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Bias Learning, Knowledge Sharing

Joumana Ghosn and Yoshua Bengio

Abstract—Biasing properly the hypothesis space of a learner has hand, the possibility of “translating” the provided knowledge
bee_n S.hOWHI to improve generalization performance. Methoc_is fpl’ into a form that can be used by |earning models. Despite
achieving this goal have been proposed, that range from designing many successes, designing an appropriate bias (i.e., defining

and introducing a bias into a learner to automatically learning f f ticul I f soluti .
the bias. Multitask learning methods fall into the latter category. a preference for a particular class of solutions) remains a

When several related tasks derived from the same domain are cOmplex problem.
available, these methods use the domain-related knowledge coded The training examples of a problem and the prior knowledge

in the training examples of all the tasks as a source of bias. We provided by experts include or encompass two distinct but com-
extend some of the ideas presented in this field and describe aplementary categories of knowledge: on the one hand, they de-

new approach that identifies a family of hypotheses, represented .. . g .
by a manifold in hypothesis space, that embodies domain-related fine properties that are specific to the problem being learned,

knowledge. This family is learned using training examples sam- and on the other hand, they define properties that are more gen-
pled from a group of related tasks. Learning models trained on eral and belong to the domain or environment in which the
these tasks are only allowed to select hypotheses that belong toproblem evolves (i.e., properties that are common to all the prob-
the family. We show that the new approach encompasses a large|ems that evolve in the same environment). While the first group
variety of families which can be learned. A statistical analysis . .
on a class of related tasks is performed that shows significantly of properties can only be used to learn a particular prob'e”_" the
improved performances when using this approach. second group can be used to learn any prOblem ev0|V|ng in the
same domain or environment. Hence, the greater usefulness of
the second group of properties.

While prior knowledge defining properties of an environment
can be used to learn any problem evolving in the environment

. INTRODUCTION (by using some of the methods aforementioned), the training ex-

ODEL-FREE or nonparametric inference has beenples of a particular problem could not until recently be used
M shown to lead to poor generalization performance whéf learn other problems evolving in the same environment. This
attempting to learn complex problems using small training@s due to the lack of methods.ca.pab!e qfanalyzingthe training
sets [9]. Improving the generalization performance can [§&amples of a problem and distinguishing between the prop-
achieved by using prior knowledge defining known propertié%”ies specific to the corresponding problem and the properties
of the problem that must be learned. This knowledge can BRecific to the environment in which the problem evoldsl-
used to define a preference for a certain class of solutionstitsk learningwas developed to overcome this shortcoming.
the space of all possible solutions or hypotheses that can g Purpose of this discipline is to use the training examples
selected by a learner. Many techniques have been develope@ group of related tasks evolving in the same environment,
to incorporate prior knowledge in a learning model or in thE& define, in the space of all possible solutions, a class of solu-
learning process. For exampéetificial examplesrepresenting tions that represent or embody the domain or environment-re-
known properties about a problem, can be generated and add@ded properties extracted from the training examples of all the
to the training set, in order to emphasize the need to selégfated tasks. It achieves this aim by searching in the hypothesis
a solution that incorporates the properties embedded in $face (or the space of all possible solutions) for a class of solu-
additional examples [1]. Penalty terms can be designed tfligns that is suited for learning all the tasks in the environment.
penalize, during the learning process, the selection of solutidWg!titask learning therefore attempts tearn a biasby trying
that do not represent known properties of the problem at haffddentify the properties common to a set of related problems.
[23]. And model-based learners can be created that satisfyPifferent approaches to multitask learning have been pro-
constraints or characteristics specific to a problem (such R@sed over the last decade. In Section II, we review previous
convolutional neural networks which were designed to tackygork in this field. We then describe in Section Il a new multi-
pattern recognition problems) [14], [15]. All these techniquéé‘Sk learning method that is simple and efficient. As all other
require on the one hand, the availability of experts who cdpultitask learning methods, this method assumes that all the

provide accurate and detailed knowledge, and on the otfpblems or tasks being considered for learning belong to the
same domain or environment. But contrary to several multitask
learning methods that can only consider specific classes of so-
Manuscript received November 30, 2000; revised March 20, 2002 and Ijlel—uonsv the new method can be used to defm_e a wide variety
cember 12, 2002. of classes. Also, the new method can be applied to a large va-
The authors are with the Department of Informatique et Recherche Opéﬁéty of Iearning models while some methods can 0n|y be ap-
tionnelle, Université de Montréal, Montréal, QC H3C 3J7, Canada (e—mail:l. d | ks. The basi inciole of th hod
ghosn@iro.umontreal.ca; bengioy@iro.umontreal.ca). plied to neural networks. The basic principle of the new metho
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environment is represented by a manifold or a mixture of manieural networks trained to learn related tasks by simultaneously
folds in the hypothesis space. The manifold can be affine or nbtaining all the networks and forcing them to share their
Its dimensionality can vary. We will argue when presenting thfgst layers (i.e., the weights of the first layers are the same
concept that the smoothness and the dimensionality of the manross all the networks while the weights of the last layers
ifold define the capacity of the class of solutions. The positicere different across the networks). The weights of the shared
of the manifold in the hypothesis space is chosen based onlayers are updated using training examples sampled from all
analysis of the training examples of a group of related problertiwe tasks. And the weights of the nonshared layers of each
or tasks. Learning a particular problem amounts to searchingtwork are updated using only the training examples of the
the area defined by the manifold to select a solution repres¢ask being learned by the network. This method, which has
tative of the specific properties of the problem. This solution tseen successfully applied to neural networks, can only define
represented by a point on the manifold. The results of expegiparticular class of hypotheses or solutions. Indeed, as shown
ments using this new method as well as three other multitaiskFig. 1, this method can only learn environments or families
learning methods are presented in Section IV. The generalizgiich can be represented, in the hypothesis space, by an affine
tion performances of these methods are compared to the perford axis-aligned manifold. It should be noted that learning
mances of single-task learning whereby each task or problenairfamily consists in identifying a position of an affine and
a group of problems is learned separately and no class of sauis-aligned manifold that is suitable for learning the tasks
tions is defined in the hypothesis space (in that case, a learnbejng used to define the family [e.g., in Fig. 1(b), learning a
model is free to explore the entire hypothesis space insteadahily S corresponds to finding a position*, such that the
being restricted to a confined area). The experiments presentedesponding manifold contains solutions for the tasks that
in Section IV have been designed to illustrate the impact efolve in the environment represented by the family]. Once a
several factors on the generalization performance of multitafglmily of solutions has been learned, this family can be used
learning. A statistical analysis shows that the new multitask learn new tasks that evolve in the environment represented
learning method leads in all the learning contexts explored in thg the family, and that might become available in the future:
experiments to significant improvements in the generalization learn a new task evolving in the same environment, a neural
performance when compared to single-task learning. The statistwork is trained. The weights of the first layers of the network
tical analysis also shows that learning a bias using the new maite fixed and set to those of the shared layers when the family
titask learning method leads to generalization performances thais learned. Only the weights of the last layers are modified
are either better or at least comparable to the performances twbadapt to the training signals of the new task (i.e., in Fig. 1,
tained by other multitask learning techniques. We conclude Ségarning a new task is achieved by searching for a solution that
tion IV by describing tests that evaluate the “quality” of a bias drelongs to the family of solutionS. The position of the family
of a class of solutions learned by multitask learning techniquesis not modified when learning a new task).
This evaluation can be accomplished by using the learned biasn the family discovery method [19], a parameterized family
to learning novel tasks derived from the same environment. Afimodels is built. The family is represented in hypothesis space
analysis of the experimental results shows that when learningyan affine manifold or a mixture of affine manifolds. And
new task, the new method outperforms single-task learningthre class of solutions is represented by the neighborhood of the
most learning contexts and that its performance is either bett@mily (i.e., a solution to a problem has to be chosen as close
oris comparable to another multitask learning technique. In Sexs possible to the family). The dimensionality of the family de-
tion V, we discuss the notion of task similarity or task relateggends on the number of related tasks being learned. Indeed, the
ness and we conclude in Section VI. manifolds are defined by the top eigenvectors obtained in a prin-
cipal component analysis of the parameters (or solutions) of a
group of learning models trained on a group of related tasks.
II. MULTITASK LEARNING A variant of the expectation—maximization algorithm is used to
refit the parameters of the learners in the context of the family,

