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Bias Learning, Knowledge Sharing
Joumana Ghosn and Yoshua Bengio

Abstract—Biasing properly the hypothesis space of a learner has
been shown to improve generalization performance. Methods for
achieving this goal have been proposed, that range from designing
and introducing a bias into a learner to automatically learning
the bias. Multitask learning methods fall into the latter category.
When several related tasks derived from the same domain are
available, these methods use the domain-related knowledge coded
in the training examples of all the tasks as a source of bias. We
extend some of the ideas presented in this field and describe a
new approach that identifies a family of hypotheses, represented
by a manifold in hypothesis space, that embodies domain-related
knowledge. This family is learned using training examples sam-
pled from a group of related tasks. Learning models trained on
these tasks are only allowed to select hypotheses that belong to
the family. We show that the new approach encompasses a large
variety of families which can be learned. A statistical analysis
on a class of related tasks is performed that shows significantly
improved performances when using this approach.

Index Terms—Bias learning, knowledge sharing, knowledge
transfer, learning to learn, multitask learning.

I. INTRODUCTION

M ODEL-FREE or nonparametric inference has been
shown to lead to poor generalization performance when

attempting to learn complex problems using small training
sets [9]. Improving the generalization performance can be
achieved by using prior knowledge defining known properties
of the problem that must be learned. This knowledge can be
used to define a preference for a certain class of solutions in
the space of all possible solutions or hypotheses that can be
selected by a learner. Many techniques have been developed
to incorporate prior knowledge in a learning model or in the
learning process. For example,artificial examples, representing
known properties about a problem, can be generated and added
to the training set, in order to emphasize the need to select
a solution that incorporates the properties embedded in the
additional examples [1]. Penalty terms can be designed that
penalize, during the learning process, the selection of solutions
that do not represent known properties of the problem at hand
[23]. And model-based learners can be created that satisfy
constraints or characteristics specific to a problem (such as
convolutional neural networks which were designed to tackle
pattern recognition problems) [14], [15]. All these techniques
require on the one hand, the availability of experts who can
provide accurate and detailed knowledge, and on the other
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hand, the possibility of “translating” the provided knowledge
into a form that can be used by learning models. Despite
many successes, designing an appropriate bias (i.e., defining
a preference for a particular class of solutions) remains a
complex problem.

The training examples of a problem and the prior knowledge
provided by experts include or encompass two distinct but com-
plementary categories of knowledge: on the one hand, they de-
fine properties that are specific to the problem being learned,
and on the other hand, they define properties that are more gen-
eral and belong to the domain or environment in which the
problem evolves (i.e., properties that are common to all the prob-
lems that evolve in the same environment). While the first group
of properties can only be used to learn a particular problem, the
second group can be used to learn any problem evolving in the
same domain or environment. Hence, the greater usefulness of
the second group of properties.

While prior knowledge defining properties of an environment
can be used to learn any problem evolving in the environment
(by using some of the methods aforementioned), the training ex-
amples of a particular problem could not until recently be used
to learn other problems evolving in the same environment. This
was due to the lack of methods capable of analyzing the training
examples of a problem and distinguishing between the prop-
erties specific to the corresponding problem and the properties
specific to the environment in which the problem evolves.Mul-
titask learningwas developed to overcome this shortcoming.
The purpose of this discipline is to use the training examples
of a group of related tasks evolving in the same environment,
to define, in the space of all possible solutions, a class of solu-
tions that represent or embody the domain or environment-re-
lated properties extracted from the training examples of all the
related tasks. It achieves this aim by searching in the hypothesis
space (or the space of all possible solutions) for a class of solu-
tions that is suited for learning all the tasks in the environment.
Multitask learning therefore attempts tolearn a biasby trying
to identify the properties common to a set of related problems.

Different approaches to multitask learning have been pro-
posed over the last decade. In Section II, we review previous
work in this field. We then describe in Section III a new multi-
task learning method that is simple and efficient. As all other
multitask learning methods, this method assumes that all the
problems or tasks being considered for learning belong to the
same domain or environment. But contrary to several multitask
learning methods that can only consider specific classes of so-
lutions, the new method can be used to define a wide variety
of classes. Also, the new method can be applied to a large va-
riety of learning models while some methods can only be ap-
plied to neural networks. The basic principle of the new method
is simple: the class of solutions embedding the properties of an
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environment is represented by a manifold or a mixture of mani-
folds in the hypothesis space. The manifold can be affine or not.
Its dimensionality can vary. We will argue when presenting this
concept that the smoothness and the dimensionality of the man-
ifold define the capacity of the class of solutions. The position
of the manifold in the hypothesis space is chosen based on an
analysis of the training examples of a group of related problems
or tasks. Learning a particular problem amounts to searching
the area defined by the manifold to select a solution represen-
tative of the specific properties of the problem. This solution is
represented by a point on the manifold. The results of experi-
ments using this new method as well as three other multitask
learning methods are presented in Section IV. The generaliza-
tion performances of these methods are compared to the perfor-
mances of single-task learning whereby each task or problem in
a group of problems is learned separately and no class of solu-
tions is defined in the hypothesis space (in that case, a learning
model is free to explore the entire hypothesis space instead of
being restricted to a confined area). The experiments presented
in Section IV have been designed to illustrate the impact of
several factors on the generalization performance of multitask
learning. A statistical analysis shows that the new multitask
learning method leads in all the learning contexts explored in the
experiments to significant improvements in the generalization
performance when compared to single-task learning. The statis-
tical analysis also shows that learning a bias using the new mul-
titask learning method leads to generalization performances that
are either better or at least comparable to the performances ob-
tained by other multitask learning techniques. We conclude Sec-
tion IV by describing tests that evaluate the “quality” of a bias or
of a class of solutions learned by multitask learning techniques.
This evaluation can be accomplished by using the learned bias
to learning novel tasks derived from the same environment. An
analysis of the experimental results shows that when learning a
new task, the new method outperforms single-task learning in
most learning contexts and that its performance is either better
or is comparable to another multitask learning technique. In Sec-
tion V, we discuss the notion of task similarity or task related-
ness and we conclude in Section VI.

