so as
to obtain a uniform distribution in the (0, 1) range (this
basically amounts to using the rank of the value in the
sorted list of all observed values for the same feature).

• For each unique player in the dataset, we randomly picked
4 out of these 11 features as those he actually cares
about. Then we uniformly sampled 4 weights (rescaled
so that they sum to 1) to weigh these features differently.
This way, each player has his own individual criteria to
evaluate fun in a match (although many of these criteria
are correlated).

• The fun factor of each player in each match was com-
puted as this weighted sum of features, then all these
fun values were normalized into (0, 1) like we did for
individual features.

• Finally, we assumed the player answered “Yes” to the
question “Did you have fun in the match” when his fun
factor was above 0.7, “No” when it was below 0.3, and
skipped the survey otherwise.

Note that although our FunNet model predicts individual
probabilities for each player to have fun, in the end we need
a global match quality score. Based on the assumption that
we want everyone to have fun in the match, we interpret our
normalized “fun factor” score as the ground truth probability
that a player has fun, assume independence among players,
and define the match quality by

ΠPlayer i∈ matchP (Player i has fun).

We actually take the logarithm of this score for convenience,
and average the resulting sum to make it independent of the

TABLE II
SURVEY PREDICTION TASK (WILL PLAYER i HAVE FUN IN THIS MATCH?)

NLL Class. Error (%)

FunNet 0.571± 0.008 29.2± 0.7

TABLE III
MATCH RANKING TASK (WHICH MATCHES WILL BE MOST FUN?)

τ (Kendall’s tau)

TrueSkill-Team 0.11

TrueSkill-Player 0.17

BalanceNet 0.20

FunNet 0.23

number of players involved, yielding the final formula

Score(match) =
1
n

∑
Player i∈ match

logP (Player i has fun).

(5)
where n is the number of players in the match.

We first validate that our model is able to predict the survey
answers by looking at the NLL and classification error on this
target. Table II shows that our model can reach under 30%
error, which tells us that it was able to capture at least some
of the underlying fun patterns we made up.

Then, we turn to the main question this research is con-
cerned about, which is: can such a model select fun matches
better than balance-based models like TrueSkill and Bal-
anceNet? To answer it, we use a ranking measure, which has
the advantage of being independent of the scale of the models’
scores, and of reflecting our real-world application where
the goal is to rank candidate matches to find the best ones.
Specifically, we compute the Kendall’s tau rank correlation
coefficient [18], denoted by τ , between the ground truth match
score (eq. 5) and the models’ rankings on test matches. For the
balance-based models (TrueSkill-Team, TrueSkill-Player and
BalanceNet) the matches are ranked by increasing value of
|P (team A wins) − 0.5|. The FunNet model uses eq. 5 with
its own estimated probabilities of each player having fun. A
perfect ranking would achieve τ = 1, while random ranking
corresponds to τ = 0 (and τ = −1 corresponds to ranking in
the exact opposite order of the ground truth).

We see from Table III that all models achieve a significantly
positive τ , which is not surprising since many of our features
that define fun correlate with match balance. We also recover
the same ordering w.r.t. performance as in the balance task
(Table I) i.e. TrueSkill-Team < TrueSkill-Player < BalanceNet.
However, as we expected, there is a benefit in designing a
specific “fun predictor” like the FunNet neural network, since
it is the one that achieves best performance. This is a promising
result, but of course it remains to be validated on “true” player
feedback, which will be the topic of our future research.

V. RELATED WORK

Our work puts together ideas originating from several fields
of research: matchmaking, skill rating and player modeling.
We describe below previous work in those areas that is most
relevant in the context of the proposed methodology.



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 8

A. Matchmaking

The primary concern for matchmaking in an action game is
often the network connection quality. This is especially true
in an FPS where accurate aiming is key: being able to reliably
estimate latency between players is thus very important, and is
a topic of ongoing research [19]. This challenge is made easier
in our situation because games are run on dedicated servers,
so all we need to do is ensure that we only match together
players who have a good connection to the same dedicated
server.

