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Abstract

Deep architectures have demonstrated state-of-the-art performance in a variety of
settings, especially with vision datasets. Deep learning algorithms are based on learn-
ing several levels ofrepresentationof the input. Beyond test-set performance, there
is a need forqualitativecomparisons of the solutions learned by various deep archi-
tectures, focused on those learned representations. One ofthe goals of our research
is to improve tools for finding good qualitative interpretations of high level features
learned by such models. We also seek to gain insight into the invariances learned by
deep networks. To this end, we contrast and compare several techniques for finding
such interpretations. We applied our techniques on StackedDenoising Auto-Encoders
and Deep Belief Networks, trained on several vision datasets. We show that consistent
filter-like interpretation is possible and simple to accomplish at the unit level. The tools
developed make it possible to analyze deep models in more depth and accomplish the
tracing ofinvariance manifoldsfor each of the hidden units. We hope that such tech-
niques will allow researchers in deep architectures to understand more of how and why
deep architectures work.

1 Introduction

Until 2006, it was not known how to efficiently learn deep hierarchies of features with a
densely-connected neural network of many layers. The breakthrough, by Hinton et al.
(2006a), came with the realization that unsupervised models such as Restricted Boltz-
mann Machines (RBMs) can be used to initialize the network ina region of the pa-
rameter space that makes it easier to subsequently find good minima of the supervised
objective, i.e., which give good generalization error. Thegreedy, layer-wise unsuper-
vised initialization of a network can also be carried out by using auto-associators and
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related models (Bengio et al., 2007; Ranzato et al., 2007). Recently, there has been a
surge in research on training deep architectures: Bengio (2009) gives a comprehensive
review.

There exists a flurry of ideas on how pre-training should be done, how to better train
deep models and how to, in general, learn better hierarchical representations of data.
There has also been some progress in better understanding the effect of unsupervised
pre-training and its role as a regularizer (Erhan et al., 2010). And whilequantitative
analyses and comparisons of various strategies, models andtechniques exist, and visu-
alizations of the first layer representations are common in the literature, one area where
more work needs to be done is thequalitativeanalysis of representations learned be-
yond the first level. Qualitative analysis would bring us insights into the models used,
and would allow us to compare them beyond merely measuring performance on a held-
out dataset.

We want to understand what the models have learned: what features of the data
models have captured and which ones they have not. Answers tothat question would
help tackle issues that are potentially difficult to addresswith a purely quantitative
approach. For instance, what is the difference between the representations learned
by a Deep Belief Network (DBN) and a Stacked Denoising Auto-Encoder (SDAE),
when both models perform similarly on the same test set? It would also be helpful in
providing evidence to support the hypothesis that deep representations are capturing
and disentangling interesting features of the data.

To better understand what models learn, we set as an aim the exploration of ways
to visualize what a unit activates in anarbitrary layerof a deep network. The goal is to
have this visualization in theinput space(of images), while remaining computationally
efficient, and to make it as general as possible (in the sense of it being applicable to a
large class of neural-network-like models).

For a first layer unit, given its quasi-linear response (ignoring the sigmoidal nonlin-
earity), a typical visualization is simply showing in the input space (e.g. as an image)
the input weights of the unit, also called the filters or “receptive fields”. This is par-
ticularly convenient when the inputs are images or waveforms, which can be visually
interpreted by humans. Often, these filters take the shape ofstroke detectors, when
trained on digit data, or edge detectors (Gabor filters) whentrained on natural image
patches (Hinton et al., 2006a,b; Osindero and Hinton, 2008;Larochelle et al., 2009).

For higher-level (deeper) layers, one could approach the problem from a few differ-
ent angles. One approach is to devise sampling techniques. For instance, Deep Belief
Nets by Hinton et al. (2006a) have an associated generative procedure, and one could
potentially use such a procedure to gain insight into what anindividual hidden unit
represents; we introduce such an approach in this work. Notethat methods that rely on
sampling will likely produce output similar to examples from the training distribution
and one might need to further process the samples in order into get a picture of what
the unit represents. A second approach, introduced in this paper, is inspired by the
idea of maximizing the response of a given unit. One of the experimental findings of
this investigation is quite surprising: despite its limitations (local minima), this method
was able to find coherent filter-like representations for deeper units. A third approach,
by Lee et al. (2008), produces a filter-like representation for deeper units from a lin-
ear combinations of lower-level filters. Our results appearconsistent across various
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datasets and techniques.
In this paper, compare and contrast these techniques qualitatively on several image

datasets, and we also explore connections between all of them. Even if we obtain a
“filter”-like representation of a unit from a deep layer, it does not tell us the whole
picture, because of the nonlinear relationship between theinput and the unit response.
One way of getting more insight into such a nonlinear unit is by testing its invariance
against a specific set of variations in the input, e.g. rotations (Goodfellow et al., 2009).
We argue in this paper that it is useful to seek asetof invariances, orinvariance man-
ifolds for each of these units. In particular, we explore a general method that is not
tied to a specific list of invariances. Such an invariance analysis could be a way to gain
more insight into what the units of those layers capture. A contribution of this paper is
the introduction of a few general tools that make the featureand invariance analysis of
deeper layers possible.

2 Previous work

We briefly go over previous attempts at solving the visualization and invariance prob-
lem, in contexts similar to ours.

2.1 Linear combination of previous units

Lee et al. (2008) showed one way of visualizing the activation pattern of units in the
second hidden layer of a Deep Belief Network (Hinton et al., 2006a). They made the
assumption that a unit can be characterized by the filters of the previous layer to which
it is most strongly connected1. By taking a weighted linear combination of the previous
layer filters—where the weight of the filters is its weight to the unit considered—they
show that a Deep Belief Network, trained on natural images, will tend to learn “corner
detectors” at the second layer. Lee et al. (2009) used an extended version of this method
for visualizing units of the third layer: by simply weighingthe “filters” found at the
second layer by their connections to the third layer, and choosing again the largest
weights.

