
A Latent Semantic Model with Convolutional-Pooling
Structure for Information Retrieval

Yelong Shen

Microsoft Research
Redmond, WA, USA
yeshen@microsoft.com

Xiaodong He

Microsoft Research
Redmond, WA, USA
xiaohe@microsoft.com

Jianfeng Gao

Microsoft Research
Redmond, WA, USA
jfgao@microsoft.com

Li Deng

Microsoft Research
Redmond, WA, USA
deng@microsoft.com

Grégoire Mesnil

University of Montréal
Montréal, Canada

gregoire.mesnil@umont
real.ca

ABSTRACT
In this paper, we propose a new latent semantic model that
incorporates a convolutional-pooling structure over word
sequences to learn low-dimensional, semantic vector
representations for search queries and Web documents. In order to
capture the rich contextual structures in a query or a document, we
start with each word within a temporal context window in a word
sequence to directly capture contextual features at the word n-
gram level. Next, the salient word n-gram features in the word
sequence are discovered by the model and are then aggregated to
form a sentence-level feature vector. Finally, a non-linear
transformation is applied to extract high-level semantic
information to generate a continuous vector representation for the
full text string. The proposed convolutional latent semantic model
(CLSM) is trained on clickthrough data and is evaluated on a Web
document ranking task using a large-scale, real-world data set.
Results show that the proposed model effectively captures salient
semantic information in queries and documents for the task while
significantly outperforming previous state-of-the-art semantic
models.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Convolutional Neural Network; Semantic Representation; Web
Search

1. INTRODUCTION

Most modern search engines resort to semantic based methods
beyond lexical matching for Web document retrieval. This is
partially due to the fact that the same single concept is often
expressed using different vocabularies and language styles in
documents and queries. For example, latent semantic models such
as latent semantic analysis (LSA) are able to map a query to its

relevant documents at the semantic level where lexical matching
often fails (e.g., [9][10][31]). These models address the problem
of language discrepancy between Web documents and search
queries by grouping different terms that occur in a similar context
into the same semantic cluster. Thus, a query and a document,
represented as two vectors in the low-dimensional semantic space,
can still have a high similarity even if they do not share any term.
Extending from LSA, probabilistic topic models such as
probabilistic LSA (PLSA), Latent Dirichlet Allocation (LDA),
and Bi-Lingual Topic Model (BLTM), have been proposed and
successfully applied to semantic matching [19][4][16][15][39].
More recently, semantic modeling methods based on neural
networks have also been proposed for information retrieval (IR)
[16][32][20]. Salakhutdinov and Hinton proposed the Semantic
Hashing method based on a deep auto-encoder in [32][16]. A
Deep Structured Semantic Model (DSSM) for Web search was
proposed in [20], which is reported to give very strong IR
performance on a large-scale web search task when clickthrough
data are exploited as weakly-supervised information in training
the model. In both methods, plain feed-forward neural networks
are used to extract the semantic structures embedded in a query or
a document.

Despite the progress made recently, all the aforementioned
latent semantic models view a query (or a document) as a bag of
words. As a result, they are not effective in modeling contextual
structures of a query (or a document). Table 1 gives several
examples of document titles to illustrate the problem. For
example, the word “office” in the first document refers to the
popular Microsoft product, but in the second document it refers to
a working space. We see that the precise search intent of the word
“office” cannot be identified without context.

microsoft office excel could allow remote code execution
welcome to the apartment office
online body fat percentage calculator
online auto body repair estimates

Table 1: Sample document titles. The text is lower-cased and
punctuation removed. The same word, e.g., “office”, has
different meanings depending on its contexts.

Modeling contextual information in search queries and

documents is a long-standing research topic in IR
[11][25][12][26][2][22][24]. Classical retrieval models, such as
TF-IDF and BM25, use a bag-of-words representation and cannot
effectively capture contextual information of a word. Topic
models learn the topic distribution of a word by considering word
occurrence information within a document or a sentence.
However, the contextual information captured by such models is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CIKM’14, November 3–7, 2014, Shanghai, China.
Copyright © 2014 ACM 978-1-4503-2598-1/14/11…$15.00
http://dx.doi.org/10.1145/2661829.2661935