From a high-level point of view, our matchmaking architec-
ture is in the same spirit as the one described in [20], but with
a more complex match selection process. In that work, it is
suggested to divide players among “bins” (based on their skill)
in order to ensure match balance, and it is not said how to pick
players from a bin to obtain the final team composition. This
kind of skill-based strategy is used by many games, that do not
attempt to globally optimize team compositions. Instead, they
match together players of similar skill, then distribute players
in teams either randomly or so as to achieve teams of equal
strength [6], [21].

The idea that players should be matched based on their
gaming profile is not new: [22] showed empirically that
different types of players do not share the same preferences
with respect to who they enjoy playing with. However, they did
not actually propose a specific matchmaking algorithm based
on these considerations. [23] describes such a matchmaking
system, where they call “role” a player’s individual type. In
this system, examples of “good” matches are first memorized
(where good matches are found for instance by asking feed-
back from players like we intend to, or by human experts
who observe matches). These good matches are analyzed in
terms of the roles played by the players involved in them,
where roles are manually defined in a subjective manner and
may correspond to various traits of players that are considered
important for matchmaking purpose (e.g. “sniper”, “power
gamer”, “socializer”). A specific algorithm to infer player role
from tracked player behavior is not detailed, but several player
modeling techniques have been developed in the past years
and may be used for this purpose [24], [25], [26]. When a
match needs to be created from a pool of players waiting in
the matchmaking queue, candidate matches are then evaluated
by being compared to the set of good matches (in terms of
similarity in their role compositions). This approach is thus
similar to ours, but replacing our neural network evaluation
system with a memory-based algorithm and using only roles
as input. Although we believe this is a sensible idea worth
experimenting with, it has not been actually implemented yet.
One difficulty is that it is not obvious which roles are to be
defined (one can think of our algorithm as a way to learn
roles automatically within the player embeddings). Also, their
proposed algorithm only keeps “good” examples, while also
taking into account examples of “bad” situations is probably
important as well. Finally, they mention the problem of the
combinatorial cost of trying all player combinations to find
the best match, but do not propose a solution to this issue: we
suggest here to solve it by random sampling.

B. Skill Rating

The problem of assigning skills to players or teams has a
long history in both games and sports, mostly for the tasks
of ranking, matchmaking and outcome prediction. Although
all these tasks may be tackled independently, a skill rating
system is very appealing as it can provide a statistically
motivated answer to all of them. The ranking task, however,
imposes some specific constraints that may hurt performance
for matchmaking and outcome prediction. Besides the fact that
a uni-dimensional skill is needed to easily make comparisons,
the competitive nature of rankings also makes them a favorite
target of players trying to “exploit” the system [6]. This is
one important reason why most skill rating systems only
consider match results to compute the skill: accounting for
extra information like the attributes we feed to our neural
network might be abused by players. This could be very
detrimental to team-based games, where players would try to
maximize statistics that boost their skill (e.g. their own number
of kills or captures in an FPS) instead of doing what is best
for their team to win.

A skill rating algorithm meant to be used for matchmaking
in a multiplayer game like Ghost Recon Online needs to be
able to assign individual ratings to players, then to derive
ratings for arbitrary teams from these player ratings. This
rules out most algorithms used in sports, where typically either
only global team ratings are considered [27], or, if individual
ratings are sought, players are assumed to play in the same
team for a long enough period of time to estimate meaningful
correlations [28].

The large majority of skill rating systems developed for
games take their root from the Bradley-Terry model [29], that
in its basic formulation models the probability that team A
wins over team B by

α = P (team A wins) =
sA

sA + sB

with sj the skill of team j. If we write sj = etj this becomes

α =
etA

etA + etB
=

1
1 + etB−tA

= σ(tA − tB). (6)

Note that if we assume

tj =
∑

i∈team j

pi (7)

with pi the individual skill of player i, then this is a variant
of our neural network model described in Section II-A. This
can be seen when:
• A player’s embedding is made of a single scalar (his

skill) and there are no player attributes, so that eq. 1
becomes pi = ei, and thus team features (eq. 2) are
scalars computed as in eq. 7.

• The hidden layer h (eq. 3) is simplified to be the
concatenation of the team features, i.e. h = (tA, tB)T .