Such a technique is simple and efficient. One disadvantage isthat it is not clear
how to automatically choose the appropriate number of filters to keep at each layer.
Moreover, by selecting only the very few most strongly connected filters from the first
layer, one can potentially get a misleading picture when there is not a small group
of large weights but rather many smaller and similar-magnitude weights into a unit.
Finally, this method also bypasses the nonlinearities between layers, which may be an
important part of the model. One motivation for this paper isto validate whether the
patterns obtained by Lee et al. (2008) are similar to those obtained by the other methods
explored here.

1i.e. whose weight to the upper unit is large in magnitude
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2.2 Output unit sampling

Consider a Deep Belief Network with several layers. A typical scenario is where the
top layer is an RBM that sees as its visible input a concatenation of the representation
produced by lower levels and a one-hot vector indicating theclass label. In that case,
one can “clamp” the label vector to a particular configuration and sample from a par-
ticular class distributionp(x|class = k). Such a procedure, first described by Hinton
et al. (2006a), makes it possible to “visualize” output units, as distributions in the input
space. As described in section 4.1, such a procedure can be extended to an arbitrary
unit in the network.

It is sometimes difficult to obtain samples that cover well the modes of a Boltz-
mann Machine or RBM distribution, and these sampling-basedvisualizations cannot
be applied to other deep architectures such as those based onauto-encoders (Bengio
et al., 2007; Ranzato et al., 2007; Larochelle et al., 2007; Ranzato et al., 2008; Vincent
et al., 2008) or on semi-supervised learning of similarity-preserving embeddings at
each level (Weston et al., 2008). Moreover, sampling produces adistribution for each
unit: figuring out relevant statistics of that distribution(e.g., the modes) is potentially
not straightforward.

2.3 Optimal stimulus analysis for quadratic forms

Berkes and Wiskott (2006) start with an idea, inspired by neurophysiological experi-
ments, of computing the optimal excitatory (and inhibitory) stimulus, in the for quadratic
functions of the input, which are learned using Slow FeatureAnalysis (SFA). The lim-
itation to quadratic forms of the input makes it possible to find the optimal stimulus,
i.e. the one maximizing the activation, relatively easily.

Berkes and Wiskott (2006) also consider an invariance analysis of the optimal stim-
ulus, whereby one finds transformations of the input to whichthe quadratic form is
most insensitive. This method of finding invariance is usingthe geodetic path, mean-
ing the path along a sphere (norm constraint, in this case), which has the smallest
“acceleration”2 as possible.

These ideas are the closest in spirit to the work that we introduce in this paper,
related to maximizing the response of a given unit. The key differences, on which we
elaborate in section 5, are that we consider general nonlinear functions of the input
(and not just quadratic forms) and our invariance analysis is a more direct and more
non-local application of the idea that the directions of invariance should be the ones in
which the function value (activation) drops least for such general nonlinear functions.

3 The models

For our analysis, we shall consider two deep architectures as representatives of two
families of models encountered in the deep learning literature. The first model is a Deep
Belief Net (DBN) (Hinton et al., 2006a), obtained by training and stacking three layers
of Restricted Boltzmann Machines (RBM) in a greedy manner. This means that we

2of the considered function, in this case the activation function.
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trained an RBM with Contrastive Divergence (Hinton, 2002),we fixed the parameters
of this RBM, and then trained another RBM to model the hidden layer representations
of the first level RBM. This process can be repeated to yield a deep architecture that
is an unsupervised model of the training distribution, a generative model of the data
from which one can easily obtain samples from a trained model. DBNs have been
described numerous times in the literature, please refer toBengio (2009) and Hinton
et al. (2006a) for further details.

The second model, introduced by Vincent et al. (2008), is theso-called Stacked De-
noising Auto-Encoder (SDAE). It borrows the greedy principle from DBNs, but uses
denoising auto-encoders as a building block for unsupervised modelling. An auto-
encoder learns an encoderh(·) and a decoderg(·) whose composition approaches the
identity for examples in the training set, i.e.,g(h(x)) ≈ x for x in the training set. The
denoising auto-encoderis a stochastic variant of the ordinary auto-encoder, whichis
explicitly trained to denoise a corrupted version of its input. It has been shown on an
array of datasets to perform significantly better than ordinary auto-encoders and sim-
ilarly or better than RBMs when stacked into a deep supervised architecture (Vincent
et al., 2008).

We now summarize the training algorithm of the Stacked Denoising Auto-Encoders.
More details are given by Vincent et al. (2008). Each denoising auto-encoder operates
on its inputsx, either the raw inputs or the outputs of the previous layer. The de-
noising auto-encoder is trained to reconstructx from a stochastically corrupted (noisy)
transformation of it. The representation learned by each denoising auto-encoder is the
“code vector”h(x). In our experimentsh(x) = sigmoid(b + Wx) is an ordinary
neural network layer, with hidden unit biasesb, weight matrixW , andsigmoid(a) =
1/(1 + exp(−a)) (applied element-wise on a vectora). Let C(x) represent a stochas-
tic corruption ofx. As done by Vincent et al. (2008), we randomly setCi(x) = xi

or 0. A fixed-size random subset ofx is selected for zeroing. We have also consid-
ered a salt and pepper noise, where we select a random subset of a fixed size and set
Ci(x) = Bernoulli(0.5). The “reconstruction” is obtained from the noisy input with
x̂ = sigmoid(c + WT h(C(x))), using biasesc and the transpose of the feed-forward
weightsW . When training denoising auto-encoders on images, both the raw inputxi

and its reconstruction̂xi for a particular pixeli can be interpreted as a Bernoulli prob-
ability for that pixel: the probability of painting the pixel as black at that location. We
denote byKL(x||x̂) =

∑
i KL(xi||x̂i) the sum of component-wise KL divergences be-

tween the Bernoulli probability distributions associatedwith each element ofx and its
reconstruction probabilitieŝx: KL(x||x̂) = −

∑
i (xilog x̂i + (1 − xi) log (1 − x̂i)).

