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ABSTRACT 
In this paper, we propose a new latent semantic model that 
incorporates a convolutional-pooling structure over word 
sequences to learn low-dimensional, semantic vector 
representations for search queries and Web documents. In order to 
capture the rich contextual structures in a query or a document, we 
start with each word within a temporal context window in a word 
sequence to directly capture contextual features at the word n-
gram level. Next, the salient word n-gram features in the word 
sequence are discovered by the model and are then aggregated to 
form a sentence-level feature vector. Finally, a non-linear 
transformation is applied to extract high-level semantic 
information to generate a continuous vector representation for the 
full text string. The proposed convolutional latent semantic model 
(CLSM) is trained on clickthrough data and is evaluated on a Web 
document ranking task using a large-scale, real-world data set. 
Results show that the proposed model effectively captures salient 
semantic information in queries and documents for the task while 
significantly outperforming previous state-of-the-art semantic 
models. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval; I.2.6 [Artificial Intelligence]: Learning 

General Terms 
Algorithms, Experimentation 

Keywords 
Convolutional Neural Network; Semantic Representation; Web 
Search 

1. INTRODUCTION 

Most modern search engines resort to semantic based methods 
beyond lexical matching for Web document retrieval. This is 
partially due to the fact that the same single concept is often 
expressed using different vocabularies and language styles in 
documents and queries. For example, latent semantic models such 
as latent semantic analysis (LSA) are able to map a query to its 

relevant documents at the semantic level where lexical matching 
often fails (e.g., [9][10][31]). These models address the problem 
of language discrepancy between Web documents and search 
queries by grouping different terms that occur in a similar context 
into the same semantic cluster. Thus, a query and a document, 
represented as two vectors in the low-dimensional semantic space, 
can still have a high similarity even if they do not share any term. 
Extending from LSA, probabilistic topic models such as 
probabilistic LSA (PLSA), Latent Dirichlet Allocation (LDA), 
and Bi-Lingual Topic Model (BLTM), have been proposed and 
successfully applied to semantic matching [19][4][16][15][39]. 
More recently, semantic modeling methods based on neural 
networks have also been proposed for information retrieval (IR) 
[16][32][20]. Salakhutdinov and Hinton proposed the Semantic 
Hashing method based on a deep auto-encoder in [32][16]. A 
Deep Structured Semantic Model (DSSM) for Web search was 
proposed in [20], which is reported to give very strong IR 
performance on a large-scale web search task when clickthrough 
data are exploited as weakly-supervised information in training 
the model.  In both methods, plain feed-forward neural networks 
are used to extract the semantic structures embedded in a query or 
a document.  

Despite the progress made recently, all the aforementioned 
latent semantic models view a query (or a document) as a bag of 
words. As a result, they are not effective in modeling contextual 
structures of a query (or a document). Table 1 gives several 
examples of document titles to illustrate the problem. For 
example, the word “office” in the first document refers to the 
popular Microsoft product, but in the second document it refers to 
a working space. We see that the precise search intent of the word 
“office” cannot be identified without context. 
 

microsoft office excel could allow remote code execution 
welcome to the apartment office 
online body fat percentage calculator 
online auto body repair estimates 

Table 1: Sample document titles. The text is lower-cased and 
punctuation removed. The same word, e.g., “office”, has 
different meanings depending on its contexts.  

 
Modeling contextual information in search queries and 

documents is a long-standing research topic in IR 
[11][25][12][26][2][22][24]. Classical retrieval models, such as 
TF-IDF and BM25, use a bag-of-words representation and cannot 
effectively capture contextual information of a word. Topic 
models learn the topic distribution of a word by considering word 
occurrence information within a document or a sentence. 
However, the contextual information captured by such models is 
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often too coarse-grained to be effective for the retrieval task. For 
example, the word office in “office excel” and “apartment office”, 
which represent two very different search intents when used in 
search queries, are likely to be projected to the same topic. As an 
alternative, retrieval methods that directly model phrases (or word 
n-grams) and term dependencies are proposed in [12][25][26]. For 
example, in [25], the Markov Random Field (MRF) is used to 
model dependencies among terms (e.g., term n-grams and skip-
grams) of the query and the document for ranking, while in [26] a 
latent concept expansion (LCE) model is proposed which 
leverages the term-dependent information by adding n-gram and 
(unordered n-gram) as features into the log-linear ranking model. 
In [12] a phrase-based translation model was proposed to learn the 
translation probability of a multi-term phrase in a query given a 
phrase in a document. Since the phrases capture richer contextual 
information than words, more precise translations can be 
determined. However, the phrase translation model can only score 
phrase-to-phrase pairs observed in the clickthrough training data 
and thus generalize poorly to new phrases. 

In this study, we develop a new latent semantic model based 
on the convolutional neural network with convolution-pooling 
structure, called the convolutional latent semantic model (CLSM), 
to capture the important contextual information for latent semantic 
modeling. Instead of using the input representation based on bag-
of-words, the new model views a query or a document 1  as a 
sequence of words with rich contextual structure, and it retains 
maximal contextual information in its projected latent semantic 
representation. The CLSM first projects each word within its 
context to a low-dimensional continuous feature vector, which 
directly captures the contextual features at the word n-gram level 
(detailed in section 3.3). Second, instead of summing over all 
word n-gram features uniformly, the CLSM discovers and 
aggregates only the salient semantic concepts to form a sentence-
level feature vector (detailed in section 3.4). Then, the sentence-
level feature vector is further fed to a regular feed-forward neural 
network, which performs a non-linear transformation, to extract 
high-level semantic information of the word sequence. In training, 
the parameters of the CLSM is learned on clickthrough data.  

Our research contributions can be summarized as follows: 
 We propose a  novel CLSM that captures both the word n-

gram level and sentence-level contextual structures for IR 
using carefully designed convolution and pooling operations; 

 We carry out an extensive experimental study on the 
proposed model whereby several state-of-the-art semantic 
models are compared, and we achieve a significant 
performance improvement on a large-scale real-world Web 
search data set; 

 We perform an in-depth case analysis on the capacity of the 
proposed model, through which the strength of the CLSM is 
clearly demonstrated. 