• The parameters of the output probability α (eq. 4) are
u = (1,−1)T and c = 0, making it equivalent to eq. 6.

The Bradley-Terry model has already been presented in such
a neural network form [30], but it was generalized in a
different way than in our model. The application the authors



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 9

were interested in was in a game where teams were expected
to have a significant imbalance (in terms of the number of
players facing each other), which led them to model differently
the combined player strengths to better account for such
large differences. In particular, they incorporate this difference
into a so-called “home field advantage” that can also model
imbalances resulting from asymmetric maps, and can have
a stronger influence on the predicted result when there is a
high uncertainty on the player skills (i.e. when many players
are new to the game). They also take time into account by
weighting a player’s contribution with the time he spent in
the match, and using the elapsed time as input so that the
winning probability evolves as time elapses. Such an extension
would be interesting to incorporate in our model to better
evaluate “hot-join” situations. Compared to their formulation,
the novelty of our approach lies in using a multi-dimensional
embedding rather than a single skill value, adding additional
player attributes as input, and having more parameters to the
neural network transformations in order to potentially learn
more complex functions.

As discussed in Section III-C, the ability to update player
ratings after each match efficiently is important for online
rating systems, that need to update ratings in real time. The Elo
rating system [31], adopted by the World Chess Federation, is
very close to the Bradley-Terry model described above and is
based on an efficient online update algorithm. The Elo rating
was later extended, in particular to model uncertainty [32],
eventually leading to the fully Bayesian TrueSkill system that
is also able to infer individual skills from team results [7].
Various improvements and variants of TrueSkill have been
proposed since then (see e.g. [33], [34], [35]). Such methods
differ significantly from ours: they are probabilistic algorithms
that model a player’s skill as a scalar random variable, and
perform inference based only on match results (in particular
they ignore player attributes). One research direction that
bears resemblance to our work is the idea of computing skill
ratings in a “batch” setting, i.e. instead of only updating
current ratings incrementally after each match, both past and
future ratings are optimized to globally fit all match results
available [36], [37]7. This is also what our offline training
phase (described in Section III-C) is meant to achieve: it can
“revisit the past”, while our online update phase is currently
a more myopic (but faster) incremental procedure.

Although using a single scalar to represent player skill is
convenient, it has been recently noted that increased perfor-
mance on the outcome prediction task can be obtained when
using additional factors. A first idea, explored by [38] and [39],
consists in adding the concept of “contexts” associated to vec-
tors θk, such that the skill of player i in context k is given by
the dot product pi ·θk. In our FPS application, a context would
be for instance a specific map and game mode: we proposed
a similar idea in Section II-A by learning context-dependent
weight matrices VA and VB (used in eq. 3). Note that in our
model we use a context matrix rather than a vector because
we want to extract multiple features rather than a single skill

7Note that the batch approach from [37] can actually be made fast enough
for real-time use (with some approximations to speed up computations).

value. Another way to use a multi-dimensional skill vector in
a Bayesian setting was presented in [17], whose idea consists
in modeling the fact that a player may have strengths and
weaknesses in different areas. Our neural network approach is
also be able to model such strengths and weaknesses in the
embedding vector pi, which the hidden layer transformation
(eq. 3) can combine optimally for outcome prediction. This
is all done implicitly here, while in a Bayesian setting the
relations between elements of pi are explicitly defined by the
graphical model architecture.

To conclude the comparison with Bayesian skill rating
models, we should emphasize that such models naturally
handle uncertainty, since they are fully probabilistic. For
instance, evaluating balance with TrueSkill is not usually done
by simply looking at |P (team A wins) − 0.5|. Instead, the
balance is computed from the asymptotic probability that the
two teams perform equally well (i.e. a draw), which depends
on the uncertainty on players’ skill and performance [7]. On
another hand, our current model ignores uncertainty: player
embeddings are fixed and the network transformations are
deterministic. However, we expect the addition of player
attributes (that contain for instance the number of matches
already played) to help by indirectly taking into account
uncertainty about new players’ embeddings.