II. M ULTITASK LEARNING

Several multitask learning methods have been developed over
the last few years. Although most of them are concerned with
improving the generalization performance of learning models
trained on related tasks, some methods have different objectives.
Indeed, some methods are concerned with reducing the training
time of learning models, while other methods aim at guiding the
decision-making process encountered when learning a task.

Improving the generalization performanceis generally
performed when a group of related tasks evolving in the same
environment is available. The training examples of all the
tasks are used to define, in the hypothesis space, a class of
hypotheses that is suitable for learning all the tasks in the group
(or in general, for learning all the tasks in the environment).
The internal representation learning method [3], [5], [10], [12],
[13], [24], [25] improves the generalization performance of

neural networks trained to learn related tasks by simultaneously
training all the networks and forcing them to share their
first layers (i.e., the weights of the first layers are the same
across all the networks while the weights of the last layers
are different across the networks). The weights of the shared
layers are updated using training examples sampled from all
the tasks. And the weights of the nonshared layers of each
network are updated using only the training examples of the
task being learned by the network. This method, which has
been successfully applied to neural networks, can only define
a particular class of hypotheses or solutions. Indeed, as shown
in Fig. 1, this method can only learn environments or families
which can be represented, in the hypothesis space, by an affine
and axis-aligned manifold. It should be noted that learning
a family consists in identifying a position of an affine and
axis-aligned manifold that is suitable for learning the tasks
being used to define the family [e.g., in Fig. 1(b), learning a
family corresponds to finding a position such that the
corresponding manifold contains solutions for the tasks that
evolve in the environment represented by the family]. Once a
family of solutions has been learned, this family can be used
to learn new tasks that evolve in the environment represented
by the family, and that might become available in the future:
to learn a new task evolving in the same environment, a neural
network is trained. The weights of the first layers of the network
are fixed and set to those of the shared layers when the family
was learned. Only the weights of the last layers are modified
to adapt to the training signals of the new task (i.e., in Fig. 1,
learning a new task is achieved by searching for a solution that
belongs to the family of solutions. The position of the family

is not modified when learning a new task).
In the family discovery method [19], a parameterized family

of models is built. The family is represented in hypothesis space
by an affine manifold or a mixture of affine manifolds. And
the class of solutions is represented by the neighborhood of the
family (i.e., a solution to a problem has to be chosen as close
as possible to the family). The dimensionality of the family de-
pends on the number of related tasks being learned. Indeed, the
manifolds are defined by the top eigenvectors obtained in a prin-
cipal component analysis of the parameters (or solutions) of a
group of learning models trained on a group of related tasks.
A variant of the expectation–maximization algorithm is used to
refit the parameters of the learners in the context of the family,
and the family in the context of the parameters. As with the
internal representation learning method, the manifolds learned
using the family discovery technique can be used to learn novel
tasks that arise in the future: the position of the family in the hy-
pothesis space is kept fixed and a learner trained on a new task
is forced to select a solution close to the family. Examples of
families are given in Fig. 2.

Other methods for improving the generalization performance
have been developed to learn weighted distance metrics [26] (for
classification problems) and to learn symbolic rules [8], [20].

Reducing the training time of a learning modelis in general
achieved when a task or a problem that needs to be learned is
similar or related to a task that has previously been learned. The
solution of the previously learned task can be used to define the
“initial state” of the learning process for the new task [7], [17],
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Fig. 1. Evolution of the class of solutions or hypotheses as a function of the number of shared layers in the internal representation learning method: the hypothesis
space corresponds to the space of all possible parameters or weights of a neural network. Weight space is formed here of 3 axes, each representing the set of weights
of a layer in a neural network containing two hidden layers and an output layer:w ,w , andw represent the weights of the first hidden layer, the second hidden
layer, and the output layer, respectively. The points (w ; . . . ; w ) represent the solutions chosen for five tasks evolving in the same environment. The class of
solutions is represented byS in the figures. The figures show the evolution of this class when (a) no layer is shared between the five networks trained on the five
available tasks; (b) the first hidden layer is shared; (c) both hidden layers are shared; and (d) both hidden layers and the output layer are shared.

[21], [22]. For example, in [21], the parameters of a neural net-
work trained on an old task are used to initialize the parameters
of another neural network that needs to be trained on a new re-
lated task.

Guiding the decision-making process when learning a task
consists in benefiting from previously acquired experience to
make some choices concerning the learning process of new
tasks. For example, in [4], a method is presented to choose,
among several decision tree pruning techniques, one technique
that is suited for a particular problem. Instead of trying all
available pruning techniques (which can be a time-consuming
process) to prune a newly built decision tree, this method
suggests that the choice of the pruning technique should be
based on the generalization performances of the different
pruning techniques when these techniques were used to prune a
previously built decision tree for a related task. The technique
that led to the best generalization performance on the previ-
ously built decision tree should be used to prune the newly built
decision tree.

III. B IAS ACQUISITION THROUGH HYPOTHESISSPACE

RESTRICTION

A. Manifold Learning: General Approach

Domain-related knowledge defines properties that learning
models, trained on tasks derived from the corresponding do-
main, should comply with. These properties can be used to iden-
tify, in the hypothesis space of a learner, a family or a class of
hypotheses that implement or verify them. Given that family, a
learner should only explore hypotheses that belong to it.

When the domain-related knowledge is implicitly coded in
the training examples of several tasks derived from the same
domain, this knowledge needs to be extracted in order to de-
fine the family that will be used to guide the learning process.
The extraction of the knowledge and the definition of the family
can be performed by analyzing the training examples of all the
tasks to determine or identify the properties shared by all the
tasks. These properties can be used to learn a restricted class of
hypotheses.
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Fig. 2. Examples of families learned by the family discovery method: (a) two-dimensional affine familyS, (b) one-dimensional affine familyS, (c) nonaffine
family represented by a mixtureS of two affine manifolds (S , S ), the manifolds being two-dimensional and having Gaussian influence functions (G , G )
(representing the contribution of the manifolds to the mixture), and (d) nonaffine family represented by a mixtureS of two affine manifolds (S ,S ), the manifolds
being one-dimensional and having Gaussian influence functions (G , G ). The class of solutions corresponds to the neighborhood of the familyS. The size of
the neighborhood increases with the dimensionality of the family. And the “refinement” or “quality” of the family increases with the number of manifolds in a
mixture. The points (w ; . . . ; w ) represent the solutions chosen for five tasks evolving in the environment represented by the family.