The Bernoulli model only makes sense when the input components and their recon-
struction are in[0, 1]; another option is to use a Gaussian model, which corresponds to
a Mean Squared Error (MSE) criterion.

For each unlabelled examplex, a stochastic gradient estimator is then obtained by
computing∂KL(x||x̂)/∂θ for θ = (b, c,W ). The gradient is stochastic because of
sampling the examplex and because of the stochastic corruptionC(x). Stochastic
gradient descentθ ← θ − ǫ · ∂KL(x||x̂)/∂θ is then performed with learning rateǫ, for
a fixed number of pre-training iterations.
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4 How to obtain filter-like representations for deep units

We shall start our analysis by introducing the tools to obtain a filter-like representation
for units belonging to a deep layer.

4.1 Sampling from a unit of a Deep Belief Network

Consider a Deep Belief Network withj layers, as described in section 3. In particu-
lar, layersj − 1 andj form an RBM from which we can sample using block Gibbs
sampling, which successively samples fromp(hj−1|hj) andp(hj |hj−1), denoting by
hj the binary vector of units from layerj. Along this Markov chain, we propose to
“clamp” unit hij , and only this unit, to1. We can then sample inputsx by performing
ancestral top-down sampling in the directed belief networkgoing from layerj − 1 to
the input, in the DBN; as mentioned in section 2.2, this procedure is similar to experi-
ments done by Hinton et al. (2006a) for output units. This produces a distribution that
we shall denote bypj(x|hij = 1) wherehij is the unit that is clamped, andpj denotes
the depth-j DBN containing only the firstj layers.

In essence, with this method, we use the distributionpj(x|hij = 1) to characterize
hij . We can characterize the unit by samples from this distribution or summarize the
information by computing the expectationE[x|hij = 1]. This method has, essentially,
no hyperparameters except the number of samples that we use to estimate the expecta-
tion. It is relatively efficient provided the Markov chain atlayer j mixes well, which
is not always the case, unfortunately, as illustrated previously (Tieleman and Hinton,
2009; Desjardins et al., 2010).

Note that this method is only applicable to models from whichone can (efficiently)
sample and this is a rather important restriction if one’s goal is to come up with gen-
eral methods for inspecting such deep architectures; for instance, it cannot be be ap-
plied architectures based on auto-encoders (Bengio et al.,2007; Ranzato et al., 2007;
Larochelle et al., 2007; Ranzato et al., 2008; Vincent et al., 2008) or on semi-supervised
learning of similarity-preserving embeddings at each level (Weston et al., 2008).

4.2 Maximizing the activation

We introduce a new idea: we look for input patterns of boundednorm which maximize
theactivation3 of a given hidden unit; since the activation of a unit in the first layer is a
linear function of the input, in the case of the first layer, this input pattern is proportional
to the filter itself, i.e.,x · w is maximized forx ∝ w (keeping||x|| fixed).

The reasoning behind this idea is that a pattern to which the unit is responding
maximally could be a good initial representation of what a unit is doing4. One simple
way of doing this is to find, for a given unit, the input samples(from either the training
or the test set) that give rise to the highest activation of the unit. Unfortunately, this
still leaves us with the problem of choosing how many samplesto keep for each unit
and the problem of how to “combine” these samples. Ideally, we would like to find out

3The total sum of the input to the unit from the previous layer plus its bias.
4This is the reasoning for visualizing first-layer filters in the input space, too: they are the inputs to which

the unit responds maximally.

6



what these samples have in common, i.e. to be able to synthesize a representation from
them. Furthermore, it may be that only some elements of the input vector contribute to
the high activation, and it may not be easy to determine the relevant elements simply
by inspection.

Note that we restricted ourselves needlessly to searching for an input pattern from
the training or test sets, or simply from the set of all valid patterns. We can take a more
general view andmaximizing the activation of a unitas an optimization problem. Let
θ denote our neural network parameters (weights and biases) and lethij(θ,x) be the
activation of a given uniti from a given layerj in the network;hij is a function of
bothθ and the input samplex. Assuming a fixedθ (for instance, the parameters after
training the network), we can formalize this approach as searching for

x∗ = arg max
x s.t. ||x||=ρ

hij(θ,x).

This is, in general, a non-convex optimization problem. Butit is a problem for which
we can at least try to find a local minimum. This can be done mosteasily by performing
simplegradient ascent5 in the input space, i.e. computing the gradient ofhij(θ,x) and
movingx in the direction of this gradient.

Two scenarios are possible after the optimization converges: the same (qualitative)
minimum is found when starting from different random initializations or two or more
local minima are found. In both cases, the unit can then be characterized by the min-
imum or set of minima found. In the latter case, one can eitheraverage the results,
or choose the one which maximizes the activation, or displayall the local minima ob-
tained to characterize that unit.

This optimization technique (which we call “activation maximization”, or AM) is
applicable to any network in which we can compute the above gradients. Like any
gradient descent technique, it does involve a choice of hyperparameters: in particular,
the learning rate and a stopping criterion (the maximum number of gradient ascent
updates, in our experiments).