Several multitask learning methods have been developed osiad the family in the context of the parameters. As with the
the last few years. Although most of them are concerned witfiternal representation learning method, the manifolds learned
improving the generalization performance of learning modelsing the family discovery technique can be used to learn novel
trained on related tasks, some methods have different objectivesks that arise in the future: the position of the family in the hy-
Indeed, some methods are concerned with reducing the trainpwhesis space is kept fixed and a learner trained on a new task
time of learning models, while other methods aim at guiding the forced to select a solution close to the family. Examples of
decision-making process encountered when learning a task.families are given in Fig. 2.

Improving the generalization performancis generally  Other methods for improving the generalization performance
performed when a group of related tasks evolving in the sarhave been developed to learn weighted distance metrics [26] (for
environment is available. The training examples of all theassification problems) and to learn symbolic rules [8], [20].
tasks are used to define, in the hypothesis space, a class d®educing the training time of a learning modein general
hypotheses that is suitable for learning all the tasks in the groaghieved when a task or a problem that needs to be learned is
(or in general, for learning all the tasks in the environmentimilar or related to a task that has previously been learned. The
The internal representation learning method [3], [5], [10], [12Kolution of the previously learned task can be used to define the
[13], [24], [25] improves the generalization performance dinitial state” of the learning process for the new task [7], [17],
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Fig. 1. Evolution of the class of solutions or hypotheses as a function of the number of shared layers in the internal representation learning mgibttegis

space corresponds to the space of all possible parameters or weights of a neural network. Weight space is formed here of 3 axes, each represantigitbe se

of a layer in a neural network containing two hidden layers and an output laygrw », andw 3 represent the weights of the first hidden layer, the second hidden
layer, and the output layer, respectively. The points,( . . , ws) represent the solutions chosen for five tasks evolving in the same environment. The class of
solutions is represented 8yin the figures. The figures show the evolution of this class when (a) no layer is shared between the five networks trained on the five
available tasks; (b) the first hidden layer is shared; (c) both hidden layers are shared; and (d) both hidden layers and the output layer are shared.

[21], [22]. For example, in [21], the parameters of a neural net- 1ll. BIAS ACQUISITION THROUGH HYPOTHESIS SPACE
work trained on an old task are used to initialize the parameters RESTRICTION
of another neural network that needs to be trained on a new

e- . .
lated task. A Manifold Learning: General Approach

Guiding the decision-making process when learning a taskDomain-related knowledge defines properties that learning
consists in benefiting from previously acquired experience toodels, trained on tasks derived from the corresponding do-
make some choices concerning the learning process of neain, should comply with. These properties can be used to iden-
tasks. For example, in [4], a method is presented to chootiy, in the hypothesis space of a learner, a family or a class of
among several decision tree pruning technigues, one techniiypotheses that implement or verify them. Given that family, a
that is suited for a particular problem. Instead of trying alearner should only explore hypotheses that belong to it.
available pruning techniques (which can be a time-consumingWhen the domain-related knowledge is implicitly coded in
process) to prune a newly built decision tree, this methdlde training examples of several tasks derived from the same
suggests that the choice of the pruning technique should di@main, this knowledge needs to be extracted in order to de-
based on the generalization performances of the differdimte the family that will be used to guide the learning process.
pruning techniques when these techniques were used to prufidna extraction of the knowledge and the definition of the family
previously built decision tree for a related task. The techniqeaen be performed by analyzing the training examples of all the
that led to the best generalization performance on the pretasks to determine or identify the properties shared by all the
ously built decision tree should be used to prune the newly buittsks. These properties can be used to learn a restricted class of
decision tree. hypotheses.
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Fig. 2. Examples of families learned by the family discovery method: (a) two-dimensional affine fér{ity one-dimensional affine family, (c) nonaffine
family represented by a mixturg of two affine manifolds §;, S-), the manifolds being two-dimensional and having Gaussian influence functibns?.)
(representing the contribution of the manifolds to the mixture), and (d) nonaffine family represented by a foftts® affine manifolds 64, S-), the manifolds
being one-dimensional and having Gaussian influence functi@ns®-). The class of solutions corresponds to the neighborhood of the fa@imilhe size of
the neighborhood increases with the dimensionality of the family. And the “refinement” or “quality” of the family increases with the number dfisnardgfo
mixture. The pointsi1, . . . , ws) represent the solutions chosen for five tasks evolving in the environment represented by the family.