A family of hypotheses can be represented in the hypothesis
space by a manifold or a mixture of manifolds on which lie all
the hypotheses that belong to the family. In this context, learning
a task or a problem that belongs to the domain represented by
the family requires the selection of a point on the manifold or
on the mixture of manifolds. The chosen point must correspond
to a hypothesis or a solution that embeds the problem-specific
properties implicit in the training examples of the corresponding
problem. The form of the family depends on the domain or envi-
ronment. Different environments will require the use of different
families. Different environments will therefore require the use
of different manifold surfaces.

1) Family Definition: Let represent the hypothesis space
of a learning model (e.g., for a neural network containing
parameters, ). When learning a particular task , the
learning model needs to choose a point in this space. If this
point has to be selected on a surface defining a family, then
should be parameterized as follows:

(1)

where represents the type or the form of the surface,defines
the location of the surface in the hypothesis space, andrep-
resents the position of the task-specific pointon the surface.

Learning the family requires choosingand estimating ,
and learning a task requires estimating (which can be
used to generate the corresponding value ofaccording to
(1)).

When the family is a mixture of manifolds, it is defined as
follows:

(2)

where is the number of manifolds, is the contribution of
the th manifold to the generation of the point , is the form
of the th manifold, is the location of the th manifold in
hypothesis space, and is the position of a point on the
th manifold. The contribution of the th manifold should

be positive and the sum of the contributions of all manifolds for a



752 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 4, JULY 2003

Fig. 3. Examples of families learned by the manifold learning method using the model defined in (1). A familyS is represented by one manifold which can be
affine or nonaffine. The dimensionality and the position of the manifold in the hypothesis space depend on the environment being modeled. The points (w ; . . . ; w )
represent the solutions chosen for five tasks evolving in the environment defined by the family. These points are chosen on the surface defining the family.

particular point should be equal to one. These two conditions
can be met by defining as follows:

(3)

It should be noted that and .
Examples of possible families that can be learned using the

models defined in (1) and (2) are presented in Figs. 3 and 4.

2) Family Learning and Multitask Learning:Learning the
location of a surface implies examining the training examples
of several related tasks to determine a location that captures the
underlying structure of the environment corresponding to these
tasks. In order to understand how this is accomplished, we con-
sider a set of related tasks . All these
tasks evolve in the same environment. For supervised learning,
each task is represented by a set of training examples

where is an input and is the corresponding
desired output. Learning the family as well as learning solutions
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Fig. 4. Examples of families learned by the manifold learning method using the model defined in (2). A familyS is represented by a mixture of manifoldsfS g.
The number of manifolds, their dimensionalities and their positions in the hypothesis space depend on the environment being modeled. The points (w ; . . . ; w )
represent the solutions chosen for five tasks evolving in the environment defined by the family.

for all tasks can be achieved by minimizing the following em-
pirical risk:

(4)

where ( ) corresponds to the set of parameters that
need to be evaluated. Each defines the position of the solu-
tion for task on the surface defined by . is a loss
function that evaluates the “quality” of the solution learned for
a task, and defines the predic-
tion output for task when the input is (e.g., if the learning



754 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 4, JULY 2003

model is a neural network, is the output provided by
the network when its parameters are equal toand when the
input is equal to ).

The minimization of the empirical risk leads to the determi-
nation of parameters ( ) such that

(5)

In order to better grab the difference between multitask
learning and single-task learning, we define the equivalent of
(1), (4) and (5) in the case of single-task learning

(6)

(7)

(8)

A comparison of (5) and (8) underscores the difference be-
tween multitask learning and single-task learning: whereas in
the first case, the training examples of all the tasks are needed
to define a family from which a solution for a particular task can
be chosen, in the second case, each task is learned separately and
no transfer or exchange of knowledge is performed between the
tasks (i.e., the solution for each task can be chosen in the entire
hypothesis space instead of being chosen from a restricted class
of hypotheses).

3) Learning New Tasks:Once a family has been learned
using the training examples of tasks ( ) [according
to the model defined in (5)], this family can be used to learn new
tasks that belong to the same environment as thetasks used
to generate the family. Learning a new task consists of
selecting a point on the surface defining the family. This
point should correspond to a solution that is representative of
the properties specific to task . Learning a new task thus
consists in determining a position such that

(9)

where defines the location of the family, as computed in (5).
4) Manifold Learning versus Internal Representation

Learning: In Section II, we described the internal represen-
tation learning method and we gave in Fig. 1 examples of the
classes of hypotheses that can be represented by this method.
A closer look at the class of solutions that can be considered
by this method reveals that it corresponds to a particular choice

of the surface defined by . Indeed, the class of solutions
can be defined as follows:

...

...

...

...

(10)

where , is the dimensionality of
the hypothesis space , and is the number of parameters
that are shared by the learning models (i.e., by the neural net-
works) trained on the tasks . and

.
Internal representation learning, therefore, considers that

tasks are related if they evolve in a common environment and
if they have a common internal representation. It is a special
case of manifold learning in which the manifold shape is affine
and axis-aligned. Manifold learning is less restrictive: tasks are
considered related only if they evolve in a common environ-
ment. The flexibility of the family definition in (1) allows for
the representation of various families (and therefore of various
environments). The families can be affine or nonaffine. They
can also be axis-aligned or not aligned.