C. Player Modeling
The basic idea of player modeling [2] is to extract in-

formation about players, to eventually provide them with an
improved gaming experience (either directly – e.g. tuning the
game to better suit the player’s playstyle – or indirectly – e.g.
collecting data to help later improve the game or its sequel).
Note that here we only consider models based on players’
actions within the game: more intrusive systems based for
instance on heart rate monitoring may also bring useful insight
into the way players experience video games [40], but are out
of the scope of our present research.

Our matchmaking application can be seen as a kind of
“game adaptation” mechanism in the context of matchmak-
ing, where the game parameters being tuned are those of
the matchmaking decision function. A special case of game
adaptation consists in dynamically adjusting the game diffi-
culty to better suit the player’s individual skill level [41]. In
single player games, dynamic difficulty adjustment is usually
based on the analysis of relevant statistics (e.g. number of
successes / failures, rate of damage) to adjust game settings
during gameplay [42], [43], [44], [45]. Other game adaptation
techniques to maximize player enjoyment have been proposed
before in other contexts like game content generation and
adaptation: [46] provides a good overview of previous work in
this area. Although many of these methods share goals similar
to our work, (they aim at making the game more balanced and
more fun), they cannot be readily applied to matchmaking.
The main reason is they are designed for single-player games
and thus are not meant to simultaneously optimize the game
experience of many players at the same time (especially
because of player interactions).

Another link with player modeling consists in the addition
of player attributes. In the present research we use simple



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 10

statistics extracted from the game logs, but in the future we
intend to add more high-level information about the players’
profiles. Such information could for instance be whether the
player is more interested in the competitive aspects of the
game, in its social interactions, in having casual fun shooting
random people, etc. If such “classes” of players can be defined
beforehand from a priori knowledge, a survey could be sent to
players asking them to identify which class they belong to, or
human experts could watch some players and manually label
their playstyle. Once a number of such “prototypical” players
are available, supervised learning methods can be applied to
profile the whole playerbase [25], [47], [48]. Alternatively,
unsupervised clustering methods can also be used to dis-
cover typical classes of player behavior without much prior
knowledge [26], [49]. We expect that adding such high-level
profiling of players into their attributes vector will help our
predictive models achieve better accuracy.

VI. CONCLUSION AND FUTURE DIRECTIONS

Our main contributions are as follows:
• We demonstrated that in order to evaluate match balance

in a multiplayer game, using a skill value is not enough.
There is much to be gained from a richer player profile,
in particular by adding player statistics collected within
the game.

• We argued that fun is more important than balance, and
showed it is possible to use fun as the main criterion in a
matchmaking system (to the best of our knowledge, this
is the first implementation of this idea).

• We proposed an implementation based on neural net-
works, which makes it easy to include additional parame-
ters and to design architecture variants able to better suit
a game’s specific needs.

• We showed how to integrate these neural networks within
an online game’s matchmaking system, providing so-
lutions to the problems of (i) finding the best team
combinations from a pool of players waiting for a match,
and (ii) continuously updating the model in real time as
new data is being collected.

Our experimental results, although promising, remain pre-
liminary: as more data is being collected during Ghost Recon
Online’s beta tests, we will be able to better evaluate the
proposed models, and experiment with more variants. The
main directions we plan to investigate are the following:
• Once enough data from the in-game player survey has

been collected, it will be interesting to compare our
handcrafted formula of fun with actual player feedback.
One question is also how often the survey should be
presented to players after launch: we may not even need it
if it proves possible to learn a reliable enough predictive
model of fun.

• The current set of attributes we are using is very limited.
We will augment it with more statistics, as well as
with more high level information derived from player
modeling.

• With more data, we may be able to take advantage of
more elaborate neural network architectures so as to
better learn complex statistical dependencies.

ACKNOWLEDGMENT

We would like to thank the Ghost Recon Online devel-
opment team for their support throughout this project. We
are also thankful to Frédéric Bernard, Myriam Côté, Aaron
Courville and Steven Pigeon for the many fruitful discussions
on various aspects of this research. In addition, this work was
made possible thanks to the research funding and computing
support from the following agencies: NSERC, FQRNT, Calcul
Québec and CIFAR.

REFERENCES

[1] C. Bateman and R. Boon, 21st Century Game Design (Game Develop-
ment Series). Rockland, MA, USA: Charles River Media, Inc., 2005.