                                                                 
1  In modern search engines, a Web document is described by 

multiple fields [12][38], including title, body, anchor text etc. In 
our experiments, we only used the title field of a Web document 
for ranking. In addition to providing simplicity for fast 
experimentation, our decision is motivated by the observation 
that the title field gives better single-field retrieval result than 
body, although it is much shorter (as shown in Table 4). Thus it 
can serve as a reasonable baseline in our experiments. 
Nevertheless, our methods are not limited to the title field, and 
can be easily applied to the multi-field description. 

2. RELATED WORK 

2.1 Modeling Term Dependencies for IR  

Although most traditional retrieval models assume the 
occurrences of terms to be completely independent, contextual 
information is crucial for detecting particular search intent of a 
query term. Thus, research in this area has been focusing on 
capturing term dependencies. Early work tries to relax the 
independence assumption by including phrases, in addition to 
single terms, as indexing units [6][36]. Phrases are defined by 
collocations (adjacency or proximity) and selected on the 
statistical ground, possibly with some syntactic knowledge. 
Unfortunately, the experiments did not provide a clear indication 
whether the retrieval effectiveness can be improved in this way. 
Recently, within the framework of language models for IR, 
various approaches that go beyond unigrams have been proposed 
to capture certain term dependencies, notably the bigram and tri-
gram models [35], the dependence model [11], and the MRF 
based models [25][26]. These models have shown benefit of 
capturing dependencies. However, they focus on the utilization of 
phrases as indexing units, rather than the phrase-to-phrase 
semantic relationships.  

The translation model-based approach proposed in [12] tries to 
extract phrase-to-phrase relationships according to clickthrough 
data. Such relationships are expected to be more effective in 
bridging the gap between queries and documents. In particular, 
the phrase translation model learns a probability distribution over 
“translations” of multi-word phrases from documents to queries. 
Assuming that queries and documents are composed using two 
different “languages”, the phrases can be viewed as bilingual 
phrases (or bi-phrases in short), which are consecutive multi-term 
sequences that can be translated from one language to another as 
units. In [12], it was shown that the phrase model is more 
powerful than word translation models [3] because words in the 
relationships are considered with some context words within a 
phrase. Therefore, more precise translations can be determined for 
phrases than for words.  Recent studies show that this approach is 
highly effective when large amounts of clickthrough data are 
available for training [12][15]. However, as discussed before, the 
phrase-based translation model can only score phrase pairs 
observed in the training data, and cannot generalize to new 
phrases. In contrast, the CLSM can generalize to model any 
context. In our experiments reported in Section 5, we will 
compare the CLSM with the word-based and phrase-based 
translation models. 

2.2 Latent Semantic Models 

The most well-known linear projection model for IR is LSA [9]. It 
models the whole document collection using a ݊ ൈ ݀ document-
term matrix ۱, where n is the number of documents and d is the 
number of word types. ۱ is first factored into the product of three 
matrices using singular value decomposition (SVD) as ۱ ൌ
 are called term and ܄ and ܃ where the orthogonal matrices ,்܄઱܃
document vectors, respectively, and the diagonal elements of ઱ 
are singular values in descending order. Then, a low-rank matrix 
approximation of ۱ is generated by retaining only the k biggest 
singular values in ઱. Now, a document (or a query) represented by 
a term vector ۲  can be mapped to a low-dimensional concept 
vector ۲෡ ൌ ݀ where the ,۲்ۯ ൈ ݇ matrix ۯ ൌ ௞઱௞܃

ିଵ is called the 
projection matrix. In document search, the relevance score 
between a query and a document, represented respectively by term 



vectors ۿ and ۲, is assumed to be proportional to their cosine 
similarity score of the corresponding concept vectors ۿ෡  and ۲෡ , 
according to the projection matrix ۯ. 

Generative topic models are also widely used for IR. They 
include Probabilistic Latent Semantic Analysis (PLSA) [19] and 
its extensions such as Latent Dirichlet Allocation (LDA) [4][39]. 
PLSA assumes that each document has a multinomial distribution 
over topics (called the document-topic distribution), where each 
of the topics is in turn of a multinomial distribution over words 
(called the topic-word distribution). The relevance of a query to a 
document is assumed to be proportional to the likelihood of 
generating the query by that document. Recently, topic models 
have been extended so that they can be trained on clickthrough 
data. For example, a generative model called Bi-Lingual Topic 
Model (BLTM) is proposed for Web search in [15], which 
assumes that a query and its clicked document share the same 
document-topic distribution. It is shown that, by learning the 
model on clicked query-title pairs, the BLTM gives superior 
performance over PLSA [15].  

2.3 Neural-Network-based Semantic Models 

Deep architectures have been shown to be highly effective in 
discovering from training data the hidden structures and features 
at different levels of abstraction useful for a variety of tasks 
[32][18][20][37][7][34]. Among them, the DSSM proposed in [20] 
is most relevant to our work. The DSSM uses a feed-forward 
neural network to map the raw term vector (i.e., with the bag-of-
words representation) of a query or a document to its latent 
semantic vector, where the first layer, also known as the word 
hashing layer, converts the term vector to a letter-trigram vector 
to scale up the training. The final layer’s neural activities form the 
vector representation in the semantic space. In document retrieval, 
the relevance score between a document and a query is the cosine 
similarity of their corresponding semantic concept vectors, as in 
Eq. (1). The DSSM is reported to give superior IR performance to 
other semantic models.  

However, since the DSSM treats a query or a document as a 
bag of words, the fine-grained contextual structures within the 
query (or the document) are lost. In contrast, the CLSM is 
designed to capture important word n-gram level and sentence-
level contextual structures that the DSSM does not. Specifically, 
the CLSM directly represents local contextual features at the word 
n-gram level; i.e., it projects each raw word n-gram to a low-
dimensional feature vector where semantically similar word n-
grams are projected to vectors that are close to each other in this 
feature space. Moreover, instead of simply summing all local 
word-n-gram features evenly, the CLSM performs a max pooling 
operation to select the highest neuron activation value across all 
word n-gram features at each dimension, so as to extract the 
sentence-level salient semantic concepts. Meanwhile, for any 
sequence of words, this operation forms a fixed-length sentence-
level feature vector, with the same dimensionality as that of the 
local word n-gram features. 