5) Manifold Learning versus Family Discovery:Family dis-
covery was introduced in Section II and examples of the classes
of solutions that this method can represent were illustrated in
Fig. 2. The objective function being minimized in family dis-
covery can be defined as follows:

(11)

where is the error corresponding to a particular
choice of and . is the family (corresponding to
an affine manifold or a mixture of affine manifolds), and

is the projection of on .
There are two main differences between family discovery

and manifold learning. The first difference lies in the fact that
family discovery uses mixtures of affine manifolds to represent
nonaffine families while manifold learning can implement non-
affine families without having to resort to the mixture of affine
manifolds model. The second difference is related to the dimen-
sionality of the families learned by both methods: in family dis-
covery, the surface is learned by applying a principal compo-
nent analysis to the points . The dimensionality of the sur-
face therefore depends on the numberof tasks and is always
smaller that . In manifold learning, the dimensionality of the
surface is not constrained by the value of. This flexibility al-
lows the choice of dimensionalities that depend on the “type” of
properties defining an environment. Stringent environment-re-
lated properties call for the use of low-dimensional families (be-
cause few hypotheses respect these properties) while lax proper-
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ties can be represented in hypothesis space by high-dimensional
families (given that many hypotheses respect these properties).

6) Capacity and Capacity Control:There are two different
capacities that need to be considered when discussing multi-
task learning. The first one is the capacity of a learning model
when this model is forced to select a hypothesis that belongs
to a family of hypotheses (i.e., the richness ofwhen varying

). The second one is the capacity of the family (i.e., the rich-
ness of when varying ). Both capacities depend on the level
of smoothness of the family and on the dimensionality of the
family. They increase when the smoothness of the family de-
creases and/or when the dimensionality increases. The control
of both capacities is therefore undertaken by controlling these
two factors. A control of the capacities is necessary when the
number of training examples representing a group of related
problems is small and/or when the number of problems is small.

When the dimensionality of the surface defining the family
increases, the capacity of the learning model increases. This is
the effect of having a family containing a large number of hy-
potheses among which the learning model can select a hypoth-
esis suitable for a particular problem. A large capacity for the
learning model can be considered when the number of training
examples is large. But when this number is small, it is prefer-
able to consider a smaller capacity. The number of training ex-
amples also affects the quality of the family. If the training sets
of a group of related problems are small, it is recommended to
control the smoothness of the surface, because it will be difficult
to identify the underlying structure of the environment from a
limited amount of information. The difficulty of learning envi-
ronment-related properties when the training sets are small can
be alleviated when the number of available problems increases.

The capacity of the learning models trained on a group of
related tasks can also be controlled by forcing the models to
choose hypotheses that are geometrically close to each other.
This principle, inspired from the “soft-weight sharing” method
[18], can be implemented by considering a penalty term that
needs to be minimized along with the minimization of the em-
pirical risk:

(12)

where is the objective function and is the position of a
point on the surface defining the family. Learning in this context
forces the selection of solutions that are close to the point whose
position is . is a constant whose value defines the “weight” of
the penalty term. This method can easily be extended to define
several neighborhoods on the surface instead of defining only
one neighborhood [18].

The capacity of a family needs especially to be controlled
when the family, learned using a group of related problems,
might be used to learn new problems evolving in the same envi-
ronment. In that case, it might be particularly important to con-
trol the smoothness of the surface defining the family in order
to avoid “task-over-fitting” situations: if the number of prob-

lems used to learn the family is very small, a family having a
low level of smoothness might adapt to these problems and will
not be able to generalize properly when new problems are to
be learned. This happens when the family contains hypotheses
that are specific to the original set of problems and that are not
general enough to be representative of the environment. Another
factor to consider when learning new problems is the dimension-
ality of the surface defining the family. Indeed, the dimension-
ality of the surface needs to be large enough in order to have a
family that contains solutions that are representative of the prop-
erties of the environment instead of only containing solutions
that are specific to the properties of the original set of problems.

B. Definition of an Affine Family

In the experiments presented in the next section, we only con-
sidered affine manifolds to represent families of hypotheses. We
limited ourselves to this form of surface for two reasons: we
wanted to verify if this simplest type of surface could be used
to learn an environment. And given that we wanted to perform a
thorough analysis of multitask learning by comparing the man-
ifold learning method to four other methods and by examining
the impact of several factors on the generalization performance
of multitask learning, we had to limit the number of experiments
performed with each method.

A -dimensional affine manifold defined in an M-dimen-
sional hypothesis space can be represented as follows [11]:

...

...

...
...

...
...

...

...
...

...
...

...

...

...

...

(13)

where defines the direction of the manifold andrepresents
the offset of the manifold wrt the origin of the hypothesis space.
The manifold can therefore be defined as:

. The location of the manifold is .
The capacity of a learning model that needs to select a hypoth-

esis belonging to an affine family can be controlled by control-
ling the dimensionality of the family. When , the family is
represented by one point in the hypothesis space. This point cor-
responds to . In that case, all learning models trained on related
problems are forced to select the same hypothesis: .
This is complete parameter sharing. At the other extreme, when

, the family represents the entire hypothesis space. This
is single-task learning.

Given that is a point that is located on the affine mani-
fold (the position of this point on the manifold is [i.e.,
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]), we used this point as the one defining
the neighborhood in the model introduced in (12). Given this
choice, the objective function defined in (12) becomes

(14)

IV. EXPERIMENTS

The manifold learning method described in the previous sec-
tion as well as the internal representation learning method [2],
[5] and the family discovery technique [19] described in Sec-
tion II are used to learninvariantBoolean functions. The results
obtained when applying each method are analyzed and com-
pared to single-task learning. They are also compared to a strin-
gent form of multitask learning whereby an identical solution is
learned for all the related tasks. This form is called learning a
common solution. It is a special case of the manifold learning
method and the internal representation learning method where
the family is represented by asingle pointin hypothesis space.
For a thorough comparison to be conducted, it is important to de-
termine all the factors that could have an impact on each of these
five methods. The simplest way to determine these factors is to
examine (4) for the manifold learning method, the internal rep-
resentation learning method and the common solution learning
method (given that the last two methods are a special case of the
first one), (7) for single-task learning, and (11) for the family
discovery method. The performances of these methods depend
on the number of tasks and the number of training exam-
ples for each task . They depend on the quality of the training
set representing each task . They also de-
pend on the particular choice of the group of tasks
(those tasks being chosen from the set of all tasks that define
the environment). Finally, they depend on, the type of func-
tion implemented by a learning model to learn a task(e.g.,
in the case of feedforward neural networks,corresponds to
the output of a network and depends on the architecture of the
network). The five learning methods differ in the type of family
they use to define the domain-related properties of the tasks. In
the case of single-task learning, the family corresponds to the
entire hypothesis space. For multitask learning, the type of the
family depends on the multitask learning method that is used.