[2] D. Charles, M. McNeill, M. McAlister, M. Black, A. Moore, K. Stringer,
J. Kcklich, and A. Kerr, Player-Centred Game Design: Player Modelling
and Adaptive Digital Games, 2005.

[3] L. Shi and W. Huang, “Apply social network analysis and data mining
to dynamic task synthesis for persistent MMORPG virtual world,” in
Proceedings of the Third International Conference on Entertainment
Computing, Eindhoven, The Netherlands, 2004, ser. Lecture Notes in
Computer Science, M. Rauterberg, Ed., vol. 3166. Springer, 2004, pp.
204–215.

[4] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic per-
sonalised content creation for racing games,” in IEEE Symposium on
Computational Intelligence and Games, 2007.

[5] O. Missura and T. Gärtner, “Player modeling for intelligent difficulty
adjustment,” in Discovery Science, ser. Lecture Notes in Computer
Science, J. Gama, V. Costa, A. Jorge, and P. Brazdil, Eds. Springer
Berlin / Heidelberg, 2009, vol. 5808, pp. 197–211.

[6] C. Butcher, “E pluribus unum: Matchmaking in Halo 3,” in Game
Developers Conference (GDC 2008), 2008.

[7] R. Herbrich, T. Minka, and T. Graepel, “TrueSkillTM: A Bayesian skill
rating system,” in Advances in Neural Information Processing Systems
19 (NIPS’06), B. Schölkopf, J. Platt, and T. Hoffman, Eds. MIT Press,
2007, pp. 569–576.

[8] T. Malone, “What makes computer games fun?” SIGSOC Bull., vol. 13,
pp. 143–, May 1981.

[9] G. Yannakakis and J. Hallam, “Towards optimizing entertainment in
computer games,” Applied Artificial Intelligence, vol. 21, no. 10, pp.
933–971, 2007.

[10] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Advances in Neural Information
Processing Systems 19 (NIPS’06), B. Schölkopf, J. Platt, and T. Hoff-
man, Eds. MIT Press, 2007, pp. 153–160.

[11] G. E. Hinton and R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
Jul. 2006.

[12] S. Rifai, Y. Dauphin, P. Vincent, Y. Bengio, and X. Muller, “The
manifold tangent classifier,” in NIPS’2011, 2011, student paper award.

[13] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[14] J. R. Shewchuk, “An introduction to the conjugate gradient method
without the agonizing pain,” Pittsburgh, PA, USA, Tech. Rep., 1994.

[15] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: a CPU
and GPU math expression compiler,” in Proceedings of the Python for
Scientific Computing Conference (SciPy), 2010.

[16] J. Moser, “Computing your skill,” 2010. [Online]. Available:
http://www.moserware.com/2010/03/computing-your-skill.html

[17] M. Stănescu, “Rating systems with multiple factors,” Master’s thesis,
2011.

[18] Wikipedia, “Kendall tau rank correla-
tion coefficient,” 2011. [Online]. Available:
http://en.wikipedia.org/wiki/Kendall tau rank correlation coefficient

[19] S. Agarwal and J. R. Lorch, “Matchmaking for online games and other
latency-sensitive P2P systems,” in Proceedings of the ACM SIGCOMM
2009 conference on Data communication, ser. SIGCOMM ’09. New
York, NY, USA: ACM, 2009, pp. 315–326.

[20] J. S. Tobias Fritsch, Benjamin Voigt, “The next generation of competitive
online game organization,” in Netgames 2008, 2008.

[21] League of Legends, “League of Legends matchmaking,” 2010. [Online].
Available: http://na.leagueoflegends.com/learn/gameplay/matchmaking



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 11

[22] J. Riegelsberger, S. Counts, S. Farnham, and B. C. Philips, “Personality
matters: Incorporating detailed user attributes and preferences into the
matchmaking process,” in HICSS. IEEE Computer Society, 2007, p. 87.

[23] J. Jimenez-Rodriguez, G. Jimenez-Diaz, and B. Diaz-Agudo, “Match-
making and case-based recommendations,” in Workshop on Case-Based
Reasoning for Computer Games, 19th International Conference on Case
Based Reasoning, 2011.