Deep convolutional neural networks (CNN) have been applied 
successfully in speech, image, and natural language processing 
[8][41][7]. The work presented in this paper is the first successful 
attempt in applying the CNN-like methods to IR. One main 
difference from the conventional CNN is that the convolution 
operation in our CLSM is applied implicitly on the letter-trigram 
representation space with the learned convolutional matrix ௖ܹ . 
The explicit convolution, with the “receptive field” of a size of 

three words shown in Figure 1 is accomplished by the letter-
trigram matrix ௙ܹ  which is fixed and not learned. Other deep 
learning approaches that are related to the CLSM include word-to-
vector mapping (also known as word embedding) using deep 
neural networks learned on large amounts of raw text [1][27]. In 
[28], the vector representation of a word sequence is computed as 
a summation of embedding vectors of all words. An alternative 
approach is proposed in [34], where a parsing tree for a given 
sentence is extracted, which is then mapped to a fixed-length 
representation using recursive auto-encoders. Recently, a neural 
network based DeepMatch model is also proposed to directly 
capture the correspondence between two short texts without 
explicitly relying on semantic vector representations [23].  

3. EXTRACTING CONTEXTUAL 
FEATURES FOR IR USING CLSM 

3.1 The CLSM Architecture  

The architecture of the CLSM is illustrated in Figure 1. The model 
contains (1) a word-n-gram layer obtained by running a contextual 
sliding window over the input word sequence (i.e., a query or a 
document), (2) a letter-trigram layer that transforms each word-
trigram into a letter-trigram representation vector, (3) a 
convolutional layer that extracts contextual features for each word 
with its neighboring words defined by a window, e.g., a word-n-
gram, (4) a max-pooling layer that discovers and combines salient 
word-n-gram features to form a fixed-length sentence-level 
feature vector, and (5) a semantic layer that extracts a high-level 
semantic feature vector for the input word sequence. In what 
follows, we describe these components in detail, using the 
annotation illustrated in Figure 1. 
 

 
 
Figure 1: The CLSM maps a variable-length word sequence to a 
low-dimensional vector in a latent semantic space. A word 
contextual window size (i.e. the receptive field) of three is used in 
the illustration. Convolution over word sequence via learned 
matrix Wୡ	 is performed implicitly via the earlier layer’s mapping 
with a local receptive field. The dimensionalities of the 
convolutional layer and the semantic layer are set to 300 and 128 
in the illustration, respectively. The max operation across the 
sequence is applied for each of 300 feature dimensions separately. 
(Only the first dimension is shown to avoid figure clutter.) 



3.2 Letter-trigram based Word-n-gram 
Representation 

Conventionally, each word w is represented by a one-hot word 
vector where the dimensionality of the vector is the size of the 
vocabulary. However, the vocabulary size is often very large in 
real-world Web search tasks, and the one-hot vector word 
representation makes model learning very expensive. Therefore, 
we resort to a technique called word hashing proposed in [20], 
which represents a word by a letter-trigram vector. For example, 
given a word (e.g. boy), after adding word boundary symbols (e.g. 
#boy#), the word is segmented into a sequence of letter-n-grams 
(e.g. letter-tri-grams: #-b-o, b-o-y, o-y-#). Then, the word is 
represented as a count vector of letter-tri-grams. For example, the 
letter-trigram representation of “boy” is: 

݂ሺܾݕ݋ሻ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0
⋮
1
⋮
1
⋮
1
⋮
ے0
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

  

In Figure 1, the letter-trigram matrix ௙ܹ  denotes the 
transformation from a word to its letter-trigram count vector, 
which requires no learning. Even though the total number of 
English words may grow to be extremely large, the total number 
of distinct letter-trigrams in English (or other similar languages) is 
often limited. Therefore, it can generalize to new words unseen in 
the training data. 

Given the letter-trigram based word representation, we 
represent a word-n-gram by concatenating the letter-trigram 
vectors of each word, e.g., for the t-th word-n-gram at the word-n-
gram layer, we have: 

݈௧ ൌ ሾ ௧݂ିௗ
் , … , ௧݂

், … , ௧݂ାௗ
் 	ሿ், ݐ ൌ 1,… , ܶ (1) 

where ௧݂is the letter-trigram representation of the t-th word, and 
݊ ൌ 2݀ ൅ 1  is the size of the contextual window. In our 
experiment, there are about 30K unique letter-trigrams observed 
in the training set after the data are lower-cased and punctuation-
removed. Therefore, the letter-trigram layer has a dimensionality 
of ݊ ൈ  .ܭ30

3.3 Modeling Word-n-gram-Level Contextual 
Features at the Convolutional Layer 

The convolution operation can be viewed as sliding window based 
feature extraction. It is designed to capture the word-n-gram 
contextual features. Consider the t-th word-n-gram, the 
convolution matrix projects its letter-trigram representation vector 
݈௧ to a contextual feature vector ݄௧. As shown in Figure 1, ݄௧ is 
computed by  

݄௧ ൌ ሺ݄݊ܽݐ ௖ܹ ∙ ݈௧ሻ , ݐ ൌ 1,… , ܶ (2) 

where ௖ܹ  is the feature transformation matrix, as known as the 
convolution matrix, that are shared among all word n-grams. ݄݊ܽݐ 
is used as the activation function of the neurons:  

ሻݔሺ݄݊ܽݐ ൌ
1 െ ݁ିଶ௫

1 ൅ ݁ିଶ௫
			 (3) 

The output of the convolutional layer is a variable length sequence 
of feature vectors, whose length is proportional to the length of 
the input word sequence. A special “padding” word, <s>, is added 
at the beginning and the end of the input word sequence so that a 
full window for a word at any position in the word sequence can 
be formed. Figure 1 shows a convolutional layer using a 3-word 
contextual window. Note that like the conventional CNN, the 
convolution matrix used in our CLSM is shared among all n-word 
phrases and therefore generalizes to new word-n-grams unseen in 
the training set. 