In order to compare all five learning methods, and in order to
analyze the influence exercised by, , , and , different
values for each of these four factors were considered and each
possible combination of the values of these factors was used to
train each learning method. This design allows to test the in-
teractions that exist between these factors. A statistical analysis

was then performed to evaluate the differences in the general-
ization performance of all five learning methods.

In the following section, we describe the data used to perform
the experiments. We then describe the experimental setting and
the results obtained when applying single-task learning and the
four multitask learning techniques.

A. Problem Description

We work withinvariantBoolean functions that have Boolean
inputs and Boolean outputs such thatthe output of any invariant
function depends only on the number of “1”s in the input, re-
gardless of their positions. The input examples were defined in

. Only those inputs containing 4 to 10 “1”s were con-
sidered. The remaining examples were discarded because the
number of available examples containing 0 to 3 “1”s and 11 to
14 “1”s was too small for performance evaluation. The number
of invariant Boolean functions with inputs containing four to ten
“1”s is 128. Two trivial functions were discarded: the function
whose output is always 0 and the function whose output is al-
ways 1.

All these Boolean functions evolve in an environment defined
by the invariance property: whatever the function considered in
this environment, the output of the function depends only on the
number of “1”s in the input, whatever their position in the input
vector.

B. Selection of the Data Sets and Groups of Tasks

The generation of the groups of tasks and of the datasets is
illustrated in Fig. 5. 30 functions were chosen without replace-
ment among the 126 available Boolean functions. These func-
tions were used to generate on the one hand, ten groups of three
functions each and on the other hand, five groups of six func-
tions each. The groups containing six functions correspond to
the pairing of groups of three functions.

Five thousand input examples were chosen without replace-
ment from the set of inputs containing 4 to 10 “1”s (a nearly
equal number of inputs was selected from each input category
where a category is defined by the number of “1”s in the input).
These examples were divided into five input sets of 1000 exam-
ples each. Each function (among the 30 chosen functions) had
five different datasets corresponding to the five input sets and
their corresponding desired values.

Each data set containing 1000 examples was divided as fol-
lows: a test set of 500 examples, a validation set of 200 exam-
ples, and a training set of at most 300 examples. In fact, three
different training set sizes were considered: 50, 100 and 300 ex-
amples. The size of the validation set was not modified in order
to control the setting of the experiments. The validation set was
used to perform model selection.

This setup can be considered to analyze the impact of using
different groups of tasks ( , ) and the influence of the
size of the groups (the groups contain three functions or
tasks and the groups contain six functions). It also allows
to analyze the effect of using five different datasets (each task

has five datasets ( )), and varying amounts of
training examples ( , 100 and 300 examples).
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Fig. 5. Experimental setting used to learn 30 invariant Boolean functions (T ; . . . ; T ). The functions were used to generate ten groups of three tasks each, and
five groups of six tasks each. For each functionT , five different datasets were generated: (D ; . . . ; D ). Each data set contains 1000 examples, formed of
200 validation examples, 500 test examples, and 300 training examples which were used to form three training sets containing 50, 100, and 300 examples.

C. Experimental Setting

1) Single-Task Learning:Single-task learning consists
in separately learning each task in a group of tasks. Neural
networks were used to learn the tasks. For each combination
of the values of , , , and , 23 different feedforward
neural network architectures were considered. The architectures
contained zero to four hidden layers with varying numbers
of units per hidden layer. This large number of architectures
was considered in order to find a suitable architecture for each
function or task. Note that the apparently optimal architecture
can vary for different functions or tasks in a group. At no time
were the test sets used. Only the validation sets were used for
early stopping and for model selection based on the proportion
of classification errors (and on the mean squared error in cases
of equal proportions of classification errors).

Once a separate model or neural network architecture was
chosen for each task in a group of tasks, the generalization per-
formance of the group was computed as the mean of the classi-

fication generalization performance of the selected models for
all the tasks in the group.

2) Affine Manifold Learning:The first multitask learning
method to be tested is the affine manifold learning method de-
scribed in Section III. The model used in the experiments corre-
sponds to the one defined in (14). In order to apply this method,
two hyper-parameters need to be specified: the dimensionality
of the affine manifold representing the family, and the “weight”

of the penalty term. Both parameters were chosen based on
the validation sets performances. Several manifold dimension-
alities were tested which ranged from one to(where is
the number of parameters defining a neural network) by steps
of ten. And four different values for were chosen: 0, 0.01,
0.1, and 1.0. 8 neural-network architectures among the set of
23 architectures used in single-task learning were selected. The
experimental setting can, therefore, be summarized as follows:
for each combination of the values of, , , and , try
eight different neural-network architectures, and for each archi-
tecture, try each possible combination ofand . The validation
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sets of the tasks in are used to choose the optimal triplet (net-
work architecture, , ).

3) Internal Representation Learning:The internal represen-
tation learning method [2], [5] was implemented by training sev-
eral identical neural networks on the tasks in a group and by
forcing the networks to share their first layers. For each com-
bination of , , , and , all 23 neural network architec-
tures used in the single-task learning experiments were tested.
For each architecture, experiments were performed which
consisted in sharing the firstlayers among the networks with

and is the number of hidden and output layers in
the chosen architecture. Sharing all the hidden and output layers
is equivalent to setting in the affine manifold learning
method. For each combination of, , , and , the val-
idation sets of the tasks in were used to choose the optimal
pair (network architecture, numberof shared layers).

4) Family Discovery: Before explaining the experimental
setting used to test the family discovery method [19], the
iterative process applied to generate a family in this method is
going to be described. We will only consider the case in which
the family is formed of one manifold (mixtures of manifolds
were not used because of the small size of the groups:is
either equal to three or six). The family discovery method was
applied to a group of tasks according to the following general
framework:

1) Initialization: train separately each task contained in
the group of tasks (early stopping based on the validation
performance is used). At the end of the training process,
the learning model trained on task is defined by a set
of “optimal” parameters .