A family of hypotheses can be represented in the hypothesibereg represents the type or the form of the surfacdefines
space by a manifold or a mixture of manifolds on which lie athe location of the surface in the hypothesis space cancep-
the hypotheses that belong to the family. In this context, learningsents the position of the task-specific painton the surface.

a task or a problem that belongs to the domain represented by.earning the family requires choosingand estimatingp,
the family requires the selection of a point on the manifold @nd learning a tasi;, requires estimatingy,, (which can be
on the mixture of manifolds. The chosen point must corresponded to generate the corresponding valuevgfaccording to
to a hypothesis or a solution that embeds the problem-spec{flg).

properties implicit in the training examples of the corresponding When the family is a mixture of manifolds, it is defined as
problem. The form of the family depends on the domain or envisllows:
ronment. Different environments will require the use of different
families. Different environments will therefore require the use v v
of different manifold surfaces. _ _ _

1) Family Definition: Let IV represent the hypothesis space "~ (. cn) ;pn,wwn,” 2 Prgo (P 0n) (2)
of a learning model (e.g., for a neural network containivig
parametersiy = RM). When learning a particular tagk,, the whereV is the number of manifolds,, ., is the contribution of
learning model needs to choose a paintin this space. If this thevth manifold to the generation of the point,, g, is the form
point has to be selected on a surface defining a family, then of the vth manifold, ¢, is the location of theith manifold in
should be parameterized as follows: hypothesis space, ang, ,, is the position of a poin,, ,, on the

vth manifold. The contributiop,, ,, of thevth manifold should
Wy, = g (@, an) (1) be positive and the sum of the contributions of all manifolds for a

v=1
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Fig. 3. Examples of families learned by the manifold learning method using the model defined in (1). ASaimilgpresented by one manifold which can be
affine or nonaffine. The dimensionality and the position of the manifold in the hypothesis space depend on the environment being modeled.@&he points
represent the solutions chosen for five tasks evolving in the environment defined by the family. These points are chosen on the surface defiiyng the fa

particular pointv,, should be equal to one. These two conditions 2) Family Learning and Multitask LearningLearning the

can be met by defining,, ., as follows: locationyp of a surface implies examining the training examples
of several related tasks to determine a location that captures the
_exp(np) 3 underlying structure of the environment corresponding to these
Py = o 3) o ;
tasks. In order to understand how this is accomplished, we con-
L; exp (n.i) sider a set ofV related task§7,,} = (T1,...,Tx). All these

tasks evolve in the same environment. For supervised learning,
It should be noted that = {¢, } anda,, = ({an,v}, {€n,v}).  each task,, is represented by a set &f,, training examples
Examples of possible families that can be learned using thér .k, yni) } Wherez,,, is aninput and,, is the corresponding
models defined in (1) and (2) are presented in Figs. 3 and 4.desired output. Learning the family as well as learning solutions
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Fig. 4. Examples of families learned by the manifold learning method using the model defined in (2). ASamiigpresented by a mixture of manifolflS; }.
The number of manifolds, their dimensionalities and their positions in the hypothesis space depend on the environment being modeled.@he paints)(
represent the solutions chosen for five tasks evolving in the environment defined by the family.

forall NV tasks can be achieved by minimizing the following emwhere ¢y, . .., an, ¢) corresponds to the set of parameters that
pirical risk: need to be evaluated. Eaal) defines the position of the solu-
tion for task7,, on the surface defined by(p, ). C is a loss
function that evaluates the “quality” of the solution learned for
atask, and (wn, znr) = f(g(@, an), z,i) defines the predic-

];C(f(g((p’a")’x"k)’ynk) “) tion output for taskl,, when the input i, (e.g., if the learning

Remp (0517"'7aN7
N

©)
1 1 &
:N;K—n
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model is a neural networl{,(w,, z,) is the output provided by of the surface defined by(¢, -). Indeed, the class of solutions
the network when its parameters are equabtoand when the can be defined as follows:
input is equal tar,,;).

S . . . [ wn, ] [ P17
The minimization of the empirical risk leads to the determi- wz ) 0o
nation of parametersy(, ... ., %, ¢*) such that ’ .
* * wnaP = S@p (10)
(a17' O‘N:@ ) W, p+1 an7p+1
1 N 1 K, ?
:argmlnal....,aN,LpNZK— Zc(f@(@7an)7xnk)7ynk)- (5)
=l " k=l L Wn,M | L Qn Mo
wherew,, = (wn1,...,wn,n), M is the dimensionality of

In order to better grab the difference between multita%e hypothesis spac¥’, andp is the number of parameters

learning and single-task learning, we define the equivalent l‘ﬁfat are shared by the learning models (i.e., by the neural net-

(1), (4) and (5) in the case of single-task learning
(6)

C (f (O‘nvmnk) :ynk)

1
(1)

Wy, =y,
1
N

/ Ky

o
o) =y L%,
n=1 n

Remp (al, .
k=

K,
oy, :argminan K—n 1; C(f (an, Tuk) s Ynk)

Internal representation learning, therefore, considers that
tasks are related if they evolve in a common environment and
if they have a common internal representation. It is a special
case of manifold learning in which the manifold shape is affine
and axis-aligned. Manifold learning is less restrictive: tasks are
considered related only if they evolve in a common environ-
ment. The flexibility of the family definition in (1) allows for
the representation of various families (and therefore of various

®)

environments). The families can be affine or nonaffine. They
can also be axis-aligned or not aligned.

A comparison of (5) and (8) underscores the difference be-5) Manifold Learning versus Family Discoveryamily dis-
tween multitask learning and single-task learning: whereasGavery was introduced in Section Il and examples of the classes
the first case, the training examples of all the tasks are needédolutions that this method can represent were illustrated in
to define a family from which a solution for a particular task cafiig. 2. The objective function being minimized in family dis-
be chosen, in the second case, each task is learned separatelg@yRly can be defined as follows:
no transfer or exchange of knowledge is performed between the N
tasks (|.e._, the soll_mon for each_ task can be chosen m_the en)ﬁirggwn}7 S)= 1 Z <(wn ~ Proj (5, wn))2
hypothesis space instead of being chosen from a restricted cla N &~
of hypotheses).