4.3 Connections between methods

There is an interesting link between the method of maximizing the activation and the
sampling method from section 4.1. By definition,E[x|hij = 1] =

∫
xpj(x|hij =

1)dx. If we consider the extreme case where the distribution concentrates atx+,
pj(x|hij = 1) ≈ δx+(x), then the expectation isE[x|hij = 1] = x+. On the other
hand, when applying the activation maximization (AM) technique to a DBN, we are ap-
proximately6 looking for arg maxx p(hij = 1|x), since this probability is monotonic
in the (pre-sigmoid) activation of unithij . Using Bayes’ rule and the concentration
assumption aboutp(x|hij = 1), we find that

p(hij = 1|x) =
p(x|hij = 1)p(hij = 1)

p(x)
=

δx+(x)p(hij = 1)

p(x)

5Since we are trying tomaximizehij .
6because of the approximate optimization and because the true posteriors are intractable for higher layers,

and only approximated by the corresponding neural network unit outputs.
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This is zero everywhere except atx+ so under our assumption,arg maxx p(hij =
1|x) = x+.

More generally, one can show that ifp(x|hij = 1) concentrates sufficiently around
x+ compared top(x), then the two methods (expected value over samples vs AM)
should produce very similar results. Generally speaking, it is easy to imagine how
such an assumption could be untrue because of the nonlinearities involved. In fact,
what we observe is that although the samples or their averagemay look liketraining
examples, the images obtained by AM look more likeimage parts, which may be a
more accurate representation of what the particular units do (by opposition to all the
other units involved in the sampled patterns). This subtlety is key and it highlights the
ways in which they are different and complementary.

There is also a link between the gradient updates for maximizing the activation
of a unit and finding the linear combination of weights as described by Lee et al.
(2009). Take, for instancehi2, i.e. the activation of uniti from layer2 with hi2 =
v′sigmoid(Wx), with v being the unit’s weights andW being the first layer weight
matrix. Then∂hi2/∂x = v′diag(sigmoid(Wx) ∗ (1 − sigmoid(Wx)))W , where∗
is the element-wise multiplication,diag is the operator that creates a diagonal matrix
from a vector, and1 is a vector filled with ones. If the units of the first layer do not satu-
rate, then∂hi2/∂x points roughly in the direction ofv′W , which can be approximated
by taking the terms with the largest absolute value ofvi.

4.4 First investigations into visualizing upper layer units

We shall begin with an investigation into the feasibility ofusing these methods for
our stated purpose (obtaining informative filter-like representations). In the course of
these experiments, we will also be able to compare these methods and observe their
relative merits in action. More importantly, these experiments will build a basis for our
explorations of invariance manifolds in the latter sections.

We used three datasets to validate our hypotheses:

• An extended version of the MNIST digit classification dataset, by Loosli et al.
(2007), in which elastic deformations of digits are generated stochastically. We
used2.5 million examples as training data, where each example is a28 × 28
gray-scale image.

• A collection of100, 000 greyscale12 × 12 patches of natural images, generated
from the collection of whitened natural image patches by Olshausen and Field
(1996).

• Caltech Silhouettes, a simplified version of the Caltech-101 dataset (Fei-Fei
et al., 2004), in which the shape of the target object was extracted and the entire
image was binarized into a foreground and a background (Marlin et al., 2009).
The dataset contains approximately 4,100 images of size 28x28 from 101 cate-
gories, with at least 20 and at most 100 examples from each class7.

7The data can be downloaded fromhttp://people.cs.ubc.ca/˜bmarlin/data/index.shtml
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The visualization procedures were tested on the models described in section 3:
Deep Belief Nets (DBNs) and Stacked Denoising Auto-Encoders (SDAE). The hyper-
parameters are: unsupervised and supervised learning rates, number of hidden units
per layer, and the amount of noise in the case of SDAE; they were chosen to minimize
the classification error on MNIST and Caltech Silhouettes, respectively8 or the recon-
struction error9 on natural images, for a given validation set. For MNIST and Caltech
Silhouettes, we show the results obtained after unsupervised training only; this allows
us to compare all the methods (since it does not make sense to sample from a DBN
after the supervised fine-tuning with backpropagation stage). For the SDAE applied on
natural images, we used salt and pepper noise as a corruptiontechnique, as opposed
to the zero-masking noise described by Vincent et al. (2008): such symmetric noise
seems to work better with natural images. For the DBN we used aGaussian input layer
when modelling natural images; these are more appropriate than the standard Bernoulli
units, given the distribution of pixel grey levels in such patches (Bengio et al., 2007;
Larochelle et al., 2009).

In the case of AM (section 4.2, Activation Maximization), the procedure is as fol-
lows for a given unit from either the second or the third layer: we initialize x to a
vector of28× 28 or 12× 12 dimensions in which each pixel is sampled independently
from a uniform over[0; 1]. We then compute the gradient of the activation of the unit
w.r.t. x and make a step in the gradient direction. The gradient updates are continued
until convergence, i.e. until the activation does not increase faster than a threshold rate.
Note that after each gradient update, the current estimate of x∗ is re-normalized to the
average norm of examples from the respective dataset10. There is no constraint that
the resulting values inx∗ be in the domain of the training/test set values. For instance,
we experimented with making sure that the values ofx∗ are in[0; 1] (for MNIST), but
this produced worse results. On the other hand, the goal is tofind a “filter”-like result
and a constraint that this “filter” is strictly in the same domain as the input image may
not be necessary. Finally, the same optimal value (i.e. the one that seems to maximize
activation) for the learning rate of the gradient ascent works for all the units from the
same layer.

Sampling from a DBN is done as described in section 4.1, by running the randomly-
initialized Markov chain and top-down sampling every 100 Gibbs steps. In the case of
the method described in section 2.1, the (subjective) optimal number of previous layer
filters was taken to be 100.

Activation Maximization We begin by the analysis of theactivation maximization
method (AM). Figures 1 and 2 contain the results of the optimization of units

8We are choosing our hyperparameters based on the supervised objective. This objective is computed by
using the unsupervised networks as initial parameters for supervised backpropagation. We chose to select the
hyperparameters based on the classification error because for this problem we do have an objective criterion
for comparing networks, which is not the case for the natural image data.