[24] H. J. van den Herik, H. H. L. M. Donkers, and P. H. M. Spronck,
“Opponent modelling and commercial games,” in Proceedings of IEEE
2005 Symposium on Computational Intelligence and Games CIG’05,
G. Kendall and S. Lucas, Eds., 2005, pp. 15–25.

[25] A. Tychsen and A. Canossa, “Defining personas in games using metrics,”
in Proceedings of the 2008 Conference on Future Play: Research, Play,
Share, ser. Future Play ’08, New York, NY, USA, 2008, pp. 73–80.

[26] R. Thawonmas and K. Iizuka, “Visualization of online-game players
based on their action behaviors.” Int. J. Computer Games Technology,
2008.

[27] J. Park and M. E. J. Newman, “A network-based ranking system for
US college football,” Journal of Statistical Mechanics: Theory and
Experiment, vol. 2005, no. 10, 2005.

[28] J. Piette, S. Anand, and L. Pham, “Evaluating basketball player perfor-
mance via statistical network modeling,” in MIT Sloan Sports Analytics
Conference, 2011.

[29] R. A. Bradley and M. E. Terry, “The rank analysis of incomplete block
designs — I. The Method of Paired Comparisons,” Biometrika, vol. 39,
pp. 324–345, 1952.

[30] J. E. Menke and T. R. Martinez, “A Bradley-Terry artificial neural
network model for individual ratings in group competitions.” Neural
Computing and Applications, vol. 17, pp. 175–186, 2008.

[31] A. E. Elo, The rating of chessplayers, past and present. Batsford, 1978.
[32] M. E. Glickman, “Parameter estimation in large dynamic paired com-

parison experiments,” Applied Statistics, vol. 48, no. 3, pp. 377–394,
1999.

[33] R. C. Weng and C.-J. Lin, “A Bayesian approximation method for online
ranking,” Journal of Machine Learning Research, vol. 12, pp. 267–300,
2011.

[34] S. Nikolenko and A. Sirotkin, “A new Bayesian rating system for team
competitions,” in Proceedings of the 28th International Conference on
Machine Learning (ICML-11), L. Getoor and T. Scheffer, Eds. New
York, NY, USA: ACM, June 2011, pp. 601–608.

[35] J. C. Huang and B. J. Frey, “Cumulative distribution networks and
the derivative-sum-product algorithm: Models and inference for cumu-
lative distribution functions on graphs,” Journal of Machine Learning
Research, vol. 12, pp. 301–348, 2011.

[36] P. Dangauthier, R. Herbrich, T. Minka, and T. Graepel, “TrueSkill
through time: Revisiting the history of chess,” in Advances in Neural
Information Processing Systems, M. Press, Ed., Vancouver, Canada,
2007.

[37] R. Coulom, “Whole-history rating: A Bayesian rating system for players
of time-varying strength,” in Proceedings of the 6th International
Conference on Computers and Games, ser. CG ’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 113–124.

[38] L. Zhang, J. Wu, Z.-C. Wang, and C.-J. Wang, “A factor-based model
for context-sensitive skill rating systems,” in Proceedings of the 2010
22nd IEEE International Conference on Tools with Artificial Intelligence
– Volume 02, ser. ICTAI ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 249–255.

[39] S. Usami, “Individual differences multidimensional Bradley-Terry model
using reversible jump Markov chain monte carlo algorithm,” Behav-
iormetrika, vol. 37, no. 2, pp. 135–155, 2010.

[40] A. Drachen, L. E. Nacke, G. Yannakakis, and A. L. Pedersen, “Correla-
tion between heart rate, electrodermal activity and player experience in
first-person shooter games,” in Proceedings of the 5th ACM SIGGRAPH
Symposium on Video Games. New York, NY, USA: ACM, 2010, pp.
49–54.

[41] E. Jimenez, “The Pure advantage: Advanced racing game AI.” [Online].
Available: http://www.gamasutra.com

[42] R. Hunicke and V. Chapman, “AI for dynamic difficulty adjustment in
games,” in Proceedings of AIIDE 2004, 2004.