3) Learning New TasksOnce a family has been learned
using the training examples &f tasks {7, . . . , Tn) [according
to the model defined in (5)], this family can be used to learn new ) _ )
tasks that belong to the same environment as\tasks used Where E({w,},5) is the error corresponding to a particular
to generate the family. Learning a new teEk., consists of choice of {w,} and S. S is the family (corresponding to
selecting a pointvy 1 on the surface defining the family. This@n affine manifold or a mixture of affine manifolds), and
point should correspond to a solution that is representativelofei (S, wn) is the projection ofv,, on S.

the properties specific to tadky., 1. Learning a new task thus 1here are two main differences between family discovery
consists in determining a positiarf, , , such that and manifold learning. The first difference lies in the fact that

family discovery uses mixtures of affine manifolds to represent
nonaffine families while manifold learning can implement non-

Ky

1
+K—n ; C(f (Wns k) U”k)> 1)

Q41 =argmin

Nt affine families without having to resort to the mixture of affine
1 K manifolds model. The second difference is related to the dimen-
7 > Cf (9(e*, ana) wnmak) yniak) (9)  sionality of the families learned by both methods: in family dis-
NAL =t covery, the surfacé is learned by applying a principal compo-

nent analysis to the poin{sv,, }. The dimensionality of the sur-

wherey* defines the location of the family, as computed in (5¥ace therefore depends on the numbeof tasks and is always

4) Manifold Learning versus Internal Representatiosmaller thatV. In manifold learning, the dimensionality of the
Learning: In Section Il, we described the internal represersurface is not constrained by the value'of This flexibility al-
tation learning method and we gave in Fig. 1 examples of thews the choice of dimensionalities that depend on the “type” of
classes of hypotheses that can be represented by this metpooperties defining an environment. Stringent environment-re-
A closer look at the class of solutions that can be considerkded properties call for the use of low-dimensional families (be-
by this method reveals that it corresponds to a particular choicause few hypotheses respect these properties) while lax proper-
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ties can be represented in hypothesis space by high-dimensideals used to learn the family is very small, a family having a
families (given that many hypotheses respect these propertidsyv level of smoothness might adapt to these problems and will
6) Capacity and Capacity ControlThere are two different not be able to generalize properly when new problems are to
capacities that need to be considered when discussing mui-learned. This happens when the family contains hypotheses
task learning. The first one is the capacity of a learning modgslat are specific to the original set of problems and that are not
when this model is forced to select a hypothesis that belongsneral enough to be representative of the environment. Another
to a family of hypotheses (i.e., the richnessfolfvhen varying factor to consider when learning new problems is the dimension-
wy). The second one is the capacity of the family (i.e., the riclality of the surface defining the family. Indeed, the dimension-
ness ofg when varyingy). Both capacities depend on the levedlity of the surface needs to be large enough in order to have a
of smoothness of the family and on the dimensionality of tHamily that contains solutions that are representative of the prop-
family. They increase when the smoothness of the family derties of the environment instead of only containing solutions
creases and/or when the dimensionality increases. The conthait are specific to the properties of the original set of problems.
of both capacities is therefore undertaken by controlling these
two factors. A control of the capacities is necessary when the Definition of an Affine Family

number of training examples representing a group of relatedin the experiments presented in the next section, we only con-
problems is small and/or when the number of problems is smajjgered affine manifolds to represent families of hypotheses. We
When the dimensionality of the surface defining the familymited ourselves to this form of surface for two reasons: we
increases, the capacity of the learning model increases. Thigisnted to verify if this simplest type of surface could be used
the effect of having a family containing a large number of hyt |earn an environment. And given that we wanted to perform a
potheses among which the learning model can select a hypaHrough analysis of multitask learning by comparing the man-
esis suitable for a particular problem. A large capacity for they|d learning method to four other methods and by examining
learning model can be considered when the number of trainifigs impact of several factors on the generalization performance
examples is large. But when this number is small, it is prefegf multitask learning, we had to limit the number of experiments
able to consider a smaller capacity. The number of training &erformed with each method.
amples also affects the quality of the family. If the training sets A 4-dimensional affine manifold defined in an M-dimen-

of a group of related problems are small, it is recommendedd@nal hypothesis space can be represented as follows [11]:
control the smoothness of the surface, because it will be difficult -

to identify the underlying structure of the environment from 3 /! [ 1 0 0 o 0 7
limited amount of information. The difficulty of learning envi- | -2 0 1 0 e 0 o
ronment-related properties when the training sets are small can : : : : : : aZ;
be alleviated when the number of available problems increasgs.,,, , | =| 0 0 o - 1 ’
The capacity of the learning models trained on a group fq,de’Jrl Oar11 Oap2 Oaps - Bapa
related tasks can also be controlled by forcing the models to . . . . . On d
choose hypotheses that are geometrically close to each other. - ) ' :
This principle, inspired from the “soft-weight sharing” method. “Wn,» | - Oy Oz Oz oo Onal
[18], can be implemented by considering a penalty term that [ BT
needs to be minimized along with the minimization of the em- B2
pirical risk: :
E (Oél, e, N, P, ’Y) T ﬂd (13)
1 N 1 K, /6(1-‘,-1
5 (5 X CU @) ) ) 5
n=1 k=1 L [)1]\[ i
+ Mg (g, an) — g(ep, ~y)||2> (12) whered defines the direction of the manifold amdrepresents

the offset of the manifold wrt the origin of the hypothesis space.

where £ is the objective function ang is the position of a The manifold can therefore be defined as; = g(p, a,) =
point on the surface defining the family. Learning in this contex,, + 3. The location of the manifold i = (6, 3).
forces the selection of solutions that are close to the point whosél'he capacity of a learning model that needs to select a hypoth-
positionisy. A is a constant whose value defines the “weight” oésis belonging to an affine family can be controlled by control-
the penalty term. This method can easily be extended to deflivgy the dimensionality of the family. Wheh= 0, the family is
several neighborhoods on the surface instead of defining omgpresented by one pointin the hypothesis space. This point cor-
one neighborhood [18]. responds t@. In that case, all learning models trained on related

The capacity of a family needs especially to be controllgaroblems are forced to select the same hypothesis= £.
when the family, learned using a group of related problemghis is complete parameter sharing. At the other extreme, when
might be used to learn new problems evolving in the same endi= M, the family represents the entire hypothesis space. This
ronment. In that case, it might be particularly important to cotis single-task learning.
trol the smoothness of the surface defining the family in order Given thatg is a point that is located on the affine mani-
to avoid “task-over-fitting” situations: if the number of prob-fold (the position of this point on the manifold is = 0 [i.e.,
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B =g(p,v) = g(v,0)]), we used this point as the one definingvas then performed to evaluate the differences in the general-
the neighborhood in the model introduced in (12). Given thigation performance of all five learning methods.

choice, the objective function defined in (12) becomes In the following section, we describe the data used to perform
the experiments. We then describe the experimental setting and
E(a1,...,an,0,08) the results obtained when applying single-task learning and the
1 N/ & four multitask learning techniques.
2 (5 X oU e o) )
N n=1 Kn 1;1

A. Problem Description

+MwWﬂw—ﬂW)

We work withinvariantBoolean functions that have Boolean

1 N En inputs and Boolean outputs such ttia output of any invariant
=N Z <K_ Z C(f((Ban+B),Tnk) s Ynk) function depends only on the number of “1”s in the input, re-
n=l k=1 gardless of their positiondhe input examples were defined in