9For RBMs, the reconstruction error is obtained by treating the RBM as an auto-encoder and computing
a deterministic value using either the KL divergence or the MSE, as appropriate. The reconstruction error of
the first layer RBM is used for model selection.

10Such a procedure is essentially a stochastic gradient methodwith projection to the constraint at each
step. It is possible to use better and more complicated optimization methods—such as conjugate gradient—
but this adds unnecessary complexity (because of the constraint) and, in our experiments, did not lead to
different conclusions.
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from the 2nd and 3rd layers of a DBN and an SDAE, along with the first layer
filters. Figure 1 shows such an analysis for MNIST, while Figure 2 shows it for
the natural image data and Caltech Silhouettes.

 4 units with 9 solutions per unit for the optimization problem

Figure 1:Activation maximization (AM) applied on MNIST.First two rows: visualiza-
tion of 36 units from the first (1st column), second (2nd column) and third (3rd column)
hidden layers of a DBN (top) and SDAE (middle), using the technique of maximizing the
activation of the hidden unit.Bottom row: 4 examples of the solutions to the optimization
problem for units in the 3rd layer of the SDAE, from 9 random initializations.

To test the dependence of this gradient ascent on the initialconditions, 9 different
random initializations were tried. The retained “filter” corresponding to each unit
is the one (out of the 9 random initializations) which maximizes the activation.
In the same figures we also show the variations found by the different random
initializations for a given unit from the 3rd layer.Surprisingly, most random
initializations yield roughly the same prominent input pattern. Moreover,
we measured the maximum values for the activation function to be quite close to
each other (not shown). Such results are relatively surprising, given that, gener-
ally speaking, the activation function of a third layer unitis a highly non-convex
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function of its input. Therefore, either we are consistently lucky, or we are not
sampling from the whole space, or, at least in these particular cases (a network
trained on MNIST digits, Caltech Silhouettes, or natural images), the activation
functions of the units tend to be more “unimodal”.

One important point is that, qualitatively speaking, the filters at the 3rd layer
look interpretable and quite complex. For MNIST, some look like pseudo-digits.
In the case of natural images, we can observe grating filters at the second layer
of DBNs and complicated units that detect, for instance, corners at the second
and third layer of SDAE; some of the units have the same characteristics that we
would associate with V2-area units (Lee et al., 2008). For Caltech Silhouettes,
a few of the units look like whole-object class detectors (faces, for instance),
but most seem to simply encode for the presence or absence of parts of objects
(likely meaning that the third layer units have managed to learn a decomposition
of the input space features that is not as simple as just whole-object-class detec-
tion). Such results also suggest that higher level units do indeed learnmeaningful
combinations of lower level features.

Note that the first layer filters obtained by the SDAE when trained on natural
images are Gabor-like features. It is interesting that in the case of the DBN,
the filters that minimized the reconstruction error11, i.e. those that are pictured
in Figure 2 (top-left corner), do not have the same low-frequency and sparsity
properties like the ones found by the first-level denoising auto-encoder12. Yet at
the second layerthe filters found by activation maximization are a mixture
of Gabor-like features and grating filters. This shows that appearances can
be deceiving: we might have dismissed the RBM whose weights are shown in
Figure 2 as a bad model of natural images had we looked only at the first layer
filters, but the global qualitative assessment of this model, which includes the
visualization of the second and third layers, points to the fact that the 3-layer
DBN is in effect learning something quite interesting. Sucha result suggests that
qualitative model comparison (between SDAE and DBNs in thiscase) cannot
rely entirely on first-layer filter visualizations.

Sampling a unit We now turn to thesampling techniquedescribed in section 4.1.
Figure 3 shows samples obtained by clamping a second layer unit to 1; both
MNIST and natural image patches are considered. In the case of natural image
patches, the distributions are roughly unimodal, in that the samples are of the
same pattern, for a given unit. For MNIST, the situation is slightly more delicate:
there seem to be one or two modes for each unit13. The averageinput (the
expectation of the distribution), as seen in Figure 4, then looks like a digit or a
superposition of two digits.

11Which is only a proxy for the actual objective function that isminimized by a stack of RBMs.
12It is possible to obtain Gabor-like features with RBMs—work by Osindero and Hinton (2008) shows

that—but in our case these filters were never those that minimized the reconstruction error of an RBM. This
points to a larger issue: it appears that using different learning rates for Contrastive Divergence learning will
induce features that arequalitatively different, depending on the value of the learning rate.

13This result was obtained with multiple restarts and 20,000 Gibbs steps
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Figure 2:Activation Maximization (AM) applied on Natural Image Patches (top
and middle row) and Caltech Silhouettes (bottom row). Visualization of 144
units from the first (1st column), second (2nd column) and third (3rd column)
hidden layers of a DBN (top row) and an SDAE (middle and bottomrows), using
the technique of maximizing the activation of the hidden unit. In the 4th column:
4 examples of the solutions to the optimization problem for units in the 3rd layer
of the SDAE, subject to 9 random initializations, for natural images.
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Figure 3:Visualization of 6 units from the second hidden layer of a DBNtrained
on MNIST (top) and natural image patches (bottom). The visualizations are
produced by sampling from the DBN and clamping the respective unit to 1. Each
unit’s distribution is a row of samples; the mean of each row is in the first column
of Figure 4 (left).

Note that unlike the results of AM, the samples are much more likely to be part of
the underlying distribution of examples (digits or patches). AM seems to produce
featuresand it is up to us to decide which examples would “fit” these features;
the sampling method producesexamplesand it leaves it to us decide which fea-
tures these examples have in common. In this respect, the twotechniques serve
complementary purposes.