2) Family definition: perform a principal component anal-
ysis (PCA) on the “optimal” parameters and select
the eigenvectors corresponding to the largest eigenvalues
obtained in the PCA. Use the chosen eigenvectors to de-
fine an affine manifold in hypothesis space.

3) Update of the solutions: relearn each taskby deter-
mining a new value of chosen according to the fol-
lowing model:

(15)

where is a constant representing the weight of the
penalty term, and is the manifold learned at the
previous step. Early stopping is used when learning.

4) Compute the mean validation performance of the group
using the parameters learned at the previous step,
and compare this mean performance to the previous mean
validation performances observed the last times the pre-
vious step was applied. If early stopping needs to be per-
formed, stop the learning process. Otherwise, go to step
2.

When applying the family discovery method, we were con-
fronted by a problem at Step 3). We needed to choose a method
of initialization of the parameters . Initially, we decided to
use the “optimal” parameters obtained at a previous step

of the iterative process to initialize . This method led to
a very slow (in some cases extremely slow) convergence of
the iterative process. Choosing small values ofsomewhat
alleviated the slowness of the process but it did not eliminate
it. We therefore decided to try another method of initialization
which consisted in choosing “random” parameters. Although
the learning process became faster in general, there still were
several cases or several experiments that were characterized
by a very slow convergence. We do not fully understand the
factors provoking this slowness. In some cases, we noticed
that the “optimal” parameters obtained at a previous step
of the iterative process had some large values which caused a
saturation problem when using neural networks. Initializing
with random parameters helped eliminate part of the problem
associated to having large initial values. But the problem was
not completely solved because the manifold was defined
using the “optimal” parameters obtained at a previous
step, and its location in the hypothesis space was therefore
influenced by the presence of large values. This is why using
small values for was helpful. But it should be noted that
these observations were limited to the examination of a lim-
ited number of experiments. A thorough analysis should be
undertaken to understand the problem. The observed slowness
forced us to limit the number of experiments performed with
the family discovery method.

The following experiments were performed using the family
discovery method: for each combination of, , , and ,
the neural network architecture that led to the smallest mean
validation error (i.e., the smallest group validation error) when
each task is learned separately in Step 1), was chosen. This ar-
chitecture was chosen from the set of the 23 architectures used
in single-task learning. Given the chosen architecture, two pa-
rameters needed to be specified: the numberof eigenvectors
used to define the affine family, and the value of. For a group
containing tasks, the number of eigenvectors that can be
considered is . As for , five different values
were considered: 0.001, 0.01, 0.1, 1, and 5. Validation set per-
formance was used to choose a pair (, ).

5) Learning a Common Solution:When a group of related
tasks is available, learning a common solution can
be achieved according to the following model:

(16)

In that case, the solution for each task is: .
All 23 neural network architectures used in the single-task

learning experiments were considered. The choice of the “op-
timal” architecture was based on the validation performance.

D. Results

A statistical analysis using a generalized estimating equations
(GEE) model [27]1 was performed. The factors considered
in this analysis were: 1) six learning algorithms, namely
single-task leaning (STL), affine manifold learning (AML),
learning an internal representation (LIR), family discovery
with a random initialization of the parameters (FDR), family

1The GEE model is an extension of the generalized linear models [16].
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TABLE I
PERCENTAGE OF THE INCREASE OR

DECREASE OF THEODDS OFMAKING A CLASSIFICATION ERRORWHEN A

MULTITASK LEARNING ALGORITHM IS USED INSTEAD OF THESINGLE-TASK

LEARNING TECHNIQUE. ALL INCREASES ORDECREASESWHICH ARE

DIFFERENTFROM ZERO IN A STATISTICALLY SIGNIFICANT WAY AT THE 5%
LEVEL ARE “FRAMED”

discovery with predetermined initial weights (FDD) (i.e.,
family discovery with initialization using the previous optimal
parameters), and learning a common solution (LCS); 2) the size

of the training sets; 3) the number of tasks; 4) the choice
of the datasets; and 5) the choiceof the groups of tasks.

In what follows, we will present the main results concerning
the evaluation of the learning algorithms.

In order to perform a statistical analysis using a GEE model,
we had to separate the experimental results into six categories
corresponding to the different combinations of (, ). For
each possible combination, we considered the following GEE
model:

(17)

where is the number of classification errors, is a factor
representing the learning algorithms,is a factor representing
the groups of tasks and is a factor representing the different
training sets. No interaction between these three factors was
considered because tests revealed that the interactions were not
statistically significant. It should be noted that all three factors
are categorical and that the model defined in (17) is treated as
a generalized estimating equations model with a binomial re-
sponse (the number of classification errors) and a logit link [16].

The results of the statistical analysis based on the model de-
fined in (17) are presented in Table I. These results show the
percentage of an increase or a decrease of the odds of making a
classification error when a multitask learning algorithm is used
instead of the single-task learning algorithm [16]. And the gen-
eralization classification errors of all six learning algorithms are
illustrated in Fig. 6. The results presented in Table I and in Fig. 6
lead to the following conclusions:

1) Affine manifold learning (AML) and family discovery
with random initialization (FDR) are the only multitask
learning algorithms that significantly generalize better
than single-task learning (STL) for all choices of (,

). But the decrease in the classification error observed

when the affine manifold learning algorithm is used is
more important than the decrease associated with the
family discovery method.

2) Apart from the case where and , learning
an internal representation (LIR) leads to generalization
performances that are significantly better than single-task
learning and that are comparable to the performances of
affine manifold learning.

3) Family discovery with a random weight initialization
(FDR) generalizes better than family discovery with
an initialization based on predetermined initial weights
(FDD). The second method is in general comparable to
single-task learning.

4) Learning a common solution (LCS) is always worse than
single-task learning (STL). All other multitask learning
algorithms generalize better than single-task learning.
Also, the generalization performance of learning a
common solution worsens when the numberof tasks
increases. For the other multitask learning algorithms, an
increase in leads to an improvement in the generaliza-
tion performance.