{0,1}. Only those inputs containing 4 to 10 “1"s were con-
sidered. The remaining examples were discarded because the
number of available examples containing 0 to 3 “1"s and 11 to
14 *1"s was too small for performance evaluation. The number
of invariant Boolean functions with inputs containing four to ten
“1"s is 128. Two trivial functions were discarded: the function
The manifold learning method described in the previous seghose output is always 0 and the function whose output is al-
tion as well as the internal representation learning method [#jays 1.
[5] and the family discovery technique [19] described in Sec- All these Boolean functions evolve in an environment defined
tion Il are used to learimvariantBoolean functions. The resultsby the invariance property: whatever the function considered in
obtained when applying each method are analyzed and cdhis environment, the output of the function depends only on the
pared to single-task learning. They are also compared to a stfitmber of “1"s in the input, whatever their position in the input
gent form of multitask learning whereby an identical solution i¢ector.
learned for all the related tasks. This form is called learning a
common solutior?. It is a special case of the manifold learning gselection of the Data Sets and Groups of Tasks
method and the internal representation learning method where
the family is represented bysangle pointin hypothesis space. The generation of the groups of tasks and of the datasets is
For a thorough comparison to be conducted, it is important to déustrated in Fig. 5. 30 functions were chosen without replace-
termine all the factors that could have an impact on each of thegent among the 126 available Boolean functions. These func-
five methods. The simplest way to determine these factors isti@ns were used to generate on the one hand, ten groups of three
examine (4) for the manifold learning method, the internal refiinctions each and on the other hand, five groups of six func-
resentation learning method and the common solution learniii@ns each. The groups containing six functions correspond to
method (given that the last two methods are a special case oftit@ pairing of groups of three functions.
first one), (7) for single-task learning, and (11) for the family Five thousand input examples were chosen without replace-
discovery method. The performances of these methods depemht from the set of inputs containing 4 to 10 “1"s (a nearly
on the numbe/V of tasks and the numbé¥,, of training exam- equal number of inputs was selected from each input category
ples for each task;,. They depend on the quality of the trainingvhere a category is defined by the number of “1"s in the input).
setD,, = {(znk, ynk )} representing each tagk . They alsode- These examples were divided into five input sets of 1000 exam-
pend on the particular choice of the group of tagsks= {7,,} ples each. Each function (among the 30 chosen functions) had
(those tasks being chosen from the set of all tasks that deffiwe different datasets corresponding to the five input sets and
the environment). Finally, they depend ¢nthe type of func- their corresponding desired values.
tion implemented by a learning model to learn a task(e.qg., Each data set containing 1000 examples was divided as fol-
in the case of feedforward neural networl{scorresponds to lows: a test set of 500 examples, a validation set of 200 exam-
the output of a network and depends on the architecture of fhies, and a training set of at most 300 examples. In fact, three
network). The five learning methods differ in the type of familydifferent training set sizes were considered: 50, 100 and 300 ex-
they use to define the domain-related properties of the tasksamples. The size of the validation set was not modified in order
the case of single-task learning, the family corresponds to ttzecontrol the setting of the experiments. The validation set was
entire hypothesis space. For multitask learning, the type of thsed to perform model selection.
family depends on the multitask learning method that is used. This setup can be considered to analyze the impact of using
In order to compare all five learning methods, and in order ttifferent groups of task(;; }, {G;}) and the influence of the
analyze the influence exercised by K,,, D,,, andG, different size N of the groups (th&;; groups contain three functions or
values for each of these four factors were considered and eta$sks and the&7; groups contain six functions). It also allows
possible combination of the values of these factors was usedd@nalyze the effect of using five different datasets (each task
train each learning method. This design allows to test the ii;, has five datasetdf, 1, ..., Dy, 5)), and varying amounts of
teractions that exist between these factors. A statistical analyts&@ning examplesK,, = 50, 100 and 300 examples).

+/\||0an||2>. (14)

IV. EXPERIMENTS
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Definition of the data sets

5000 input examples
containing 4 to 10 "1"s
:
Division into 5 sets of
1000 examples each Tn t 50 w
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=
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Desired outputs for task Tl; l

Fig. 5. Experimental setting used to learn 30 invariant Boolean functibns (. , T50). The functions were used to generate ten groups of three tasks each, and
five groups of six tasks each. For each functidn five different datasets were generatef}..(i, ..., D, 5). Each data set contains 1000 examples, formed of
200 validation examples, 500 test examples, and 300 training examples which were used to form three training sets containing 50, 100, and 300 examples

C. Experimental Setting fication generalization performance of the selected models for
all the tasks in the group.

1) Single-Task LearningSingle-task learning consists 2) Affine Manifold Learning: The first multitask learning
in separately learning each task in a group of tasks. Neunakthod to be tested is the affine manifold learning method de-
networks were used to learn the tasks. For each combinatgmmibed in Section Ill. The model used in the experiments corre-
of the values ofN, K,,, D,,, and@, 23 different feedforward sponds to the one defined in (14). In order to apply this method,
neural network architectures were considered. The architectutwe hyper-parameters need to be specified: the dimensiorality
contained zero to four hidden layers with varying numbeus the affine manifold representing the family, and the “weight”
of units per hidden layer. This large number of architecturésof the penalty term. Both parameters were chosen based on
was considered in order to find a suitable architecture for eattte validation sets performances. Several manifold dimension-
function or task. Note that the apparently optimal architectusdities were tested which ranged from oneMb (where M is
can vary for different functions or tasks in a group. At no timéhe number of parameters defining a neural network) by steps
were the test sets used. Only the validation sets were useddbten. And four different values fok were chosen: 0, 0.01,
early stopping and for model selection based on the proportidri, and 1.0. 8 neural-network architectures among the set of
of classification errors (and on the mean squared error in ca@8sarchitectures used in single-task learning were selected. The
of equal proportions of classification errors). experimental setting can, therefore, be summarized as follows:

Once a separate model or neural network architecture wias each combination of the values of, K,,, D,,, andG, try
chosen for each task in a group of tasks, the generalization peight different neural-network architectures, and for each archi-
formance of the group was computed as the mean of the classéture, try each possible combinationi@nd\. The validation
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sets of the tasks i@ are used to choose the optimal triplee{- of the iterative process to initialize,,. This method led to
work architectured, \). a very slow (in some cases extremely slow) convergence of