often too coarse-grained to be effective for the retrieval task. For
example, the word office in “office excel” and “apartment office”,
which represent two very different search intents when used in
search queries, are likely to be projected to the same topic. As an
alternative, retrieval methods that directly model phrases (or word
n-grams) and term dependencies are proposed in [12][25][26]. For
example, in [25], the Markov Random Field (MRF) is used to
model dependencies among terms (e.g., term n-grams and skip-
grams) of the query and the document for ranking, while in [26] a
latent concept expansion (LCE) model is proposed which
leverages the term-dependent information by adding n-gram and
(unordered n-gram) as features into the log-linear ranking model.
In [12] a phrase-based translation model was proposed to learn the
translation probability of a multi-term phrase in a query given a
phrase in a document. Since the phrases capture richer contextual
information than words, more precise translations can be
determined. However, the phrase translation model can only score
phrase-to-phrase pairs observed in the clickthrough training data
and thus generalize poorly to new phrases.

In this study, we develop a new latent semantic model based
on the convolutional neural network with convolution-pooling
structure, called the convolutional latent semantic model (CLSM),
to capture the important contextual information for latent semantic
modeling. Instead of using the input representation based on bag-
of-words, the new model views a query or a document 1 as a
sequence of words with rich contextual structure, and it retains
maximal contextual information in its projected latent semantic
representation. The CLSM first projects each word within its
context to a low-dimensional continuous feature vector, which
directly captures the contextual features at the word n-gram level
(detailed in section 3.3). Second, instead of summing over all
word n-gram features uniformly, the CLSM discovers and
aggregates only the salient semantic concepts to form a sentence-
level feature vector (detailed in section 3.4). Then, the sentence-
level feature vector is further fed to a regular feed-forward neural
network, which performs a non-linear transformation, to extract
high-level semantic information of the word sequence. In training,
the parameters of the CLSM is learned on clickthrough data.

Our research contributions can be summarized as follows:
 We propose a novel CLSM that captures both the word n-

gram level and sentence-level contextual structures for IR
using carefully designed convolution and pooling operations;

 We carry out an extensive experimental study on the
proposed model whereby several state-of-the-art semantic
models are compared, and we achieve a significant
performance improvement on a large-scale real-world Web
search data set;

 We perform an in-depth case analysis on the capacity of the
proposed model, through which the strength of the CLSM is
clearly demonstrated.

1 In modern search engines, a Web document is described by

multiple fields [12][38], including title, body, anchor text etc. In
our experiments, we only used the title field of a Web document
for ranking. In addition to providing simplicity for fast
experimentation, our decision is motivated by the observation
that the title field gives better single-field retrieval result than
body, although it is much shorter (as shown in Table 4). Thus it
can serve as a reasonable baseline in our experiments.
Nevertheless, our methods are not limited to the title field, and
can be easily applied to the multi-field description.

2. RELATED WORK

2.1 Modeling Term Dependencies for IR

Although most traditional retrieval models assume the
occurrences of terms to be completely independent, contextual
information is crucial for detecting particular search intent of a
query term. Thus, research in this area has been focusing on
capturing term dependencies. Early work tries to relax the
independence assumption by including phrases, in addition to
single terms, as indexing units [6][36]. Phrases are defined by
collocations (adjacency or proximity) and selected on the
statistical ground, possibly with some syntactic knowledge.
Unfortunately, the experiments did not provide a clear indication
whether the retrieval effectiveness can be improved in this way.
Recently, within the framework of language models for IR,
various approaches that go beyond unigrams have been proposed
to capture certain term dependencies, notably the bigram and tri-
gram models [35], the dependence model [11], and the MRF
based models [25][26]. These models have shown benefit of
capturing dependencies. However, they focus on the utilization of
phrases as indexing units, rather than the phrase-to-phrase
semantic relationships.

The translation model-based approach proposed in [12] tries to
extract phrase-to-phrase relationships according to clickthrough
data. Such relationships are expected to be more effective in
bridging the gap between queries and documents. In particular,
the phrase translation model learns a probability distribution over
“translations” of multi-word phrases from documents to queries.
Assuming that queries and documents are composed using two
different “languages”, the phrases can be viewed as bilingual
phrases (or bi-phrases in short), which are consecutive multi-term
sequences that can be translated from one language to another as
units. In [12], it was shown that the phrase model is more
powerful than word translation models [3] because words in the
relationships are considered with some context words within a
phrase. Therefore, more precise translations can be determined for
phrases than for words. Recent studies show that this approach is
highly effective when large amounts of clickthrough data are
available for training [12][15]. However, as discussed before, the
phrase-based translation model can only score phrase pairs
observed in the training data, and cannot generalize to new
phrases. In contrast, the CLSM can generalize to model any
context. In our experiments reported in Section 5, we will
compare the CLSM with the word-based and phrase-based
translation models.