At the convolutional layer, words within their contexts are 
projected to vectors that are close to each other if they are 
semantically similar. Table 2 presents a set of sample word-tri-
grams. Considering the word “office” as the word of interest, we 
measure the cosine similarity between the contextual feature 
vector of “office” within the context “microsoft office software” 
and the vector of “office” within other contexts. We can see that 
the similarity scores between the learned feature vector of 
“microsoft office software” and those of the contexts where 
“office” is referred to the software are quite high, while the 
similarity scores between it and the features vectors where 
“office” has the search intent of “working space” are significantly 
lower. Similarly, as shown in Table 2, the context vectors of 
“body” are much closer when they are of the same search intent. 
 
microsoft office software car body shop 

Free office 2000 0.550 car body kits 0.698

download office excel 0.541 auto body repair 0.578

word office online 0.502 auto body parts 0.555

apartment office hours 0.331 wave body language 0.301
massachusetts office location 0.293 calculate body fat 0.220

international office berkeley 0.274 forcefield body armour 0.165

Table 2: Sample word n-grams and the cosine similarities 
between the learned word-n-gram feature vectors of “office” and 
“body” in different contexts after the CLSM is trained. 
 

3.4 Modeling Sentence-Level Semantic 
Features Using Max Pooling 

A sequence of local contextual feature vectors is extracted at the 
convolutional layer, one for each word-n-gram. These local 
features need to be aggregated to obtain a sentence-level feature 
vector with a fixed size independent of the length of the input 
word sequence. Since many words do not have significant 
influence on the semantics of the sentence, we want to suppress 
the non-significant local features and retain in the global feature 
vector only the salient features that are useful for IR. For this 
purpose, we use a max operation, also known as max pooling, to 
force the network to retain only the most useful local features 
produced by the convolutional layers. I.e., we select the highest 
neuron activation value across all local word n-gram feature 
vectors at each dimension. Referring to the max-pooling layer of 
Figure 1, we have 

ሺ݅ሻݒ ൌ max
௧ୀଵ,…,்

ሼ݄௧ሺ݅ሻሽ , ݅ ൌ 1,… ,  ܭ

Indices of #-b-o, b-o-y, o-y-# in the 
letter-tri-gram list, respectively. 



where ݒሺ݅ሻ is the i-th element of the max pooling layer v, ݄௧ሺ݅ሻ is 
the i-th element of the t-th local feature vector ݄௧ . K is the 
dimensionality of the max pooling layer, which is the same as the 
dimensionality of the local contextual feature vectors ሼ݄௧ሽ.  

Table 3 shows several examples of the output of the max-
pooling layer of the CLSM after training. For each sentence, we 
examine the five most active neurons at the max-pooling layer, 
measured by ݒሺ݅ሻ, and highlight the words in bold who win at 
these five neurons in the max operation (e.g., whose local features 
give these five highest neuron activation values)2. These examples 
show that the important concepts, as represented by these key 
words, make the most significant contribution to the overall 
semantic meaning of the sentence.  

 

microsoft office excel could allow remote code execution 
welcome to the apartment office 
online body fat percentage calculator 
online auto body repair estimates 
vitamin a the health benefits given by carrots 
calcium supplements and vitamin d discussion stop sarcoidosis 

Table 3: Sample document titles. We examine the five most 
active neurons at the max-pooling layer and highlight the words 
in bold who win at these five neurons in the max operation. Note 
that, the feature of a word is extracted from that word together 
with the context words around it, but only the center word is 
highlighted in bold. 

3.5 Latent Semantic Vector Representations 

After the sentence-level feature vector is produced by the max-
pooling operation, one more non-linear transformation layer is 
applied to extract the high-level semantic representation, denoted 
by ݕ. As shown in Figure 1, we have 

ݕ ൌ ሺ	݄݊ܽݐ ௦ܹ ∙  ሻݒ

where v is the global feature vector after max pooling, ௦ܹ is the 
semantic projection matrix, and y is the vector representation of 
the input query (or document) in the latent semantic space, with a 
dimensionality of L. 

In the current implementation of the CLSM, we use one fully-
connected semantic layer, as shown in Figure 1. The model 
architecture can be easily extended to using more powerful, multi-
layer fully-connected deep neural networks. 

3.6 Using the CLSM for IR 

Given a query and a set of documents to be ranked, we first 
compute the semantic vector representations for the query and all 
the documents using the CLSM as described above. Then, similar 
to Eq. (1), we compute the relevance score between the query and 
each document by measuring the cosine similarity between their 
semantic vectors. Formally, the semantic relevance score between 
a query ܳ and a document ܦ is defined as: 

ܴሺܳ, ሻܦ ൌ cosine൫ݕொ, ஽൯ݕ ൌ
஽ݕொ்ݕ

‖஽ݕ‖‖ொݕ‖
 (4) 

                                                                 
2 One word could win at multiple neurons.  

where ݕொ  and ݕ஽  are the semantic vectors of the query and the 
document, respectively. In Web search, given the query, the 
documents are ranked by their semantic relevance scores.  

4. Learning the CLSM for IR 

The data for training the CLSM is the clickthrough data logged by 
a commercial search engine. The clickthrough data consist of a 
list of queries and their clicked documents, similar to the 
clickthrough data have been used in earlier studies, such as 
[12][15][20]. Similar to these work, we assume that a query is 
relevant to the documents that are clicked on for that query, and 
train the CLSM on the clickthrough data in such a way that the 
semantic relevance scores between the clicked documents given 
the queries are maximized. 

Following [20], we first convert the semantic relevance score 
between a query and a positive document to the posterior 
probability of that document given the query through softmax: 

ܲሺܦା|ܳሻ ൌ
exp൫ܴߛሺܳ, ାሻ൯ܦ

∑ exp൫ܴߛሺܳ, ࡰ∋ሻ൯஽ᇱ′ܦ
 (5) 

where ߛ is a smoothing factor in the softmax function, which is 
set empirically on a held-out data set in our experiment. ࡰ denotes 
the set of candidate documents to be ranked. In practice, for each 
(query, clicked-document) pair, we denote by ሺܳ,  ାሻ where ܳ isܦ
a query and ܦା is the clicked document and approximate D by 
including ܦା  and ܬ randomly selected unclicked documents, 
denote by ሼܦ௝

ି; ݆ ൌ 1,… ,  ሽ. As an alternative, the model couldܬ
also be trained using noise contrastive estimation as in [29].  