3) Internal Representation Learningfhe internal represen- the iterative process. Choosing small valueshofomewhat
tation learning method [2], [5] was implemented by training sewaleviated the slowness of the process but it did not eliminate
eral identical neural networks on the tasks in a group and ltyWe therefore decided to try another method of initialization
forcing the networks to share their first layers. For each comvhich consisted in choosing “random” parameters. Although
bination of N, K,,, D,,, andG, all 23 neural network architec- the learning process became faster in general, there still were
tures used in the single-task learning experiments were testeglieral cases or several experiments that were characterized
For each architecturd, experiments were performed whichby a very slow convergence. We do not fully understand the
consisted in sharing the firélayers among the networks withfactors provoking this slowness. In some cases, we noticed
I =1,...,LandL is the number of hidden and output layers ithat the “optimal” parameters; obtained at a previous step
the chosen architecture. Sharing all the hidden and output layefshe iterative process had some large values which caused a
is equivalent to setting = 0 in the affine manifold learning saturation problem when using neural networks. Initializing
method. For each combination of, K,,, D,,, and@, the val- with random parameters helped eliminate part of the problem
idation sets of the tasks i@ were used to choose the optimakssociated to having large initial values. But the problem was
pair (hetwork architecture, numbeérof shared layers not completely solved because the maniféltd was defined

4) Family Discovery: Before explaining the experimentalusing the “optimal” parameters); obtained at a previous
setting used to test the family discovery method [19], th&ep, and its location in the hypothesis space was therefore
iterative process applied to generate a family in this methodiigluenced by the presence of large values. This is why using
going to be described. We will only consider the case in whigdmall values forA was helpful. But it should be noted that
the family is formed of one manifold (mixtures of manifoldghese observations were limited to the examination of a lim-
were not used because of the small size of the grotpss ited number of experiments. A thorough analysis should be
either equal to three or six). The family discovery method wasdertaken to understand the problem. The observed slowness
applied to a group of tasks according to the following genertdrced us to limit the number of experiments performed with
framework: the family discovery method.

1) Initialization: train separately each task contained in ~ The following experiments were performed using the family

the group of tasks (early stopping based on the validatiéiscovery method: for each combination¥f K, D,,, andG,
performance is used). At the end of the training proced§e neural network architecture that led to the smallest mean

the learning model trained on tagk is defined by a set validation error (i.e., the smallest group validation error) when
of “optimal” parametersu. each task is learned separately in Step 1), was chosen. This ar-

2) Family definition: perform a principal component analchitecture was chosen from the set of the 23 architectures used
ysis (PCA) on the “optima|" paramete{g};} and select in Single—task Iearning. Given the chosen architecture, two pa-
the eigenvectors corresponding to the largest eigenvalii@gneters needed to be specified: the numbef eigenvectors
obtained in the PCA. Use the chosen eigenvectors to désed to define the affine family, and the value\of-or a group

fine an affine manifolds* in hypothesis space. containingN tasks, the numbet of eigenvectors that can be
3) Update of the solutions: relearn each tdskby deter- considered iss = 1,..., N — 2. As for ), five different values
mining a new value ofv* chosen according to the fol-were considered: 0.001, 0.01, 0.1, 1, and 5. Validation set per-
lowing model: formance was used to choose a pair X).
5) Learning a Common SolutionWhen a group of related
w} = argmin,, <)\ (w,, — Proj (5*-/wn))2 tasksG = {T,} is available, learning a common solution can
be achieved according to the following model:

x
1 N K
7 C nydn s Yn 15 % . 1 1 -
i, 2 O U (o) ’”) B9 = argmin, 30 = 3O (f (w,0) ye)  (16)
B n=1"" k=1
where X\ is a constant representing the weight of th
penalty term, andS™ is the manifold learned at the All 23 neural network architectures used in the single-task

previous step. Early stopping is used when learfiizg learning experiments were considered. The choice of the “op-

4 Cqmpute the mean validation performance 9f the 9r0hal” architecture was based on the validation performance.
using the parametergu’ } learned at the previous step,

and compare this mean performance to the previous mggn Resylts

validation performances observed the last times the pre- istical vsis usi lized estimati .
vious step was applied. If early stopping needs to be per_A statistical analysis using a generalized estimating equations

formed, stop the learning process. Otherwise, go to sté%EE,) model _[2711 was perfprmed. _The factqrs considered
2 in this analysis were: 1) six learning algorithms, namely

single-task leaning (STL), affine manifold learning (AML),

T e e songing an el eprsentaton (L), famy dscovery
yap P). a random initialization of the parameters (FDR), family

R . . wi
of initialization of the parameters,,. Initially, we decided to
use the “optimal” parameters;, obtained at a previous step !The GEE model is an extension of the generalized linear models [16].

ffr that case, the solutiom}; for each task;, is: w} = w*.
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TABLE | when the affine manifold learning algorithm is used is
PERCENTAGE OF THE INCREASE OR more important than the decrease associated with the
DECREASE OF THEODDS OF MAKING A CLASSIFICATION ERRORWHEN A . .
MULTITASK LEARNING ALGORITHM 1S USED INSTEAD OF THESINGLE-TASK family discovery method.
LEARNING TECHNIQUE. ALL INCREASES ORDECREASESWHICH ARE 2) Apart from the case wheli€,, = 50 andN = 3, Iearning

DIFFERENT FROM ZERO IN A STATISTICALLY SIGNIFICANT WAY AT THE 5%

. an internal representation (LIR) leads to generalization
LEVEL ARE “FRAMED”

performances that are significantly better than single-task

] ] learning and that are comparable to the performances of
Learning Algorithm affine manifold learning.
K, N| AML LIR FDD FDR LCS 3) Family discovery with a random weight initialization
(FDR) generalizes better than family discovery with
3 018 -0.44 an initialization based on predetermined initial weights
50 FDD). The second method is in general comparable to
6 448 gingle)-task learning. ’ P
3 -6.24 4) L'earning a.common solution (LCS) is alwgys worse Fhan
100 single-task learning (STL). All other multitask learning
6 |[-55.59] [-61.74] [-13.58] [-18.86] [109.07] algorithms generalize better than single-task learning.
Also, the generalization performance of learning a
200 3 -19.46 common solution worsens when the numbBérf tasks
increases. For the other multitask learning algorithms, an
6 -35.85 increase inV leads to an improvement in the generaliza-

tion performance.

5) The classification error of the different learning al-
gorithms decreases when the numt€y, of training
examples increases.

6) ForK, = 300, affine manifold learning and internal rep-
resentation learning generalize perfectly (i.e., they do not
make any classification error).

