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Abstract

Biasing the hypothesis space of a learner has been shown to improve generalisation performances�
Methods for achieving this goal have been proposed� that range from deriving and introducing a
bias into a learner to automatically learning the bias� In the latter case� most methods learn the
bias by simultaneously training several related tasks derived from the same domain and imposing
constraints on their parameters� We extend some of the ideas presented in this �eld and describe
a new model that parameterizes the parameters of each task as a function of an a�ne manifold
de�ned in parameter space and a point lying on the manifold� An analysis of variance on a class
of learning tasks is performed that shows some signi�cantly improved performances when using
the model�

� Introduction
It has been suggested that the bias�variance dilemma can be circumvented by willfully introducing �bias� �in
the sense of a structure restricting the class of functions� in a learning model� representing known properties
about the problem being tackled� Several techniques have been proposed to achieve this goal for speci�c
applications� But deriving and introducing a bias into a model is still a very di�cult and complex task�

Recently� methods have been suggested that are useful when the bias cannot be easily incorporated in
the learning model or when it is not explicit enough to be used� These techniques consist in automatically
learning the bias and can be used when several related tasks derived from the same domain are available�
The models being trained to learn the tasks are forced to share some �knowledge� about the domain by
imposing constraints on the parameters of each model� An example in which these techniques can be applied
is the problem of predicting the stock returns of di	erent companies operating within the same economic
sector� Besides being in
uenced by general factors related to the economy� these stocks are also a	ected
by developments speci�c to the sector� The analysis of the stocks can be improved by allowing the models
learning about the di	erent stocks to share the knowledge they acquire when learning from examples of each
stock ���

� Multi�Task Learning
Multi�task learning methods consider that a learner is embedded in an environment where it faces many
related tasks� and that knowlege acquired when learning a task can be used to better learn a new task�
Several methods of knowledge transfer between models trained on di	erent but related tasks derived from
the same domain have been proposed� They could be divided into two main categories� sequential vs parallel
knowledge transfer methods� and methods that aim at reducing learning time vs methods that are used to
improve the generalisation performance�

A sequential transfer of knowledge is used when the related tasks are not all available at the same time�
The domain information acquired by a task at a given time is used in the training of tasks that arise in the
future� Each model is therefore trained separately and only future tasks can bene�t from the information of
previous tasks� This kind of transfer has been mostly used to reduce the training time of new models�

A parallel transfer of knowledge is used when all the related tasks are available at the same time� All the
models that are to learn the tasks are trained simultaneously thus allowing each model to bene�t from the
information acquired by all the other models� Most of the methods of parallel transfer aim at improving the
generalisation performance�

Some methods of knowledge transfer were derived for use in speci�c applications� Examples include the
�Discriminability�Based Transfer� method �� and the �Task Clustering� method ��� Both methods are
intended to be used for classi�cation problems� The �rst method allows a sequential transfer that reduces



learning time for new tasks while the second one performs a parallel knowlege transfer and has been shown
to improve generalisation performances for robot navigation problems�

One of the most general�purpose methods �for which several variants exist� consists in learning an internal
representation using similar tasks ��� �� It consists in training simultaneously several neural networks and
forcing them to share their �rst hidden layers �i�e� the weights of the �rst hidden layers are the same across
all the networks�� while their remaining layers are distinct� The shared layers serve as a mutual source of
inductive bias and the output of the last shared layer is considered to be the learned internal representation�
This method can be viewed as projecting the examples of a task in a new space that is easier to analyze� The
projection is based on a transform learned using examples sampled from all the tasks� This method can be
extended as follows� instead of sharing the �rst hidden layers� these layers can be distinct� and the last layers
could be shared� Such a system would be interpreted as applying a di	erent preprocessing to the examples
of di	erent tasks and then applying the same analysis to preprocessed examples of di	erent tasks ���

In the �family discovery� method ��� a parameterized family of models is built� Several learners are
trained separately on di	erent but related tasks and their parameters are used to construct a mixture of
a�ne manifolds of parameters� The manifolds are de�ned by the top eigenvectors obtained in a principal
component analysis �PCA� of the parameters of the learners� A variant of the Expectation Maximization
algorithm is then used to re�t the parameters of the learners in the context of the mixture of manifolds� and
the mixture of manifolds in the context of the parameters�

� Bias Learning Using An A�ne Manifold In Parameter Space
We introduce in this section a general framework for bias learning which consists in re�parameterizing the
parameters Pi of each model or learner i as follows� Pi � f��� �i�� where Pi � R

n� � � � Rn� � �i � R
n� with

n� � n�� and n� corresponds to the parameter space dimensionality� Each learner i in this model is de�ned
by a set of �private� parameters �i which are transformed according to a chosen function f de�ned by a
set of �shared� parameters �� The �shared� parameters are updated using examples sampled from all the
tasks while the �private� parameters are updated using examples only sampled from the corresponding task�
Such a framework requires the user to choose the type of the function f � The choice of f can be guided by
apriori knowledge about the domain or can be generic if such knowledge is not available or cannot be easily
translated as a function�

We propose a generic choice of f that constrains the parameters Pi of each learner i to lie on a surface
de�ned in the parameter space and whose dimensionality is smaller than that of the parameter space� In
that case� the �private� parameters of each model represent the �position� of a point on the surface and the
surface whose de�ning parameters are learned using all the tasks� is considered to embed knowledge about
the domain� The simplest form for the surface is an a�ne manifold� More complex choices include mixtures
of a�ne manifolds or non�linear surfaces� A trade�o	 between the �complexity� of the surface on the one
hand and the number of available examples for each task� as well as the nature of the tasks on the other
hand must be considered in order to avoid over��tting related problems�

In the remainder of this paper� an a�ne manifold is considered to de�ne a parameter sub�space or surface�
A description of the corresponding model is provided in the following subsections� Results using this model
on a class of learning tasks are provided in section �� The generalization of this model to more complex
surfaces is straightforward�

��� De�ning The Global Model�s Parameters

Let Pi � fPijg� j � �� ���� N represent the N parameters of a model i� For a neural network� Pi will represent
all the N weights and biases of the network� Here� all the models i are assumed to have the same architecture
and the same number of parameters�

In order to de�ne a d�dimensional a�ne manifold �where d � N� in an N �dimensional parameter space�
�N � d�d parameters are needed to de�ne the direction of the manifold� and N parameters are necessary to
specify its o	set with respect to the origin of the parameters coordinate system�

The relationship between such a manifold and the parameters Pi which must lie on it can be expressed
as follows�

Pi � ��i � � ���



where � is a N � d dimensional matrix whose �rst d rows correspond to a d� d identity matrix and whose
remaining N � d rows specify the direction of the manifold� �i is a d�dimensional vector representing the
�rst d coordinates of a point that lies on the manifold de�ned by the � parameters and running through the
origin of the coordinate space� � is the o	set vector�

Equation � can therefore be written as��
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The entire model de�ned by the manifold and the individual learning models can therefore be character�
ized as having �N � d�d �N parameters de�ning the manifold and shared across all the individual models�
and d �private� parameters for each model i� which can be used to generate the parameters Pi of model i
using equation ��

The manifold corresponds to the bias introduced in the hypothesis space of each model� The size of this
space is reduced to an a�ne surface whose dimensionality d � N � The direction and o	set parameters are
updated using all the tasks�

Another source of bias can be introduced in the system� a proximity constraint can be imposed on
the parameter vectors Pi of the di	erent models in order to reduce the area on the manifold in which the
parameters Pi are dispersed� This condition can further reduce the hypothesis space�

The number of parameters de�ning the manifold reaches a peak value of �N � d����d��� when N � d���
leading to a high capacity� But the �e	ective capacity� of the global model is reduced because the parameters
of the manifold are updated using examples sampled from all the tasks� Also� the e	ective capacity is further
reduced when a proximity constraint on the Pi parameters is applied� Results presented in section � will
illustrate these ideas�

��� Cost Function And Derivatives

Let fXik� fi�Xik�g� k � �� ����K be a set of K examples corresponding to the input and desired values for
task i� Assuming that M tasks are being trained simultaneously� the cost function for the overall model can
be divided into two terms� the �rst one computing the mean squared error between the desired outputs for
each task i and the outputs generated by the corresponding model i� and the second one representing the
proximity constraint on the Pi parameters by pushing them toward the point ��
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where Eik is the squared error corresponding to input example Xik� Yik is the output obtained when pre�
senting example Xik to model i� and � is a constant speci�ed by the user and used to weigh the proximity
constraint� � is therefore used to shift the manifold so that it is not obliged to run through the origin and
it is also used as an attraction center towards which the generated parameters Pi of each model should be
approaching� Note that the second term in equation � can be viewed as performing a weight decay on the
parameters de�ning the direction of the manifold and on the private parameters of each model�

Given the cost function de�ned in equation �� the derivatives that can be used in a gradient descent
method to update the values of the private and shared parameters are�
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where the subscripts on the left side of the equations are as follows� i � �� ����M � j � d��� ���� N � l � �� ���� d�
and n � �� ���� N �

� Experiment
The model described in the previous section was trained to learn �invariant� boolean functions whose outputs
depend only on the number of ���s in the input� regardless of their positions� The input examples are de�ned
in f�� �g��� Only those inputs containing � to �� ���s were considered� The remaining inputs were discarded
because the number of available examples was too small for performance evaluation� ���� examples were
randomly sampled without replacement from the set of considered inputs� And all the ��� non�trivial �i�e�
whose output isn�t always � or � for all inputs� invariant boolean functions that can be de�ned on inputs
containing � to �� ���s were generated�

This data was used to perform an analysis of variance to compare the performances of the new method
with those obtained when no sharing and therefore no bias learning is performed� It was also used to compare
the performances of the new model to those obtained when using the �family discovery� model �� and the
model for learning internal representations ��� �� The following setting was used� the ���� examples were
divided in � disjoint sets of ���� examples each� Each set was divided into ��� examples used for testing
generalisation performances and performing the analysis of variance� ��� examples for a validation set used
for early stopping when training and for model selection� and ��� examples used for training�

Although there always were ��� training examples available� each experiment was repeated using �
di	erent sizes for the training set� ��� ���� and ���� Changing the size of the training set was used to test
the performance of each method when the size of the training data varies� The size of the validation set
wasn�t modi�ed in order to control the setting of the experiment�

�� functions were chosen without replacement from the set of ��� available functions� In the �rst part
of the experiment� all �� functions were trained separately� �� di	erent neural network architectures were
considered for each function� Each architecture was trained using the � di	erent data sets� and for each data
set� the � di	erent sizes for the training sets were used� The architectures contained � to � hidden layers�
with varying number of units per hidden layer� This large number of architectures was considered in order
to �nd a suitable architecture for each function� Note that the apparently optimal architecture can vary for
di	erent functions� At no time was the test set used� Only the validation set was used for early stopping
and for model selection based on the proportion of classi�cation errors �and on the mean squared error for
equal proportions of classi�cation errors��

The second part of the experiment consisted in allowing a knowledge transfer between the tasks� �
di	erent sets of experiments were performed� in the �rst one� the �� available functions were divided in ��
disjoint combinations each containing � functions� In the second one� the �� functions were divided in �
disjoint combinations each containing � functions� The varying number of tasks in the combinations was
considered in order to evaluate its e	ect on the sharing process�

The �internal representations� model was tested by training the neural networks in each combination
using the �� chosen architectures� For each architecture� L experiments were performed which consisted in
sharing the �rst l layers among the neural networks in a combination� with l � �� ���� L� and L � number of
hidden and output layers in the chosen architecture� This process was repeated for each combination� each
data set and each size for the training set�

The �family discovery� model was tested by selecting for each combination� each data set and each size
for the training set� the neural network architecture that led to the smallest validation set mean classi�cation
error on the tasks in the combination when those tasks were trained separately� Given the chosen architecture�
M � � experiments were performed� each corresponding to using the �rst m top eigenvectors obtained
when applying a PCA to the parameters of the chosen neural networks that were trained separately� with
m � �� ����M � �� and M � number of tasks in the combination� Note that when m � M � �� all the
eigenvectors obtained in the PCA are used to de�ne a manifold� In that case� the M points representing the
parameters of the M tasks in the combination are lying on the corresponding manifold and no knowledge
transfer is performed� Also for each experiment� � di	erent �weighing� constants were used to weigh the



Table �� P�values obtained when comparing the mean generalisation error em�
when a knowledge transfer

method is used to the corresponding error em�
when the tasks in a combination are trained separately� The

null hypothesis is H� � e � em�
� em�

� � and the alternate hypothesis is H� � e � �� The p�values of the
best knowledge transfer method�s� are indicated in boldface �the choice of the best method was based on
the results in this table and table � assuming a �� signi�cance level��

New Method Internal Representations Family Discovery
Training set size Training set size Training set size

�� ��� ��� �� ��� ��� �� ��� ���
Combination � ������ ������ ������ ������ ������ ������ ������ ������ ������
size �M� � ������ ������ ����	� ������ ������ ����	� ������ ������ ����
�

Table �� P�values obtained when comparing pairs of knowledge transfer methods m� and m�� The null
hypothesis is� H� � e � em�

� em�
� � and the alternate hypothesis is� H� � e �� �� where em�

and em�

respectively represent the mean generalisation error when using methods m� and m��

New method vs New Method vs Family Discovery vs
Internal representations Family Discovery Internal representations