5) The classification error of the different learning al-
gorithms decreases when the number of training
examples increases.

6) For , affine manifold learning and internal rep-
resentation learning generalize perfectly (i.e., they do not
make any classification error).

7) When is very small, increasing the numberof tasks
does not help substantially. should probably be very
large to observe a difference in the generalization per-
formance. This is a consequence of the lack of informa-
tion in each training set. A lot of properties could be ex-
tracted from small training sets, some of them correct and
others false or too specific to the training examples. Iden-
tifying correct environment-related properties cannot be
achieved except in the presence of a large number of tasks
to be able to distinguish the properties that are common
to all tasks from the properties that are specific to each
training set.

8) The performances of multitask learning improve when the
number of training examples increases. But the differ-
ence between multitask learning and single-task learning
tends to level out when is large because the number
of training examples is large enough to allow single-task
learning to perform well without having to use any kind
of additional knowledge.

We conclude this section by discussing some observations
concerning the affine manifold learning method. It was men-
tioned in Section III-B that the capacity of a learning model
that is forced to select a hypothesis that belongs to the affine
family, can be controlled by controlling the dimensionality
of the family. And it was suggested that when the number of
training examples is small, smaller values ofmight be prefer-
able, and when the number of training examples increases, the
necessity to control the capacity of the learning model can be
relaxed. An analysis of the dimensionalities chosen (based on
the validation performances) when performing the experiments
described above confirm this observation. When the size of the
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Fig. 6. Mean generalization classification errors (in %) of six learning algorithms: Affine manifold learning (AML), learning an internal representation (LIR),
family discovery with random initial weights (FDR), family discovery with predetermined initial weights (FDD) (i.e., family discovery with initialization using the
previous optimal parameters), learning a common solution (LCS) and single-task learning (STL). The values on thex-axis correspond to pairs: (K ,N ). For each
pair and for each learning algorithm, the displayed mean generalization classification error is the mean of the errors computed over all combinations ofD andG.
The first figure plots the results for all pairs (K ,N ) while the remaining figures correspond to zooms of the first figure for different values ofK (50,100,300).

training sets , there was a tendency to choose small
values of . For , this tendency started to level out.
And for , it was possible to obtain zero classification
errors even when was large.

We also mentioned in Section III-B that the capacity of a
learning model can be controlled by identifying a neighborhood
on the affine family and forcing all the learning models trained
on tasks evolving in the same environment to choose solutions in

this neighborhood. This constraint led to generalization perfor-
mances better than those observed when no neighborhood is de-
fined. An interesting observation was made when we analyzed
the relationship between the choice of the value of(the weight
of the constraint) and the choice of(the dimensionality of the
affine family). For , small values of were chosen and
there was no particular tendency observed in the choice of(4
values of were considered: 0, 0.01, 0.1, and 1.0). This means
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Fig. 7. Learning a new Boolean function using the families learned by the affine manifold learning method (points) and by the internal representation learning
technique (o points). Eachor o point in a plot corresponds to a family learned from a different group of tasks (ten groups of three tasks each and five groups of
six tasks each). In each plot, thex-axis corresponds to the index of the group of tasks, they-axis corresponds to the generalization classification error (in %). The
horizontal bar in each plot represents the generalization error obtained in single-task learning. The plots are organized as follows: from top to bottom, each row
corresponds to learning the new Boolean function with different numbers of training examples (50,100,300), and from left to right, each column corresponds to
using families that were obtained with training sets of 50, 100, and 300 examples.

that the capacity of a learning model was controlled by control-
ling . For , no particular tendency was observed for
the choice of . But a clear tendency toward large values of
was apparent. In that case, the capacity was mostly controlled
by controlling .

E. Learning to Learn

A final set of experiments was performed to test whether
the family learned by a multitask learning method can be used
to learn novel tasks. Both the affine manifold learning method
and the internal representation learning method were tested.
These methods were chosen because they had, in most cases
considered in the previous section, comparable generalization
performances and because they led to important improve-
ments of the generalization performances when compared to
single-task learning.

Five different invariant Boolean functions were selected from
the set of (126–30) invariant Boolean functions (126 is the total
number of invariant Boolean functions and 30 is the number of
functions used in the previous section to generate several fami-
lies). Each new Boolean function has five different datasets, as
before.

The first experiments consisted in applying single-task
learning. For each new function and each data set, 323
experiments were performed which correspond to using dif-
ferent values for the size of the training set (50,100,300) of the
function and trying all 23 neural network architectures used in

the original single-task learning experiments. The choice of the
“optimal” architecture for each function, for each dataset, and
for each size of the training set, was based on the validation set
performance.

Then multitask learning was applied. For each learning
method, each new function and each data set, 33 15 dif-
ferent types of experiments were performed which correspond
to all combinations of the size of the training set of the new
function (50,100,300), the size of the training sets that were
used when learning the family (50,100,300) and the number
of groups of tasks used to learn the family (there are ten
groups of three functions each, and five groups of six functions
each). Learning a new task or function , using a family
already defined, can be undertaken according to the model
defined in (9) for the internal representation learning method
and according to the following model for the affine manifold
learning method:

(18)

where is the number of tasks used to generate the family,
defines the location of the family as computed

when learning the tasks, and is the position of a point
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Fig. 8. Learning a new Boolean function (other than the one considered in Fig. 7 ) using the families learned by the affine manifold learning method (points)
and by the internal representation learning technique (o points). Eachor o point in a plot corresponds to a family learned from a different group of tasks (ten
groups of three tasks each and five groups of six tasks each). In each plot, thex-axis corresponds to the index of the group of tasks, they-axis corresponds to the
generalization classification error (in %). The horizontal bar in each plot represents the generalization error obtained in single-task learning.The plots are organized
as follows: from top to bottom, each row corresponds to learning the new Boolean function with different numbers of training examples (50,100,300), and from
left to right, each column corresponds to using families that were obtained with training sets of 50, 100, and 300 examples.

defining a neighborhood on the family. This point was deter-
mined or chosen when learning the family and thetasks.