7) WhenkK,, is very small, increasing the numh¥rof tasks

does not help substantialliv should probably be very

large to observe a difference in the generalization per-
formance. This is a consequence of the lack of informa-
tion in each training set. A lot of properties could be ex-

tracted from small training sets, some of them correct and

discovery with predetermined initial weights (FDD) (i.e.,
family discovery with initialization using the previous optimal
parameters), and learning a common solution (LCS); 2) the size
K, of the training sets; 3) the numbaf of tasks; 4) the choice
D,, of the datasets; and 5) the choiGeof the groups of tasks.

In what follows, we will present the main results concerning
the evaluation of the learning algorithms.

In order to perform a statistical analysis using a GEE model,
we had to separate the experimental results into six categories
corresponding to the different combinations &f,(, N). For
each possible combination, we considered the following GEE

model: . L
others false or too specific to the training examples. Iden-
E=1+A+G+D (17) tifying correct environment-related properties cannot be
achieved exceptin the presence of a large number of tasks
where E is the number of classification errord, is a factor to be able to distinguish the properties that are common
representing the learning algorithnds,is a factor representing to all tasks from the properties that are specific to each
the groups of tasks anBl is a factor representing the different training set.

training sets. No interaction between these three factors was8) The performances of multitask learning improve when the
considered because tests revealed that the interactions were not numberK,, of training examples increases. But the differ-
statistically significant. It should be noted that all three factors  ence between multitask learning and single-task learning
are categorical and that the model defined in (17) is treated as tends to level out whelk,, is large because the number
a generalized estimating equations model with a binomial re-  of training examples is large enough to allow single-task
sponse (the number of classification errors) and a logit link [16]. learning to perform well without having to use any kind

The results of the statistical analysis based on the model de-  of additional knowledge.

fined in (17) are presented in Table 1. These results show thewe conclude this section by discussing some observations
percentage of an increase or a decrease of the odds of makiR@gcerning the affine manifold learning method. It was men-
classification error when a multitask learning algorithm is useafbned in Section III-B that the capacity of a learning model
instead of the single-task learning algorithm [16]. And the gefhat is forced to select a hypothesis that belongs to the affine
eralization classification errors of all six learning algorithms ag@mily, can be controlled by controlling the dimensionality
illustrated in Fig. 6. The results presented in Table | and in Fig df the family. And it was suggested that when the number of
lead to the following conclusions: training examples is small, smaller valuesiahight be prefer-

1) Affine manifold learning (AML) and family discovery able, and when the number of training examples increases, the
with random initialization (FDR) are the only multitasknecessity to control the capacity of the learning model can be
learning algorithms that significantly generalize bettaelaxed. An analysis of the dimensionalities chosen (based on
than single-task learning (STL) for all choices df,(, the validation performances) when performing the experiments
N). But the decrease in the classification error observelscribed above confirm this observation. When the size of the
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Fig. 6. Mean generalization classification errors (in %) of six learning algorithms: Affine manifold learning (AML), learning an internal teficesériR),
family discovery with random initial weights (FDR), family discovery with predetermined initial weights (FDD) (i.e., family discovery withzati@n using the
previous optimal parameters), learning a common solution (LCS) and single-task learning (STL). The valuesaigherrespond to pairsk(,, V). For each
pair and for each learning algorithm, the displayed mean generalization classification error is the mean of the errors computed over all comhbinadinhG .
The first figure plots the results for all pair&’(,, V') while the remaining figures correspond to zooms of the first figure for different valu&s,q50,100,300).

training setskK,, = 50, there was a tendency to choose smathis neighborhood. This constraint led to generalization perfor-
values ofd. For K,, = 100, this tendency started to level outmances better than those observed when no neighborhood is de-
And for K,, = 300, it was possible to obtain zero classificatiorfined. An interesting observation was made when we analyzed
errors even whed was large. the relationship between the choice of the valug @the weight

We also mentioned in Section 1lI-B that the capacity of af the constraint) and the choice @#{the dimensionality of the
learning model can be controlled by identifying a neighborhoaadfine family). ForK,, = 50, small values of were chosen and
on the affine family and forcing all the learning models trainethere was no particular tendency observed in the choice(4f
on tasks evolving in the same environment to choose solutionvadues ofA were considered: 0, 0.01, 0.1, and 1.0). This means
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Fig. 7. Learning a new Boolean function using the families learned by the affine manifold learning méetpoih{s) and by the internal representation learning
technique (o points). Eachor o point in a plot corresponds to a family learned from a different group of tasks (ten groups of three tasks each and five groups of
six tasks each). In each plot, tkeaxis corresponds to the index of the group of tasksytlagis corresponds to the generalization classification error (in %). The
horizontal bar in each plot represents the generalization error obtained in single-task learning. The plots are organized as follows: frohotope@chaow
corresponds to learning the new Boolean function with different numbers of training examples (50,100,300), and from left to right, each copomdsoioe

using families that were obtained with training sets of 50, 100, and 300 examples.

that the capacity of a learning model was controlled by contrdhe original single-task learning experiments. The choice of the

ling d. For K,, = 100, no particular tendency was observed fotoptimal” architecture for each function, for each dataset, and

the choice ofd. But a clear tendency toward large values\of for each size of the training set, was based on the validation set
was apparent. In that case, the capacity was mostly controlf@eformance.

by controlling A. Then multitask learning was applied. For each learning
method, each new function and each data set33« 15 dif-
E. Learning to Learn ferent types of experiments were performed which correspond

A final set of experiments was performed to test whethd® all combinations of the size of the training set of the new
the family learned by a multitask learning method can be us&#hction (50,100,300), the size of the training sets that were
to learn novel tasks. Both the affine manifold learning methd¢sed when learning the family (50,100,300) and the number
and the internal representation learning method were test8f.9roups of tasks used to learn the family (there are ten
These methods were chosen because they had, in most c8&@4ps of three functions each, and five groups of six functions
considered in the previous section, comparable generalizatR#fh)- Leamning a new task or functidiv 1., using a family
performances and because they led to important improy@ready defined, can be undertaken according to the model
ments of the generalization performances when compareddﬁf'”ed in (9) for the internal representation learning method
single-task learning. and z_according to the following model for the affine manifold

Five different invariant Boolean functions were selected frof§arning method:
the set of (126—30) invariant Boolean functions (126 is the totala}kV
number of invariant Boolean functions and 30 is the number of

functions used in the previous section to generate several fami- R
( > C(f (0 ans1 + B onp1k)  UN41k)