2.2 Latent Semantic Models

The most well-known linear projection model for IR is LSA [9]. It
models the whole document collection using a ݊ ൈ ݀ document-
term matrix ۱, where n is the number of documents and d is the
number of word types. ۱ is first factored into the product of three
matrices using singular value decomposition (SVD) as ۱ ൌ
 are called term and ܄ and ܃ where the orthogonal matrices ,்܄઱܃
document vectors, respectively, and the diagonal elements of ઱
are singular values in descending order. Then, a low-rank matrix
approximation of ۱ is generated by retaining only the k biggest
singular values in ઱. Now, a document (or a query) represented by
a term vector ۲ can be mapped to a low-dimensional concept
vector ۲෡ ൌ ݀ where the ,۲்ۯ ൈ ݇ matrix ۯ ൌ ௞઱௞܃

ିଵ is called the
projection matrix. In document search, the relevance score
between a query and a document, represented respectively by term

vectors ۿ and ۲, is assumed to be proportional to their cosine
similarity score of the corresponding concept vectors ۿ෡ and ۲෡ ,
according to the projection matrix ۯ.

Generative topic models are also widely used for IR. They
include Probabilistic Latent Semantic Analysis (PLSA) [19] and
its extensions such as Latent Dirichlet Allocation (LDA) [4][39].
PLSA assumes that each document has a multinomial distribution
over topics (called the document-topic distribution), where each
of the topics is in turn of a multinomial distribution over words
(called the topic-word distribution). The relevance of a query to a
document is assumed to be proportional to the likelihood of
generating the query by that document. Recently, topic models
have been extended so that they can be trained on clickthrough
data. For example, a generative model called Bi-Lingual Topic
Model (BLTM) is proposed for Web search in [15], which
assumes that a query and its clicked document share the same
document-topic distribution. It is shown that, by learning the
model on clicked query-title pairs, the BLTM gives superior
performance over PLSA [15].

2.3 Neural-Network-based Semantic Models

Deep architectures have been shown to be highly effective in
discovering from training data the hidden structures and features
at different levels of abstraction useful for a variety of tasks
[32][18][20][37][7][34]. Among them, the DSSM proposed in [20]
is most relevant to our work. The DSSM uses a feed-forward
neural network to map the raw term vector (i.e., with the bag-of-
words representation) of a query or a document to its latent
semantic vector, where the first layer, also known as the word
hashing layer, converts the term vector to a letter-trigram vector
to scale up the training. The final layer’s neural activities form the
vector representation in the semantic space. In document retrieval,
the relevance score between a document and a query is the cosine
similarity of their corresponding semantic concept vectors, as in
Eq. (1). The DSSM is reported to give superior IR performance to
other semantic models.

However, since the DSSM treats a query or a document as a
bag of words, the fine-grained contextual structures within the
query (or the document) are lost. In contrast, the CLSM is
designed to capture important word n-gram level and sentence-
level contextual structures that the DSSM does not. Specifically,
the CLSM directly represents local contextual features at the word
n-gram level; i.e., it projects each raw word n-gram to a low-
dimensional feature vector where semantically similar word n-
grams are projected to vectors that are close to each other in this
feature space. Moreover, instead of simply summing all local
word-n-gram features evenly, the CLSM performs a max pooling
operation to select the highest neuron activation value across all
word n-gram features at each dimension, so as to extract the
sentence-level salient semantic concepts. Meanwhile, for any
sequence of words, this operation forms a fixed-length sentence-
level feature vector, with the same dimensionality as that of the
local word n-gram features.

Deep convolutional neural networks (CNN) have been applied
successfully in speech, image, and natural language processing
[8][41][7]. The work presented in this paper is the first successful
attempt in applying the CNN-like methods to IR. One main
difference from the conventional CNN is that the convolution
operation in our CLSM is applied implicitly on the letter-trigram
representation space with the learned convolutional matrix ௖ܹ .
The explicit convolution, with the “receptive field” of a size of

three words shown in Figure 1 is accomplished by the letter-
trigram matrix ௙ܹ which is fixed and not learned. Other deep
learning approaches that are related to the CLSM include word-to-
vector mapping (also known as word embedding) using deep
neural networks learned on large amounts of raw text [1][27]. In
[28], the vector representation of a word sequence is computed as
a summation of embedding vectors of all words. An alternative
approach is proposed in [34], where a parsing tree for a given
sentence is extracted, which is then mapped to a fixed-length
representation using recursive auto-encoders. Recently, a neural
network based DeepMatch model is also proposed to directly
capture the correspondence between two short texts without
explicitly relying on semantic vector representations [23].