The experiments presented in this section were, therefore, per-
formed to test thequalityofa family, i.e., to test if a family learned
using a limited number of tasks evolving in an environment can
be used to learn other tasks that evolve in the same environment.

Examples of the results that were obtained when learning two
different new functions are illustrated in Figs. 7 and 8. A sum-
mary of the percentage of classification errors observed when
learning the new tasks is presented in Fig. 9. These results lead
to the following conclusions:

1) When is small ( ), the family is learned using
a limited number of examples. In that case, single-task
learning outperforms both multitask learning methods
except in two cases: when and and

, affine manifold learning outperforms single-task
learning.

2) When , both multitask learning methods out-
perform single-task learning except when
and , in which case single-task learning gener-
alizes better than learning an internal representation but
is outperformed by affine manifold learning. This differ-
ence between both multitask learning methods is in con-
trast with results presented in Table I. Indeed, in Table I,
both multitask learning methods have comparable perfor-
mances when learning a family but the families learned
using the affine manifold learning method seem to be

more representative of the environment than those learned
using the internal representation learning method.

3) When , the difference between the generaliza-
tion performances of multitask learning and single-task
learning is very large. The generalization performances
of multitask learning are nearly perfect (the number of
classification errors is close to zero) even when is
very small ( ).

4) The generalization performances of both multitask
learning methods improve when , and
increase.

V. TASK SIMILARITY

An important topic that needs to be addressed when dealing
with multitask learning is the notion of task similarity or task
relatedness. We mentioned that for multitask learning to be ap-
plied, one needs to consider tasks evolving in a common en-
vironment. While this condition is imposed by all multitask
learning methods, some methods go a step further and assume
special types or special classes of similarity. For example, in
the internal representation learning method, tasks are considered
similar if they have a common internal representation. Also, in a
variation of this method [24], [25], a third constraint is imposed:
tasks are considered similar if their solutions are geometrically
close to each other in the solutions space (or in the hypothesis
space). This proximity constraint is imposed in several multitask
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Fig. 9. The mean generalization classification errors (in %) when learning new tasks using families learned by the affine manifold learning algorithm (AML),
the learning an internal representation (LIR) algorithm, and the single-task learning (STL) algorithm. In each figure, thex axis representsN (three or six). Each
column corresponds to a different value ofK (from left to right,K = 50; 100; and300) and each line corresponds to a different value ofK (from top to
bottom,K = 50;100; and300).

learning methods. In the manifold learning method, we only ex-
pect the tasks to evolve in the same environment. No other con-
straints are imposed.

Considering that related tasks are those that evolve in a
common environment leads to the following question: what is
an environment and how can one be identified? We consider an
environment to be a grouping of functions or tasks that share
properties, that are affected by the same events, etc. Defining an
appropriate environment needs to be done in close consultation
and collaboration with an expert of the field being studied. For

example, if we want to train learning models on medical data,
we should consult doctors or other medical professionals. Their
input is useful to define an environment.

Some have suggested that the similarity of tasks should be
evaluated empirically, that is by comparing the performances of
multitask learning with those of single-task learning [6]. When
multitask learning outperforms single-task learning, it is con-
cluded that the tasks are similar and when multitask learning
does not outperform single-task learning, it is concluded that
the tasks are not similar. We consider that such an approach
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can lead to misleading conclusions and that it does not take
into consideration the impact that several factors can have on
the generalization performances of multitask and single-task
learning. Let us consider a simple example: let (, , , ,

, ) be six functions evolving in a common environment. If,
when learning only the first three tasks (, , ), multitask
learning leads to poor generalization performances compared to
single-task learning, the empirical evaluation of similarity will
force us to conclude that these three tasks are not related. Now, if
all six tasks are learned simultaneously using multitask learning
and if multitask learning outperforms single-task learning, we
will conclude that all six tasks are similar. In the first case (i.e.,
learning only the first three tasks), the empirical evaluation of
similarity leads us to the conclusion that these tasks are not sim-
ilar, while in the second case (i.e., learning all six tasks), the em-
pirical evaluation of similarity leads us to conclude that all six
tasks are similar and therefore that the first three tasks are sim-
ilar. The conclusion in the first case is, therefore, in contradic-
tion with the conclusion of the second case. In fact, we can only
conclude that there is task similarity when multitask learning
outperforms single-task learning. We think that a discussion of
task similarity should be divided into two different parts:

1) The process involved in the first part is to determine if
tasks are similar. Task similarity should be decided based
on the feedback of experts knowledgeable in the field
being studied.

2) The process involved in the second part is to determine if
multitask learning can discover and benefit from the sim-
ilarity. As we saw in the previous sections, the answer to
this topic depends on several factors like the size of the
training sets used to learn a family, the number of tasks
available, the choice of the multitask learning algorithm,
etc. If multitask learning does not outperform single-task
learning, one cannot conclude that the tasks are not sim-
ilar. It might be that not all conditions necessary to ob-
tain good generalization performances were met when ap-
plying multitask learning.

VI. CONCLUSION

A new multitask learning method was described that consists
in learning a family of hypotheses embodying domain-related
knowledge. The family is represented by a manifold or a mix-
ture of manifolds defined in hypothesis space. The direction and
location of the manifold or the mixture of manifolds are learned
using training examples sampled from a group of related tasks
derived from the same domain. This new approach constrains
learning models trained on related tasks to select hypotheses that
belong to the family.

Contrary to several multitask learning techniques that can
only consider particular classes of families (i.e., particular forms
of manifolds), the new approach can be used to learn a wide va-
riety of families. No restraints are imposed on the form of man-
ifolds that can be learned. Also, contrary to several multitask
learning techniques that can only be applied to neural networks,
the framework of the new approach is general enough to be ap-
plied to a wide range of learning models.

Experiments were performed to analyze the performances of
the new method on a class of learning tasks. A statistical analysis
showed that this method significantly outperforms single-task
learning. When compared to other multitask learning methods,
the new approach is either better or at least comparable. Results
were also presented that illustrate the usefulness of the family
learned by the new method when learning new tasks derived
from the same domain. An analysis showed that the new method
outperforms single-task learning in most learning contexts and
that it is either better or at least comparable to another multitask
learning method.
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