Training set size Training set size Training set size
�� ��� ��� �� ��� ��� �� ��� ���

Combination � ������ ������ � ������ ������ ������ ������ ������ ������
size �M� � ������ ������ � ������ ������ ������ ������ ������ ������

constraint of closeness of the parameters of each neural network to the manifold� Those constants were used
in the variant of the EM algorithm used to further improve the generalisation performances of the tasks in a
combination by iteratively updating the manifold�s direction and the values of the parameters of each task�

The new method described in section � was tested by choosing � neural network architectures among the
�� available architectures for training sets of size ��� �� architectures for training sets of size ���� and one
architecture for training sets of size ���� For each architecture� experiments were performed using di	erent
values of manifold dimensionality �which ranged from � to N with steps of ��� and � di	erent values for �
��� ����� ��� and ����� The number of chosen architectures was limited given that for each architecture� a
large number of experiments was performed which corresponded to using di	erent values for the manifold
dimensionality�

An analysis of variance was performed to compare each knowledge transfer method with the method that
consists in separately training each task in a combination and to compare the knowledge transfer methods
between themselves� The p�values computed to test whether applying a knowledge transfer between groups
of tasks outperforms learning them separately are presented in Table �� And the p�values obtained when
comparing the knowledge transfer methods between themselves are presented in Table ��

In table �� the new method and the internal representations learning method have identical p�values for
training sets of ��� examples� This is due to the fact that both methods led to zero classi�cation errors on the
validation and test sets for all combinations and all data sets� The family discovery method didn�t manage
to achieve a zero error rate in all cases� The mean generalisation error computed over all the combinations
and data sets when the tasks in each combination were trained separately was ������

For training sets of size ��� the new method outperformed the internal representations learning method
in ������ of all available combination�data set pairs� For training sets of size ���� this value dropped to
������ with a ����� tie �i�e� both methods led to the same generalisation performances�� When comparing
the new method to the family discovery method� the corresponding rates were ������ and ������ �with a
����� tie� for training sets of size respectively equal to �� and ����

When evaluating each knowledge transfer method� we observed some interesting phenomena� for the
internal representations learning method� in most cases� the optimal architectures were those that had
several hidden layers with a �small� number of units per layer� thus allowing to control the number of
shared parameters� Also� in some cases� the optimal sharing consisted in sharing all the layers of the



networks including the output layers� In the family discovery method� we noted that the optimal number
of eigenvectors when considering combinations of size � was much smaller than the number of relevant
eigenvectors obtained in the PCA �i�e� the eigenvectors having large corresponding eigenvalues�� This
observation might support the notion that the manifold that best �ts the parameters of the tasks in a
combination doesn�t necessarily correspond to the manifold that allows to obtain the best generalisation
performances� Another problem in this method that considerably slowed down and in many cases hindered
the learning process is the fact that the optimal parameters for each network in a combination obtained in
a step in the iterative process are used to initialize the same networks in the next step� they can be very
large� thus saturating several hidden and output units� For the new method� we noticed that the optimal
manifold dimensionalities were in most cases smaller than ���N or larger than ���N where N corresponds
to the parameter space dimensionality� And the optimal values for � were ��� and �� A further analysis of
the results showed that large � values were useful when the dimensionality of the manifold was close to N

�
�

Large � values can control the capacity of the learning models� A more detailed analysis of all three methods
can be found in ���

� Future Work And Conclusion
The cost function considered in equation � consists in trying to optimize the mean error computed over all
the models in a combination� A variation of this function that could lead to better performances would be
to separately measure the error of each combination and stop modifying the parameters of a model when
its error reaches an apparently optimal value� while pursuing the optimization of the remaining models� We
expect such a function to outperform the one de�ned in equation � when the degree of similarity between
the tasks varies�

Another important subject that must be tackled is to de�ne the meaning of �similarity�� When are two
tasks similar� What kind of similarity can be helpful to bias the hypothesis space� What happens when the
similarity between the tasks varies� A possible solution to the last question could be to extend the model
presented in this paper and to �learn� a mixture of manifolds that would bias in di	erent ways di	erent
groups of tasks�

The model presented in this paper is being tested on real�world problems� in particular on �nancial data
and object recognition problems�

A model for biasing the hypothesis space of a learner was presented� It can be used when several related
tasks are available� and consists in re�parameterizing the parameters of the learner of each task as a function
of an a�ne manifold de�ned in parameter space and a point lying on the manifold� The direction and o	set
of the manifold are �learned� using examples sampled from all the tasks� Results of an analysis of variance
for a problem were presented that show signi�cantly improved performances when using this model�
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