Comparison of methods In Figure 4, we can see a comparison of the three tech-
niques: activation maximization, hidden unit sampling, and the linear combi-
nation method, introduced by Lee et al. (2008) and as described in section 2.1.
The methods are tested on the second layer of a DBN trained on MNIST. In the
above, we noted links between the three techniques. The experiments show that
many of the filters found by the three methods share some features, but have
some differences as well. In general, linear combination ofprevious layer filters
and AM were quite similar, highlighting parts, whereas sampling produced full
examples.

Unfortunately, we do not have an objective measure that would allow us to compare
the three methods, but visually we believe that AM produces more interesting and
useful results: by comparison, the average samples from theDBN are almost always in
the shape of a digit (for MNIST), while the linear combination method seems to find
only parts of the features that are found by AM, which tends tofind sharper patterns.

AM is applicable to a very large class of models, is conceptually simple and pro-
duces high quality visualizations. Moreover, the technique lends itself to easy, but quite
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Figure 4: Visualization of 36 units from the second hidden layer of a DBN
trained on MNIST (top) and 144 units from the second hidden layer of a DBN
trained on natural image patches (bottom). Left: sampling with clamping, Cen-
tre: linear combination of previous layer filters, Right: maximizing the activation
of the unit. Black is negative, white is positive and gray is zero.
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powerful extensions, as we shall explore next.

5 Uncovering Invariance Manifolds

Thus far our goal has been to obtain a filter-like representation for each unit of the
upper layers. Obtaining such filters is an interesting development and it allows us
to see that upper layer units correspond to more complicatedfilters (sometimes even
“template detectors”) and verify some hypotheses that we had about deep architectures:
namely that they learn to model interesting features at higher levels, that units at those
levels correspond to more complicated V2-area like units etc. However, such filter-like
representations only characterize a point in the input space: they don’t really describe
the invariances captured by each unit or each layer. The second part of our inquiry will
address this issue.

A simple approach to solving this problem is by extending ouractivation maximiza-
tion approach to computing some second order visualization. One way was presented
in section 2.3, by Berkes and Wiskott (2006)14: compute geodetic paths (paths on the
norm constraint / sphere), starting at the maximum of the activation function, which
have the smallest rate of change. Another solution is to compute the Hessian at the lo-
cal maximum and analyze the directions of principal invariance, corresponding to the
eigenvectors of the Hessian with the smallest eigenvalues,by moving in the direction of
those eigenvectors (starting from the optimum), while remaining on the norm sphere.
For quadratic forms and in the context of Slow Feature Analysis, such an approach
seemed to be fruitful (Berkes and Wiskott, 2002, 2006).

Our attempts at replicating the latter analysis in the context of AM and arbitrary
units in the deep layers were not as successful: the eigenvectors point in directions that
did not reveal useful insights, as far as we could tell. Our intuition is that such directions
are really a very local measure around the maximum and may notbe meaningful farther
away from it. This locality effect is present in the geodesicpath method of Berkes and
Wiskott (2006), where the authors suggest that this method is only applicable in “a
small neighbourhood” of the maximum. We would like a method that would trace an
invariance manifold that corresponds to the unit, and we want this manifold to be less
local (with respect to the maximum found via AM). Ideally, wewould like to see what
pattern of activations it is most invariant to or what manifold this unit “traces” in the
input space. Finally, our intuition suggests that these directions of invariance should
correspond, roughly speaking, to the changes of the optimumthat produce the smallest
decrease in the activation value, and we would like a more direct way of achieving this.

5.1 Invariance Manifolds

A simple way of achieving such goals is to start with the result given to us by AM
and move as far as possible from it while keeping the activation as large as possible.
Formally, letxopt be the (best) local optimum found by AM for a given unit. Then we
re-formulate our optimization problem as follows:

14for quadratic functions of the input
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Figure 5: Illustration of the invariance manifold tracing techniquein 3D. x∗
j is the

activation maximization result for unitj, R is the average norm of our inputs, and
εR is the distance fromx∗

j that we want our solutions to be. After each gradient
step (towards maximizingfij), we project the current solution such that it satisfies
the constraints; there are two such projections possible—for the next iteration of the
optimization problem, we choose the one with the highest activation value.
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x∗
ε = arg max

x s.t. ||x||=ρ and ||x−xopt||=ερ
hij(θ,x).

where0 ≤ ε ≤ 2. By varyingε we can construct a one-dimensional manifold—
represented by the solutionsx∗

ε in increasing order ofε—-that has our desired proper-
ties15.

Note that, as before, we require our solutionsx∗
ε to be of some fixed norm as well

(ρ, as before); removing such a constraint makes the optimization problem ill-behaved
(the objective function could otherwise potentially increase without bound). The op-
timization problem can again be solved with simple gradientdescent, starting from a
random point in the space of feasible solutions and projecting to the space of feasi-
ble solutions at each step; projecting exactly onto both constraints is more complicated
than the simple AM (Activation Maximization) with one norm constraint, but it follows
from a straightforward algebraic computation.

Figure 5 illustrates this process for an optimization problem in 3 dimensions. We
remind the reader that for simplicity this procedure is a sequence of gradient steps
followed by projection to the constraints. Note that the projection operation always has
two solutions (on the opposite sides of the feasible solutions circle/hypersphere, in our
case) – we always pick the one that results in the highest activation value.

As discussed in the introduction to this section, when analyzing the directions of
invariance, as given to us by the eigenvectors of the Hessianat the local maximum
xopt, we did not observe any qualitatively interesting results.Our hypothesis is that
there are many local directions—corresponding roughly to changing the background—
and moving in those directions will not decrease the activation of the given unit16.
Such an effect can also occur with our invariance manifold technique: the optimization
procedure could conceivably movex∗

ε into directions that are of no interest to us (from
a model analysis point of view)17.