3. EXTRACTING CONTEXTUAL
FEATURES FOR IR USING CLSM

3.1 The CLSM Architecture

The architecture of the CLSM is illustrated in Figure 1. The model
contains (1) a word-n-gram layer obtained by running a contextual
sliding window over the input word sequence (i.e., a query or a
document), (2) a letter-trigram layer that transforms each word-
trigram into a letter-trigram representation vector, (3) a
convolutional layer that extracts contextual features for each word
with its neighboring words defined by a window, e.g., a word-n-
gram, (4) a max-pooling layer that discovers and combines salient
word-n-gram features to form a fixed-length sentence-level
feature vector, and (5) a semantic layer that extracts a high-level
semantic feature vector for the input word sequence. In what
follows, we describe these components in detail, using the
annotation illustrated in Figure 1.

Figure 1: The CLSM maps a variable-length word sequence to a
low-dimensional vector in a latent semantic space. A word
contextual window size (i.e. the receptive field) of three is used in
the illustration. Convolution over word sequence via learned
matrix Wୡ	 is performed implicitly via the earlier layer’s mapping
with a local receptive field. The dimensionalities of the
convolutional layer and the semantic layer are set to 300 and 128
in the illustration, respectively. The max operation across the
sequence is applied for each of 300 feature dimensions separately.
(Only the first dimension is shown to avoid figure clutter.)

3.2 Letter-trigram based Word-n-gram
Representation

Conventionally, each word w is represented by a one-hot word
vector where the dimensionality of the vector is the size of the
vocabulary. However, the vocabulary size is often very large in
real-world Web search tasks, and the one-hot vector word
representation makes model learning very expensive. Therefore,
we resort to a technique called word hashing proposed in [20],
which represents a word by a letter-trigram vector. For example,
given a word (e.g. boy), after adding word boundary symbols (e.g.
#boy#), the word is segmented into a sequence of letter-n-grams
(e.g. letter-tri-grams: #-b-o, b-o-y, o-y-#). Then, the word is
represented as a count vector of letter-tri-grams. For example, the
letter-trigram representation of “boy” is:

݂ሺܾݕ݋ሻ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0
⋮
1
⋮
1
⋮
1
⋮
ے0
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

In Figure 1, the letter-trigram matrix ௙ܹ denotes the
transformation from a word to its letter-trigram count vector,
which requires no learning. Even though the total number of
English words may grow to be extremely large, the total number
of distinct letter-trigrams in English (or other similar languages) is
often limited. Therefore, it can generalize to new words unseen in
the training data.

Given the letter-trigram based word representation, we
represent a word-n-gram by concatenating the letter-trigram
vectors of each word, e.g., for the t-th word-n-gram at the word-n-
gram layer, we have:

݈௧ ൌ ሾ ௧݂ିௗ
் , … , ௧݂

், … , ௧݂ାௗ
் 	ሿ், ݐ ൌ 1,… , ܶ (1)

where ௧݂is the letter-trigram representation of the t-th word, and
݊ ൌ 2݀ ൅ 1 is the size of the contextual window. In our
experiment, there are about 30K unique letter-trigrams observed
in the training set after the data are lower-cased and punctuation-
removed. Therefore, the letter-trigram layer has a dimensionality
of ݊ ൈ .ܭ30

3.3 Modeling Word-n-gram-Level Contextual
Features at the Convolutional Layer

The convolution operation can be viewed as sliding window based
feature extraction. It is designed to capture the word-n-gram
contextual features. Consider the t-th word-n-gram, the
convolution matrix projects its letter-trigram representation vector
݈௧ to a contextual feature vector ݄௧. As shown in Figure 1, ݄௧ is
computed by

݄௧ ൌ ሺ݄݊ܽݐ ௖ܹ ∙ ݈௧ሻ , ݐ ൌ 1,… , ܶ (2)

where ௖ܹ is the feature transformation matrix, as known as the
convolution matrix, that are shared among all word n-grams. ݄݊ܽݐ
is used as the activation function of the neurons:

ሻݔሺ݄݊ܽݐ ൌ
1 െ ݁ିଶ௫

1 ൅ ݁ିଶ௫
			 (3)

The output of the convolutional layer is a variable length sequence
of feature vectors, whose length is proportional to the length of
the input word sequence. A special “padding” word, <s>, is added
at the beginning and the end of the input word sequence so that a
full window for a word at any position in the word sequence can
be formed. Figure 1 shows a convolutional layer using a 3-word
contextual window. Note that like the conventional CNN, the
convolution matrix used in our CLSM is shared among all n-word
phrases and therefore generalizes to new word-n-grams unseen in
the training set.