1 = argming .,

lies). Each new Boolean function has five different datasets, as Kni1 &
before. k=t
The first experiments consisted in applying single-task + A ||0*aN+1||2> (18)

learning. For each new function and each data set,23

experiments were performed which correspond to using difthere N is the number of tasks used to generate the family,
ferent values for the size of the training set (50,100,300) of theg = (#*, 5*) defines the location of the family as computed
function and trying all 23 neural network architectures used when learning theV tasks, and3* is the position of a point
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Fig. 8. Learning a new Boolean function (other than the one considered in Fig. 7 ) using the families learned by the affine manifold learning peatis)d (
and by the internal representation learning technique (o points). Eaclo point in a plot corresponds to a family learned from a different group of tasks (ten
groups of three tasks each and five groups of six tasks each). In each plotagiecorresponds to the index of the group of tasksytlagis corresponds to the
generalization classification error (in %). The horizontal bar in each plot represents the generalization error obtained in single-taskHeaioitscare organized

as follows: from top to bottom, each row corresponds to learning the new Boolean function with different numbers of training examples (50, b@0200), a
left to right, each column corresponds to using families that were obtained with training sets of 50, 100, and 300 examples.

defining a neighborhood on the family. This point was deter- more representative of the environment than those learned

mined or chosen when learning the family and Méasks. using the internal representation learning method.
The experiments presented in this section were, therefore, per3) Whenk,, = 300, the difference between the generaliza-
formedtotestthqualityofafamily,i.e., totestif afamily learned tion performances of multitask learning and single-task

using a limited number of tasks evolving in an environmentcan  learning is very large. The generalization performances
be used to learn other tasks that evolve in the same environment.  of multitask learning are nearly perfect (the number of
Examples of the results that were obtained when learningtwo  classification errors is close to zero) even whi€g,; is
different new functions are illustrated in Figs. 7 and 8. A sum- very small K41 = 50).
mary of the percentage of classification errors observed when4) The generalization performances of both multitask
learning the new tasks is presented in Fig. 9. These results lead learning methods improve whek,,, N and Ky
to the following conclusions: increase.
1) WhenK,, issmall (K,, = 50), the family is learned using
a limited number of examples. In that case, single-task
learning outperforms both multitask learning methods
except in two cases: wheN = 6 and K1 = 50 and An important topic that needs to be addressed when dealing
100, affine manifold learning outperforms single-taskvith multitask learning is the notion of task similarity or task
learning. relatedness. We mentioned that for multitask learning to be ap-
2) WhenK,, = 100, both multitask learning methods out-plied, one needs to consider tasks evolving in a common en-
perform single-task learning except wh&ny,1 = 300 vironment. While this condition is imposed by all multitask
and N = 3, in which case single-task learning generlearning methods, some methods go a step further and assume
alizes better than learning an internal representation tsgecial types or special classes of similarity. For example, in
is outperformed by affine manifold learning. This differthe internal representation learning method, tasks are considered
ence between both multitask learning methods is in cosimilar if they have a common internal representation. Also, in a
trast with results presented in Table I. Indeed, in Table Variation of this method [24], [25], a third constraint is imposed:
both multitask learning methods have comparable perfdasks are considered similar if their solutions are geometrically
mances when learning a family but the families learnedose to each other in the solutions space (or in the hypothesis
using the affine manifold learning method seem to k&pace). This proximity constraintis imposed in several multitask

V. TASK SIMILARITY
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Fig. 9. The mean generalization classification errors (in %) when learning new tasks using families learned by the affine manifold learnimg(Alythrjth
the learning an internal representation (LIR) algorithm, and the single-task learning (STL) algorithm. In each figuexitheepresentd/ (three or six). Each
column corresponds to a different valuelof, (from left to right, &',, = 50, 100, and300) and each line corresponds to a different valuéaf . ; (from top to

bottom, K v, = 50,100, and300).

learning methods. In the manifold learning method, we only eexample, if we want to train learning models on medical data,
pect the tasks to evolve in the same environment. No other ceve should consult doctors or other medical professionals. Their
straints are imposed. input is useful to define an environment.

Considering that related tasks are those that evolve in aSome have suggested that the similarity of tasks should be
common environment leads to the following question: what &valuated empirically, that is by comparing the performances of
an environment and how can one be identified? We considerranltitask learning with those of single-task learning [6]. When
environment to be a grouping of functions or tasks that sharultitask learning outperforms single-task learning, it is con-
properties, that are affected by the same events, etc. Definingchrded that the tasks are similar and when multitask learning
appropriate environment needs to be done in close consultatitmes not outperform single-task learning, it is concluded that
and collaboration with an expert of the field being studied. Ftie tasks are not similar. We consider that such an approach
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can lead to misleading conclusions and that it does not takeExperiments were performed to analyze the performances of
into consideration the impact that several factors can have thie new method on a class of learning tasks. A statistical analysis
the generalization performances of multitask and single-taskowed that this method significantly outperforms single-task
learning. Let us consider a simple example: Bt,(I%, 73, Ty, learning. When compared to other multitask learning methods,
T, Tg) be six functions evolving in a common environment. Ifthe new approach is either better or at least comparable. Results
when learning only the first three taskg, ( 75, 73), multitask were also presented that illustrate the usefulness of the family
learning leads to poor generalization performances compareddarned by the new method when learning new tasks derived
single-task learning, the empirical evaluation of similarity wilfrom the same domain. An analysis showed that the new method
force us to conclude that these three tasks are not related. NowLifperforms single-task learning in most learning contexts and
all six tasks are learned simultaneously using multitask learnititat it is either better or at least comparable to another multitask
and if multitask learning outperforms single-task learning, wiearning method.
will conclude that all six tasks are similar. In the first case (i.e.,

learning only the first three tasks), the empirical evaluation of

similarity leads us to the conclusion that these tasks are not sim-

ilar, while in the second case (i.e., learning all six tasks), the em-

pirical evaluation of similarity leads us to conclude that all six [1] v.s. Abu-Mostafa, “Hints and the VC dimensiomyeural Comput.vol.
tasks are similar and therefore that the first three tasks are sim- 5, no. 2, pp. 278-288, 1993.

ilar. The conclusion in the first case is, therefore, in contradic- (2] J- Baxter, “Learning model bias,” idvances in Neural Informa-

. . . tion Processing Systemdl. Mozer, D. Touretzky, and M. Perrone,
tion with the conclusion of the second case. In fact, we canonly  ggs. cambridge, MA: MIT Press, 1996, vol. 8, pp. 169-175.
conclude that there is task similarity when multitask learning [38] ——, “A Bayesian/information theoretic model of learning to learn via

; _ ; ; ; ; multiple task sampling,Machine Learningvol. 28, pp. 7-40, 1997.
outperforms single-task learning. We think that a discussion Of[4] H. Bensusan, “Odd bites into bananas don’t make you blind—Learning
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