[43] P. Spronck, S. I. Kuyper, and E. Postma, “Difficulty scaling of game
AI,” in Proceedings of the 5th International Conference on Intelligent
Games and Simulation (GAME-ON 2004), 2004, pp. 33–37.

[44] K. Harward and A. Cole, “Challenging everyone: Dynamic difficulty
deconstructed,” in Game Developers Conference (GDC 2007), 2007.

[45] O. Missura and T. Gärtner, “Predicting dynamic difficulty,” in Ninth
Workshop on Mining and Learning with Graphs, 2011.

[46] P. C., T. J., and G. N. Yannakakis, “Modeling player experience for
content creation,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 2, no. 1, pp. 54–67, 2010.

[47] R. Thawonmas and J.-Y. Ho, “Classification of online game players
using action transition probabilities and Kullback Leibler entropy,” Jour-
nal of Advanced Computational Intelligence and Intelligent Informatics,
Special issue on Advances in Intelligent Data Processing, vol. 11, no. 3,
pp. 319–326, 2007.

[48] R. Thawonmas and K. Iizuka, “Haar wavelets for online-game player
classification with dynamic time warping,” Journal of Advanced Com-
putational Intelligence and Intelligent Informatics, Special issue on
Intelligence Techniques in Computer Games and Simulations, vol. 12,
no. 2, pp. 150–155, 2008.

[49] D. Ramirez-Cano, S. Colton, and R. Baumgarten, “Player classification
using a meta-clustering approach,” in Proceedings of the International
Conference on Computer Games, Multimedia and Allied Technology,
2010.

Olivier Delalleau graduated from the Ecole Poly-
technique de Paris in 2001 and from the Ecole Na-
tionale Supérieure des Télécommunications de Paris
in 2003. He then worked as a Machine Learning
research assistant in the Department of Computer
Science and Operations Research of the University
of Montreal until 2006, when he started a Ph.D
under the supervision of Prof. Yoshua Bengio. His
current research is focused on Machine Learning
applications to video games.

Emile Contal is a Master student in Theoretical
Computer Science and Machine Learning at the
Ecole Normale Supérieure in France. His interest is
the understanding of learning procedures in order
to make computers able to solve more and more
complex tasks.

Eric Thibodeau-Laufer received his B.S. degree
in Math and Computer Science at the University of
Montreal in 2011. He is currently a Master student
under the supervision of Prof. Yoshua Bengio, at the
LISA lab. Current research focuses on collaborative
filtering and recommender systems.



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 12

Raul Chandias Ferrari received his B.S. degree
in Computer Science from University of Montreal
in 2011. He is now a M.S. candidate in Com-
puter Science from University of Montreal under the
supervision of Prof. Yoshua Bengio. His research
interests include Machine Learning and computer
vision.

Yoshua Bengio received his Ph.D in CS from from
McGill University, Canada, 1991, in the areas of
HMMs, recurrent and convolutional neural networks,
and speech recognition. Post-doc 1991-1992 at MIT
with Michael Jordan. Post-doc 1992-1993 at Bell
Labs with Larry Jackel, Yann LeCun, Vladimir
Vapnik. Professor at U. Montreal (CS and Opera-
tions Research) since 1993. Canada Research Chair
in Statistical Learning Algorithms. Fellow of the
Canadian Institute of Advanced Research. NSERC
chair. Co-organizer of the Learning Workshop since

1998. NIPS Program Chair in 2008, NIPS General Chair in 2009. Urgel-
Archambault Prize in 2009. Fellow of CIRANO. Current or previous asso-
ciate/action editor for Journal of Machine Learning Research, IEEE Trans-
actions on Neural Networks, Foundations and Trends in Machine Learning,
Computational Intelligence, Machine Learning. Author of two books and over
150 scientific papers, with over 9400 citations according to Google Scholar
and an H-Index of 43 at the end of 2011.

Frank Zhang received his B.S degree in Computer
Science from Shanghai Jiao Tong University in
1999. He started working at Ubisoft Entertainment
Shanghai Studio in 1999 and moved to Ubisoft
Entertainment Montreal Studio in 2000. He is an
architect specialized in online services. He oversees
the engine implementation to ensure it aligns well
with team and studio objectives.