In training, the model parameters are learned to maximize the 
likelihood of the clicked documents given the queries across the 
training set. That is, we minimize the following loss function  

ሺΛሻܮ ൌ െlog ෑ ܲሺܦା|ܳሻ
ሺொ,஽శሻ

 
(6) 

where Λ denotes the parameter set of the CLSM.  
Note that the loss function of Eq. (5) and (6) covers the pair-

wise loss that has been widely used for learning-to-rank [5] as a 
special case if we allow only one unclicked document to be 
sampled. This loss function is also widely used in speech 
recognition and other applications [17]. It is more flexible than 
pairwise loss in exploring different sampling techniques for 
generating unclicked documents for discriminative information.  

To determine the training hyper parameters and to avoid over-
fitting, we divide the clickthrough data into two sets that do not 
overlap, called training and validation datasets, respectively. In 
our experiments, the models are trained on the training data and 
the training parameters are optimized on the validation data. 

The weights of the neural network are randomly initialized as 
suggested in [30]. The model is trained using mini-batch based 
stochastic gradient descent. Each mini-batch consists of 1024 
training samples. In our implementation, models are trained using 
an NVidia Tesla K20 GPU.  

5.  EXPERIMENTS 

5.1 Data Sets and Evaluation Methodology 

We evaluated the retrieval models on a large-scale, real-world 
data set, called the evaluation data set henceforth. The evaluation 
data set contains 12,071 English queries sampled from one-year 



query log files of a commercial search engine and labeled by 
human judgers. On average, each query is associated with 74 Web 
documents (URLs). Each query-document pair has a relevance 
label manually annotated on a 5-level relevance scale: bad, fair, 
good, excellent, and perfect, corresponding to 0 to 4, where level 
0 (bad) means ܦ is not relevant to ܳ and level 4 (perfect) means 
that the document is the most relevant to query ܳ. All the queries 
and documents are preprocessed such that the text is white-space 
tokenized and lowercased, numbers are retained, and no 
stemming/inflection is performed. Figure 2 shows the length 
distributions of queries and documents in the evaluation data. The 
average lengths of the queries and the document titles are 3.01 and 
7.78 words, respectively.  

 
Figure 2: The distribution of query length and document title 
length in the evaluation data set. The evaluation set consists of 
12,071 queries and 897,770 documents. Query length is 3.01 on 
average. Document title length is 7.78 on average.  
 

As mentioned earlier, we have  used only the title field of a 
Web document for ranking in our experiments. As shown in Table 
4, the title field is very effective for document retrieval, although 
titles are much shorter than body texts. 

 
Field NDCG@1 NDCG@3 NDCG@10 
Body 0.275 0.310 0.375 
Title 0.305 α 0.328 α 0.388 α 
Table 4: Ranking results of two BM25 models, each uses a 
different single field to represent Web documents. The superscript 
݌indicates statistically significant improvements ሺ ߙ ൏ 0.05ሻ over 
Body. 

All the ranking models used in this study contain many free 
hyper-parameters that must be estimated empirically. In all 
experiments, we have used 2-fold cross validation: A set of results 
on one half of the data is obtained using the parameter settings 
optimized on the other half, and the global retrieval results are 
combined from those of the two sets. 

The performance of all ranking models we have evaluated has 
been measured by mean Normalized Discounted Cumulative Gain 
(NDCG) [21], and we will report NDCG scores at truncation 
levels 1, 3, and 10. We have also performed a significance test 
using the paired t-test. Differences are considered statistically 
significant when the p-value is lower than 0.05. 

In our experiments, the clickthrough data used for model 
training include 30 million query and clicked-title pairs sampled 
from one year query log files. The query-title pairs are pre-
processed in the same way as the evaluation data to ensure 
uniformity. We test the models in ranking the documents in the 
evaluation data set. There is no overlap between the training set 
and the evaluation set. 

5.2 Model Settings and Baseline Performance 

We have compared the CLSM with five sets of baseline models, 
as shown in Table 5. The first set includes two widely used lexical 
matching methods, BM25 and the unigram language model 
(ULM). The second set includes a set of state-of-the-art latent 
semantic models which are learned either on documents only in an 
unsupervised manner (PLSA and LDA) or on clickthrough data in 
a supervised way (BLTM). The third set includes a phrase-based 
translation model (PTM) that intends to directly model the 
contextual information within a multi-term phrase. This set also 
includes a word-based translation model (WTM) which is a 
special case of the phrase-based translation model. Both 
translation models are learned on the same clickthrough data 
described in Section 5.1. The fourth set includes the MRF based 
term-dependency model and the latent concept expansion (LCE) 
model. The fifth set includes the DSSM, which is a deep neural 
network based model, which is also learned on the same 
clickthrough data. In order to make the results comparable, we re-
implement these models following the descriptions in 
[11][15][20][25][26]. Details are elaborated in the following 
paragraphs. 

BM25 and ULM are used as baselines. Both models use the 
term vector representation for queries and documents. BM25 
(Row 1 in Table 5) follows the BM25 term weighting function 
used in the Okapi system. ULM (Row 2) is a unigram language 
model with Dirichlet smoothing [42]. Both ULM and BM25 are 
state-of-the-art document ranking models based on term matching. 
They have been widely used as baselines in related studies.  

PLSA (Rows 3 and 4) is our implementation of the model 
proposed in [19], and was trained on documents only (i.e., the title 
side of the query/clicked-title pairs). Different from [19], our 
version of PLSA was learned using MAP estimation as in [15]. 
We experimented with different numbers of topics, and the results 
of using 100 topics and 500 topics are reported in Row 3 and 4, 
respectively. In our experiments, they give similar performance. 

LDA (Row 5 and 6) is our implementation of the model in 
[39]. It was trained on documents only (i.e., the title side of the 
query/clicked-title pairs). The LDA model is learned via Gibbs 
sampling. The number of topics is set to 100 and 500, 
respectively. LDA gives slightly better results than the PLSA, and 
LDA with 500 topics significantly outperforms BM25 and ULM.  

BLTM (Row 7) is the best performer among different versions 
of the bilingual topic models described in [15]. It is trained on 
query-title pairs using the EM algorithm with a constraint 
enforcing the paired query and title to have same fractions of 
terms assigned to each hidden topic. The number of topics is set to 
100 as in [15]. We see that using clickthrough data for model 
training leads to improvement over PLSA and LDA. BLTM also 
significantly outperforms BM25 and ULM. 