At the convolutional layer, words within their contexts are
projected to vectors that are close to each other if they are
semantically similar. Table 2 presents a set of sample word-tri-
grams. Considering the word “office” as the word of interest, we
measure the cosine similarity between the contextual feature
vector of “office” within the context “microsoft office software”
and the vector of “office” within other contexts. We can see that
the similarity scores between the learned feature vector of
“microsoft office software” and those of the contexts where
“office” is referred to the software are quite high, while the
similarity scores between it and the features vectors where
“office” has the search intent of “working space” are significantly
lower. Similarly, as shown in Table 2, the context vectors of
“body” are much closer when they are of the same search intent.

microsoft office software car body shop

Free office 2000 0.550 car body kits 0.698

download office excel 0.541 auto body repair 0.578

word office online 0.502 auto body parts 0.555

apartment office hours 0.331 wave body language 0.301
massachusetts office location 0.293 calculate body fat 0.220

international office berkeley 0.274 forcefield body armour 0.165

Table 2: Sample word n-grams and the cosine similarities
between the learned word-n-gram feature vectors of “office” and
“body” in different contexts after the CLSM is trained.

3.4 Modeling Sentence-Level Semantic
Features Using Max Pooling

A sequence of local contextual feature vectors is extracted at the
convolutional layer, one for each word-n-gram. These local
features need to be aggregated to obtain a sentence-level feature
vector with a fixed size independent of the length of the input
word sequence. Since many words do not have significant
influence on the semantics of the sentence, we want to suppress
the non-significant local features and retain in the global feature
vector only the salient features that are useful for IR. For this
purpose, we use a max operation, also known as max pooling, to
force the network to retain only the most useful local features
produced by the convolutional layers. I.e., we select the highest
neuron activation value across all local word n-gram feature
vectors at each dimension. Referring to the max-pooling layer of
Figure 1, we have

ሺ݅ሻݒ ൌ max
௧ୀଵ,…,்

ሼ݄௧ሺ݅ሻሽ , ݅ ൌ 1,… , ܭ

Indices of #-b-o, b-o-y, o-y-# in the
letter-tri-gram list, respectively.

where ݒሺ݅ሻ is the i-th element of the max pooling layer v, ݄௧ሺ݅ሻ is
the i-th element of the t-th local feature vector ݄௧ . K is the
dimensionality of the max pooling layer, which is the same as the
dimensionality of the local contextual feature vectors ሼ݄௧ሽ.

Table 3 shows several examples of the output of the max-
pooling layer of the CLSM after training. For each sentence, we
examine the five most active neurons at the max-pooling layer,
measured by ݒሺ݅ሻ, and highlight the words in bold who win at
these five neurons in the max operation (e.g., whose local features
give these five highest neuron activation values)2. These examples
show that the important concepts, as represented by these key
words, make the most significant contribution to the overall
semantic meaning of the sentence.

microsoft office excel could allow remote code execution
welcome to the apartment office
online body fat percentage calculator
online auto body repair estimates
vitamin a the health benefits given by carrots
calcium supplements and vitamin d discussion stop sarcoidosis

Table 3: Sample document titles. We examine the five most
active neurons at the max-pooling layer and highlight the words
in bold who win at these five neurons in the max operation. Note
that, the feature of a word is extracted from that word together
with the context words around it, but only the center word is
highlighted in bold.

3.5 Latent Semantic Vector Representations

After the sentence-level feature vector is produced by the max-
pooling operation, one more non-linear transformation layer is
applied to extract the high-level semantic representation, denoted
by ݕ. As shown in Figure 1, we have

ݕ ൌ ሺ	݄݊ܽݐ ௦ܹ ∙ ሻݒ

where v is the global feature vector after max pooling, ௦ܹ is the
semantic projection matrix, and y is the vector representation of
the input query (or document) in the latent semantic space, with a
dimensionality of L.