A way to counteract this effect is to move only in directions where there is variance
in the data or, equivalently, dampen the directions in whichthere is no variance in the
training data. More specifically, this can be accomplished by computing the whitening
matrix W , via the zero-phase whitening (also called ZCA) transform (Bell and Se-
jnowski, 1997). This is the matrix which, when multiplied with x ∈ Dtrain spheres
the data, i.e.,Cov(y) = I, wherey = Wx. Starting fromyopt = Wxopt, the search
becomes:

y∗
ε = arg max

y s.t. ||W−1y||=ρ and ||W−1(y−yopt)||=ερ
hij(θ,W

−1y) (1)

15At ε = 2 the two (hyper-)spheres corresponding to the two constraints intersect at exactly one point. If
ε is larger than 2, then the constraint cannot be satisfied anymore, since the spheres do not intersect (one is
inside the other). See Figure 5.

16In other words, the learning procedure has managed to make units invariant to small background trans-
formations.

17An interesting parallel can be made with an experiment that we performed, in which, instead of Activa-
tion Maximization weminimizethe activation for each unit. The same “background effect” was observed.
This suggests that the “activation landscape” of a hidden unit is similar to a ridge, in that there are a few
directions of invariance—which are not easy to find—and quite a number of directions in which we can
move and decrease the activation significantly.
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That is, scale the directions in which we move by the amount ofvariance that
the training data exhibits in those directions. Algorithm 1contains the details of this
procedure in pseudo-code format.

Algorithm 1 Pseudo-code of the invariance computation procedure (eq. 1), us-
ing the whitening matrix to scale the directions in which we proceed. The
projection(ynew, constraints(ρ, ε,yopt)) operator signifies the function that projects
ynew s.t. ||W−1ynew|| = ρ and ||W−1(ynew − yopt)|| = ερ.

Require: xopt, W , and a learning rateµ

yopt = Wxopt

ycurrent = yopt

while not convergeddo

ynew = ycurrent + µ ·
∂(hij(θ,W−1·ycurrent))

∂ycurrent

ycurrent = projection(ynew, constraints(ρ, ε,yopt))
end while
y∗

ε = ycurrent

return y∗
ε

5.2 Results

We applied this method to a variant of the MNIST dataset, calledmnist-rot, first pre-
sented by Larochelle et al. (2007). This is a dataset that contains rotated MNIST digits
(random rotations, angle between−π andπ) and is being used in the community as
a good check for empirically evaluating whether a given deeparchitecture is able to
capture the rotational invariance in the data.

A sanity check for the invariance manifold technique just presented is to apply it
to one of the 10output units, corresponding to the predictions of the network for a
given label. The hypothesis is that the results of the optimization technique on such
units should be most interpretable (compared to other unitsin the network) and should
be quite revealing of the invariances that are captured by the process of supervised
learning.

Figure 6 (upper) presents several runs of AM on the output units corresponding to
labels 4 and 5. A key observation in this case is thatxopt does not appear to be uni-
modal (as a function of random starting points). In fact, it would have been surprising
otherwise: for instance, it is unlikely that the distribution of all rotated four-digits can
be “captured” by a prototypical “four”. Instead, we see a variety of rotated four- and
five-digits.

Figure 6 (lower) contains an invariance manifold analysis:we picked thexopt for
the four-digit AM which had the highest activation value andthen did four trials in
which we varied the starting point of the optimization; thisresults in aset of invariances
that characterize this unit. In fact, this was the only element of uncertainty in the
optimization process—for a givenε we used the previousx∗

ε−δ (meaning the solution
with a slightly smallerε) as the starting point. The startling observation is that even

18



A
ct

iv
a

ti
o

n
 M

a
xi

m
iz

a
ti

o
n

 r
e

su
lt

s
S

e
t 

o
f 

in
v

a
ri

a
n

ce
 m

a
n

if
o

ld
s

Output label 4 Output label 5

Figure 6: Upper: output filter minima for the output units corresponding to digits 4 and
5 (upper).Lower: A setof invariance manifolds corresponding to digit 4, all starting
from the same point (the best activation maximization result) and with a small random
perturbation at the beginning of optimization; a row is one such trajectory / invariance
manifold
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when only the very initial condition is changed, the invariance manifolds (from left to
right on each row) become quite different. These manifolds also seem to interpretable,
as they are capturing the various rotations that the output unit seem to be able to model.

5.3 Measuring invariance

Using the invariance manifold tool we can get an idea of the invariance for a given deep
architecture model. Indeed, note that the activation valueof a given unitj from a layer
i, hij(x

∗
ε) as one variesε, can be considered as an indicator of invariance for a given

unit: the slower the unit’s activation decreases as we increaseε the more invariant it is.
The intuition is the following: a unit whose activation drops down slowly has “carved”
a manifold of the input space that is sufficiently large that even if we go far away
from xopt we can still maintain a high level of activation. Conversely, a unit whose
activation drops down very fast has carved a small region of the space is therefore only
responsible for only a few variations in the input data.

There is no established notion of a measure of invariance of agiven unit in such
a network. We argue however that, in a sense, our intuition can be used to reach a
rather generic notion of invariance. Furthermore, to compute it, one does not need to
specify a giventypeof invariance (though, as we shall see later in the discussion, this is
also a limitation). This is in contrast with the work of Goodfellow et al. (2009), where
the authors specify a series of input deformations (rotations, translations, etc) and an
invariance measure that is computed for each unit.

MNIST Natural Image Patches Caltech Silhouettes
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Figure 7:Measuring the invariance of the units from different layers. From left to right,
experiments on MNIST, Natural Image Patches and Caltech Silhouettes, with SDAE.
They-axis plots the sigmoid of the activation (in the log domain,for clarity) vs. theε
with which we move. The “speed” with which the curves decrease is what should be
compared (layer 1 vs. layer 2 vs. layer 3).