MRF (Row 8) models the term dependency using a MRF as 
described in [25]. We use cross-validation method to tune the 
optimal parameters for the feature weights.  

LCE (Row 9) is a latent concept expansion model proposed in 
[26]. It leverages the term-dependent information by adding n-
gram and (unordered n-gram) as features into the log-linear 
ranking model. In our experiments, we re-implemented LCE 
following [26]. Both MRF and LCE outperform BM25 and ULM 
significantly.  

WTM (Row 10) is our implementation of the word-based 
translation model described in [12], which is a special case of the 
phrase-based translation model, listed here for comparison. 
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PTM (Row 11) is the phrase-based translation model proposed 
in [12]. It is supposed to be more powerful than WTM because 
words in the relationships are considered with contextual words 
within a phrase. Therefore, more precise translations can be 
determined for phrases than for words. The model is trained on 
query-title pairs. The maximum length of a phrase is set to three. 
Our results are consistent with that of [11], showing that phrase 
models are more effective for retrieval than word models when 
large amounts of clickthrough data are available for training. 

DSSM (Row 12 and 13) is the best variant of DSSM proposed 
in [20]. It includes the letter-trigram based word hashing layer, 
two non-linear hidden layers, each of which has 300 neurons, and 
an output layer that has 128 neurons. In our experiments, we 
found that learning two separate neural networks, one for the 
query and one for the document title, gives better performance 
than sharing the same neural network for both of the query and the 
document title. Therefore, we always use two separate neural 
networks in our experiments thereafter. We have experimented 
with using different number of negative samples, ܬ,  in the training 
of the DSSM. Row 12 uses the setting of ൌ 4 , where Row uses 
the setting of ܬ ൌ 50. The DSSMs are trained on the same query-
title pairs described in section 5.1 3. The results in Table 5 confirm 
that the DSSM (e.g., Row 13) outperforms other competing 
models in Rows 1 to 11 significantly. The results also show that 
using more negative samples in training leads to better results 
(e.g., Row 13 vs. Row 12).  

CLSM (Row 14 and 15) is the proposed CLSM described in 
Sections 3 and 4. The convolutional layer and max-pooling layer 
each has 300 neurons, and the final output layer has 128 neurons. 
Two separate convolutional neural networks are used in the 
experiments. We have also experimented with using different 
number of negative samples, ܬ,  in the training of the CLSM. The 
model is trained on the same query-title clickthrough dataset 
described in section 5.1.  

5.3 Results 

The main results of our experiments are summarized in Table 5. 
First, we observe that the CLSM (ܬ ൌ 50) outperforms the state-
of-the-art term matching based document ranking models, BM25 
and ULM, with a substantial margin of 4.3% in NDCG@1. The 
CLSM also outperforms the state-of-the-art topic model based 
approaches (i.e., PLSA, LDA, and BLTM) with a statistically 
significant margin from 3.2% to 4.0%. Further, compared to 
previous term-dependency models, the CLSM with the best 
setting outperforms MRF, LCE and PTM by a substantial 
improvement of 3.3%, 3.6%, and 2.9% NDCG@1 respectively. 
This demonstrates CLSM’s effectiveness in capturing the 
contextual structure useful for semantic matching. Finally, we 
obtain significant 2.2% to 2.3% NDCG@1 improvement of the 
CLSM over DSSM, a state-of-the-art neural network based model. 
This demonstrates the importance of CLSM’s capability of 
modeling fine-grained word n-gram level and sentence-level 
contextual structures for IR, as the DSSM is based on the bag-of-
words representation and cannot capture such information. 

We then further investigated the performance of CLSM using 

                                                                 
3 For comparison, we re-implemented the DSSM on the current 

data set. The data set used in [20] is encoded in a bag-of-words 
representation format and thus not suitable for this study 
(personal communication). 

different context window sizes and present the experimental 
results in Table 6. In Table 6, we first observe that even with a 
context window size of one, the CLSM still significantly 
outperforms the DSSM, demonstrating that it is far more effective 
for IR to capture salient local features than simply summing over 
the contributions from all words uniformly. Then, when 
increasing the window size from one to three, we observe another 
significant improvement, attributes to the capability of modeling 
word-tri-gram contextual information. When the window size is 
increased to five, however, no significant gain is observed. Our 
interpretation is that because the average lengths of the queries 
and the document titles are only three and eight words 
respectively, window sizes larger than three do not provide much 
extra context information. Moreover, big context windows lead to 
more model parameters to learn, and thus increase the difficulty of 
parameter learning. In the next subsection, we will present an in-
depth analysis on the performance of the CLSM.  
 
# Models NDCG@1 NDCG@3 NDCG@10

1 BM25 0.305 0.328 0.388 
 2 ULM 0.304 0.327 0.385 
3 PLSA (T=100) 0.305 0.335 α 0.402 α 
4 PLSA (T=500) 0.308 0.337 α 0.402 α 
5 LDA (T=100) 0.308   0.339 α 0.403 α 
6 LDA (T=500) 0.310 α  0.339 α 0.405 α 
7 BLTM 0.316 α 0.344 α 0.410 α 
8 MRF 0.315 α 0.341 α 0.409 α 
9 LCE 0.312 α  0.337 α  0.407 α  

10 WTM 0.315 α 0.342 α 0.411 α 
11 PTM (maxlen = 3) 0.319 α 0.347 α 0.413 α 
12 DSSM (ܬ ൌ 4) 0.320 α 0.355 αβ 0.431 αβ 
13 DSSM (ܬ ൌ 50) 0.327 αβ 0.363 αβ 0.438 αβ 
14 CLSM (ܬ ൌ 4) 0.342 αβγ 0.374 αβγ 0.447 αβγ 
15 CLSM (ࡶ ൌ ૞૙) 0.348 αβγ 0.379 αβγ 0.449αβγ 
Table 5: Comparative results with the previous state of the art 
approaches. BLTM, WTM, PTM, DSSM, and CLSM use the same 
clickthrough data described in section 5.1 for learning. 
Superscripts ߙ, ,ߚ  and 	ߛ  indicate statistically significant 
improvements ሺ݌ ൏ 0.05ሻ  over BM25, PTM, and DSSM (ܬ ൌ
50), respectively.  
 
# Models NDCG

@1 
NDCG
@3 

NDCG
@10 

1 DSSM (ܬ ൌ 50) 0.327 0.363 0.438 
2 CLSM (ܬ ൌ 50) win =1 0.340 α 0.374 α 0.443 α 
3 CLSM (ܬ ൌ 50) win =3 0.348 αβ 0.379 αβ 0.449 αβ 
4 CLSM (ܬ ൌ 50) win =5 0.344 α 0.376 α 0.448 αβ 
Table 6: Comparative results of the CLSMs using different 
convolution window sizes. The setting of the DSSM is 
300/300/128 and the setting of the CLSM is K=300, L=128. 
Superscripts ߙ  and 	ߚ  indicate statistically significant 
improvements ሺ݌ ൏ 0.05ሻ  over DSSM and CLSM (win=1), 
respectively. 

5.4 Analysis 

In order to gain a better understanding of the difference 
between models, we compare the CLSM with the DSSM query by 
query under their best settings, i.e., row 13 and row 15 in table 5, 
respectively. 



For each query, we checked the relevance label of the top-1 
document retrieved by the DSSM and the CLSM, respectively. 
We count the number of times that the retrieved document is in 
each of the five relevance category, from bad to perfect, for both 
models. The distributions of the relevance labels of the top-1 
returned documents are plotted in Figure 3. Compared with the 
DSSM, overall, the CLSM returns more relevant documents, i.e., 
the percentages of returned documents in the bad or fair 
categories decrease substantially, and the percentage of returned 
documents in the good category increases substantially. The 
counts in the excellent and perfect categories also increase, 
although the absolute numbers are small. 
 

 
Figure 3: Percentage of top-1 ranked documents in each of the 
five relevance categories, retrieved by the CLSM and the DSSM, 
respectively.  

 
Models  DSSM 

 Label bad fair good+

CLSM 
bad 3052 626 342 
fair 738 2730 631 

good+ 601 981 2370 
Table 7: CLSM vs DSSM on Top-1 search results. The three 
relevance categories, good, excellent, and perfect, are merged into 
one good+ category. 

 
A more detailed comparison between the CLSM and the 

DSSM is presented in table 7. We observe that for 8,152 of the 
total 12,071 queries, both the CLSM and the DSSM return the 
documents of the same quality. However, in the cases where they 
return documents with different qualities, the advantage of the 
CLSM over the DSSM can be clearly observed. For example, 
there are 601 queries for which the CLSM returns good or better 
quality Top-1 documents while the DSSM’s Top-1 returns are 
bad, much more than the opposite cases. There are also 981 
queries for which the CLSM returns good or better Top-1 
documents while the DSSM returns fair documents, much more 
than the 631 opposite cases. 

To help better understand what is learned by the CLSM, we 
show several examples selected from the CLSM result on the 
evaluation data set in Table 8. Each row includes a query and the 
title of the top 1 document ranked by CLSM. In both of the query 
and the document title, the words that most significantly 
contribute to the semantic meaning, e.g., words contribute to the 
most active five neurons at the max pooling layer, are marked in 
bold. To further illustrate the CLSM’s capability for semantic 
matching, we trace the activation of neurons at the max-pooling 
layer for the first three examples in Table 8 and elaborate these 
examples in Figure 4. We first project both the query and the 
document title to the max-pooling layer, respectively. Then, we 
evaluate the activation values of neurons at the max-pooling layer, 
and show the indices of the neurons that have high activation 
values for both query and document title, e.g., the product of the 
activation values of the query and the document title at a neuron is 
larger than a threshold. After that, we trace back to the words that 
win these neurons in both the query and the document title. In 
Figure 4, we show the indices of these matching neurons and the 
words in the query and the document title that win them.  

In the first example, though there is no overlap between the 
key words “warm environment arterioles” in the query and the 
word “thermoregulation” in the document, they both have high 
activation values at a similar set of neurons, and thus lead to a 
query-document match in the semantic space. Similar behavior is 
observed in the second example. “auto” and “calculator” in the 
query and “car” and “estimates” in the document activate similar 
neurons, thus leading to a query-document match in the semantic 
space as well. The third example is more complicated. “vitamin d” 
is closely associated to “calcium absorbing”, and “excessive 
calcium absorbing” is a symptom of “sarcoidosis”. In Figure 4 (c), 
we observe that both “calcium” in the document title and “d” 
(with its context “vitamin”) in the query gives high activation at 
neuron 88, while “sarcoidosis” in the document title and 
“absorbs” “excessive” and “vitamin” in the query have high 
activations at the set of neurons 90, 66, 79. Our analysis indicates 
that different words with related semantic meanings activate the 
similar set of neurons, resulting to a high overall matching score. 
This demonstrates the effectiveness of the CLSM in extracting the 
salient semantic meaning in queries and documents for Web 
search.   

6. SUMMARY 

In this paper, we have reported a novel deep learning architecture 
called the CLSM, motivated by the convolutional structure of the 
CNN, to extract both local contextual features at the word-n-gram 
level (via the convolutional layer) and global contextual features 
at the sentence-level (via the max-pooling layer) from text. The 
higher layer(s) in the overall deep architecture makes effective use 
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Table 8: Samples of queries and the top-1 documents ranked by the CLSM. Words marked in bold are those that contribute to the five 
most active neurons at the max-pooling layer. 



of the extracted context-sensitive features to generate latent 
semantic vector representations which facilitates semantic 
matching between documents and queries for Web search 
applications. We have carried out extensive experimental studies 
of the proposed model whereby several state-of-the-art semantic 
models are compared and significant performance improvement 
on a large-scale real-world Web search data set is observed. 

Extended from our previous work [20] [33], the CLSM and its 
variations have also been demonstrated giving superior 
performance on a range of natural language processing tasks 
beyond information retrieval, including machine translation [13], 
semantic parsing and question answering [40], entity search and 
online recommendation [14]. In the future, the CLSM can be 
further extended to automatically capture a wider variety of types 
of contextual features from text than our current settings. 