The main hypothesis that researchers in deep architectureshave is that the upper
layers of the models become more invariant to input transformations, presumably be-
cause of the increased level of abstraction represented by upper layers. Using our ap-
proach, this becomes a testable hypothesis: we simply need to compute the activation
hij(x

∗
ε) of each unit asε increases, for all the units in a given layer. Figure 7 contains

such an analysis, for MNIST, mnist-rot and Natural Image Patches. We observe that
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in all cases the slope of the activation decrease (asε increases) issmaller for the first
layer units compared to the second layer ones; the second layer slopes for MNIST and
Caltech Silhouettes are smaller than the third layer slopesas well. One could use this
method to define a scalar measure of invariance, for instancefrom the area under the
curve, which can then be used to compare models against each other. What the figure
provides is new evidence to support the earlier observations of Goodfellow et al. (2009)
that, in general, units from upper layers appear more invariant than those in the lower
layer.

6 Conclusions and Future Work

We started from a simple desire: to better understand the solution that is learned and
represented by a deep architecture, by investigating the response of individual units
in the network. Like the analysis of individual neurons in the brain by neuroscien-
tists (Dayan and Abbott, 2001, chapter 2.2), this approach has limitations, but we be-
lieve that such visualization techniques can help understand the nature of the functions
learned by the network.

We describe three techniques for visualizing deep layers: activation maximization
(AM) and sampling from an arbitrary unit are both new (to the best of our knowledge)
and introduced in this work, while the linear combination technique had been previ-
ously introduced by Lee et al. (2008). We show the intuitive similarities between them
and compared and contrasted them on three datasets. Our results confirm our intu-
itions about the hierarchical representations learned by deep architectures: namely that
the higher layer units represent features that possess (meaningfully) more complicated
structure and correspond to combinations of lower-layer features. The three techniques
considered for visualization give rise to meaningfully different results: as posited in
the introduction, we found that a sampling-based method produces a distribution of
training-set-like samples, which may require further processing to make sense of what
specifically the chosen units captures. Conversely, AM (and, to a lesser extent, the
linear combination method) make it possible to get a “part”-like representation of each
unit, an arguably more interpretable representation.

We also find that the two deep architectures considered learnquite different fea-
tures. An unexpected result (Figure 2) is the discovery that, for natural image patches,
uninformative-looking first-layer filters of a Deep Belief Network do not necessarily
tell the whole story: we show that second-layer units can model edge detectors and
grating filters in the same model. The implication of this result is that higher-layer
units can be an important tool for comparing models and provides a justification for
seeking to understand and visualize what the upper-layer units in a deep architecture
do; such a result should be interpreted in the context of the standard approach used
in many papers on deep architectures (Osindero and Hinton, 2008; Larochelle et al.,
2009), which is that of simply looking at first-layer filters,in addition to test error
performance.

Further leveraging the AM methodology, we turn to the question of exploring the
invariances that are learned by individual units in a network. Again, we can cast this
question as an optimization problem. We explore this in detail for the output units of a
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supervised network trained on rotated digits. These explorations confirm our intuitions
that these manifolds essentially capture the kinds of general invariances present in the
data and learned by the model. Finally, this investigation naturally provides a way
to visualize and measure invariance. This experiment allowed us to compare layers
in a fairly generic way (with respect to how “invariant” the average activation of a
unit is, as we move away from the result of AM), without actually specifying the set
of invariances by hand, or generating data in any way; as withAM, this invariance
analysis is applicable to a large class of deep architectures.

The same procedures (AM and invariance analyses) can be applied to the weights
obtained aftersupervisedlearning and the observations are similar: convergence occurs
and features seem more complicated at higher layers. We havealready performed a
basic analysis along these lines—in Erhan et al. (2010), Figures 3 and 4, where we
show the influence of pre-training on a deep network. However, we feel that more
work is needed in order to better understand the qualitativeeffect of pre-training for
supervised learning and visualization/invariance analysis tools could be helpful in this
respect.

We would be interested in comparing with Goodfellow et al. (2009)’s approach of
hand-crafted input transformations (such as translations, rotations etc.), and the mea-
surements of invariance of upper-layer units as a function of these transformations. Our
belief is that analysis methods that rely on specific invariances are limited in the story
they can tell us, because we would like to measure invarianceto variations that are not
known a priori. The method we presented in this paper is generic with respect to the
input transformations and is thus a generic way of measuringinvariance; in this sense,
it is an interesting alternative to Goodfellow et al. (2009)’s approach. Nonetheless,
one could reasonably question the interpretability of the invariance manifolds that our
method uncovers. Would it be possible to project or decompose the manifold of a given
unit to a set of known invariances? Could we group the units ofthe layer according to
certain types of invariance?

Future research will concentrate on exploring such questions. Ideally, a future
method for analysis would be able to detail, for a given unit,the level of invariance
with respect to (for example) rotation, translation and scaling of the input data and pro-
vide us with an idea of how invariant it is to other transformations of the input that are
not in the list. Our work is a step in such a direction. The analysis in Figure 5 could
be extended such that the search space of the invariance manifold is limited to inputs
corresponding to only rotations (or only translations or etc.) of x∗

j , the AM output; by
computing curves such as the ones in Figure 7, for each such transformation separately,
one could then come up with at least arelativenotion of invariance, meaning that we
could understand whether a unit is more invariant to rotations or to translations. From
there, we could compare entire layers or model instances, and we might also be able
to compare the behaviour of higher level units in a deep network to features and in-
variances that are presumed to be encoded by the higher levels of the visual cortex Lee
et al. (2008).
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