 
(a) 

 
(b) 

 
(c) 

Figure 4: Illustration of semantic matching between a query and a 
document title at the max-pooling layer, after word-n-gram 
contextual feature extraction and the max pooling operation. The 
indices of the neurons at the max-pooling layer that have high 
activation values for both query and document title are shown. 
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APPENDIX  
The CLSM is trained using stochastic gradient descent. Let 
 ሺΛሻ be a sample-wise loss function, the model parameters areݏݏ݋݈
updated by 

Λ௧ ൌ Λ௧ିଵ െ ߳௧
ሺΛሻݏݏ݋݈߲

߲Λ
|ஃୀஃ೟షభ  (7) 

where ߳௧  is the learning rate at the ݐ௧௛  iteration, Λ௧  and Λ௧ିଵ  are 
the model parameters at the ݐ௧௛  and the ሺݐ െ 1ሻ௧௛  iterations, 
respectively.  
For each query ܳ, we denote by ܦା  the clicked document, and 
ሼܦ௝

ି; ݆ ൌ 1,… ,4ሽ  the unclicked document. In the following, 
referring to Figure 1 and  Eq. (5) – (7) for definitions of variables, 

we then derive 
డ௟௢௦௦ሺஃሻ

డஃ
 as follows.  

First, the loss function in Eq. (7) can be written as: 

ሺΛሻݏݏ݋݈ ൌ log ቆ1 ൅෍ exp	൫െߛ	Δ௝൯
௝

ቇ (8) 

where Δ௝ ൌ ܴሺܳ, ାሻܦ െ ܴሺܳ, ௝ܦ
ିሻ.  

The gradient of the loss function w.r.t. the semantic projection 
matrix ௦ܹ is  

ሺΛሻݏݏ݋݈߲

߲ ௦ܹ
ൌ෍ߙ௝

௝

߲Δ௝
߲ ௦ܹ

 (9) 

where  
߲Δ௝
߲ ௦ܹ

ൌ
߲ܴሺܳ, ାሻܦ

߲ ௦ܹ
െ
߲ܴሺܳ,ܦ௝

ିሻ

߲ ௦ܹ
 (10) 

and 

௝ߙ ൌ
െγ exp	ሺെ	ߛ	Δ௝ሻ

1 ൅ ∑ exp	ሺെ	ߛ	Δ௝ᇱሻ௝ᇱ
 (11) 

To simplify the notation, let ܽ, ܾ, ܿ  be ݕொ்ݕ஽ , 1/ฮݕொฮ , and 	1/
 as the activation function in our ݄݊ܽݐ ஽‖ , respectively. Withݕ‖
model, each term in the right-hand side of Eq. (10) can be 
calculated using the following formula: 

߲ܴሺܳ, ሻܦ

߲ ௦ܹ
ൌ

߲
߲ ௦ܹ

஽ݕொ்ݕ
‖஽ݕ‖‖ொݕ‖

ൌ ௬ೂߜ
ሺொ,஽ሻݒொ

் ൅ ௬ವߜ
ሺொ,஽ሻݒ஽

் (12)

where ߜ௬ೂ
ሺொ,஽ሻ and ߜ௬ವ

ሺொ,஽ሻ for a pair of ሺܳ,  ሻ are computed asܦ

௬ೂߜ
ሺொ,஽ሻ ൌ ൫1 െ ொ൯ݕ ∘ ൫1 ൅ ொ൯ݕ ∘ ሺܾܿݕ஽ െ ܾܽܿଷݕொሻ 

௬ವߜ
ሺொ,஽ሻ ൌ ሺ1 െ ஽ሻݕ ∘ ሺ1 ൅ ஽ሻݕ ∘ ሺܾܿݕொ െ ܾܽܿଷݕ஽ሻ 

(13)

where the operator ∘  is the element-wise multiplication 
(Hadamard product). 
In order to compute the gradient of the loss function w.r.t. the 
convolution matrix, ௖ܹ  , first we also need to calculate ሼߜሽ for 
each Δ௝ at the max layer. For example, each ߜ in the max layer, v, 
can be calculated through back propagation as 

௩ೂߜ
ሺொ,஽ሻ ൌ ൫1 ൅ ொ൯ݒ ∘ ൫1 െ ொ൯ݒ ∘ ௦ܹ

௬ೂߜ்
ሺொ,஽ሻ 

௩ವߜ
ሺொ,஽ሻ ൌ ሺ1 ൅ ஽ሻݒ ∘ ሺ1 െ ஽ሻݒ ∘ ௦ܹ

௬ವߜ்
ሺொ,஽ሻ 

(14)

Then we need to trace back to the local features that win in the 
max operation, i.e., 

ொሺ݅ሻݐ ൌ argmax
௧ୀଵ,…, ೂ்

ሼ݄௧ሺ݅ሻሽ, ݅ ൌ 1,… , ܭ  

஽ሺ݅ሻݐ ൌ argmax
௧ୀଵ,…, ವ்

ሼ݄௧ሺ݅ሻሽ, ݅ ൌ 1,… ,  ܭ
(15)

Then, the gradient of the loss function w.r.t. the convolution 
matrix, ௖ܹ , can be computed as 

ሺΛሻݏݏ݋݈߲

߲ ௖ܹ
ൌ෍ߙ௝

௝

߲Δ௝
߲ ௖ܹ

 (16) 

where for the i-th row of ௖ܹ, e.g., ௖ܹ,௜, ݅ ൌ 1,… ,  :we have ,ܭ

߲Δ௝
߲ ௖ܹ,௜

ൌ ቀߜ௩ೂ
ሺொ,஽శሻሺ݅ሻ݈ொ,௧ೂሺ௜ሻ

் ൅ ௩ವశߜ
ሺொ,஽శሻሺ݅ሻ݈஽శ,௧ವశሺ௜ሻ

் ቁ

െ ൬ߜ௩ೂ
൫ொ,஽ೕ

ష൯
ሺ݅ሻ݈ொ,௧ೂሺ௜ሻ

் ൅ ௩ವೕషߜ
൫ொ,஽ೕ

ష൯
ሺ݅ሻ݈஽ೕష,௧ವೕషሺ௜ሻ

் ൰
 

where ߜሺ݅ሻ is the i-th element of ߜ, and ݈ொ,௧ and ݈஽,௧ is the context 
window vector at the t-th position of Q or D, as defined in section 
3.3, respectively.  