In the current implementation of the CLSM, we use one fully-
connected semantic layer, as shown in Figure 1. The model
architecture can be easily extended to using more powerful, multi-
layer fully-connected deep neural networks.

3.6 Using the CLSM for IR

Given a query and a set of documents to be ranked, we first
compute the semantic vector representations for the query and all
the documents using the CLSM as described above. Then, similar
to Eq. (1), we compute the relevance score between the query and
each document by measuring the cosine similarity between their
semantic vectors. Formally, the semantic relevance score between
a query ܳ and a document ܦ is defined as:

ܴሺܳ, ሻܦ ൌ cosine൫ݕொ, ஽൯ݕ ൌ
஽ݕொ்ݕ

‖஽ݕ‖‖ொݕ‖
 (4)

2 One word could win at multiple neurons.

where ݕொ and ݕ஽ are the semantic vectors of the query and the
document, respectively. In Web search, given the query, the
documents are ranked by their semantic relevance scores.

4. Learning the CLSM for IR

The data for training the CLSM is the clickthrough data logged by
a commercial search engine. The clickthrough data consist of a
list of queries and their clicked documents, similar to the
clickthrough data have been used in earlier studies, such as
[12][15][20]. Similar to these work, we assume that a query is
relevant to the documents that are clicked on for that query, and
train the CLSM on the clickthrough data in such a way that the
semantic relevance scores between the clicked documents given
the queries are maximized.

Following [20], we first convert the semantic relevance score
between a query and a positive document to the posterior
probability of that document given the query through softmax:

ܲሺܦା|ܳሻ ൌ
exp൫ܴߛሺܳ, ାሻ൯ܦ

∑ exp൫ܴߛሺܳ, ࡰ∋ሻ൯஽ᇱ′ܦ
 (5)

where ߛ is a smoothing factor in the softmax function, which is
set empirically on a held-out data set in our experiment. ࡰ denotes
the set of candidate documents to be ranked. In practice, for each
(query, clicked-document) pair, we denote by ሺܳ, ାሻ where ܳ isܦ
a query and ܦା is the clicked document and approximate D by
including ܦା and ܬ randomly selected unclicked documents,
denote by ሼܦ௝

ି; ݆ ൌ 1,… , ሽ. As an alternative, the model couldܬ
also be trained using noise contrastive estimation as in [29].

In training, the model parameters are learned to maximize the
likelihood of the clicked documents given the queries across the
training set. That is, we minimize the following loss function

ሺΛሻܮ ൌ െlog ෑ ܲሺܦା|ܳሻ
ሺொ,஽శሻ

(6)

where Λ denotes the parameter set of the CLSM.
Note that the loss function of Eq. (5) and (6) covers the pair-

wise loss that has been widely used for learning-to-rank [5] as a
special case if we allow only one unclicked document to be
sampled. This loss function is also widely used in speech
recognition and other applications [17]. It is more flexible than
pairwise loss in exploring different sampling techniques for
generating unclicked documents for discriminative information.

To determine the training hyper parameters and to avoid over-
fitting, we divide the clickthrough data into two sets that do not
overlap, called training and validation datasets, respectively. In
our experiments, the models are trained on the training data and
the training parameters are optimized on the validation data.

The weights of the neural network are randomly initialized as
suggested in [30]. The model is trained using mini-batch based
stochastic gradient descent. Each mini-batch consists of 1024
training samples. In our implementation, models are trained using
an NVidia Tesla K20 GPU.

5. EXPERIMENTS

5.1 Data Sets and Evaluation Methodology

We evaluated the retrieval models on a large-scale, real-world
data set, called the evaluation data set henceforth. The evaluation
data set contains 12,071 English queries sampled from one-year

query log files of a commercial search engine and labeled by
human judgers. On average, each query is associated with 74 Web
documents (URLs). Each query-document pair has a relevance
label manually annotated on a 5-level relevance scale: bad, fair,
good, excellent, and perfect, corresponding to 0 to 4, where level
0 (bad) means ܦ is not relevant to ܳ and level 4 (perfect) means
that the document is the most relevant to query ܳ. All the queries
and documents are preprocessed such that the text is white-space
tokenized and lowercased, numbers are retained, and no
stemming/inflection is performed. Figure 2 shows the length
distributions of queries and documents in the evaluation data. The
average lengths of the queries and the document titles are 3.01 and
7.78 words, respectively.

Figure 2: The distribution of query length and document title
length in the evaluation data set. The evaluation set consists of
12,071 queries and 897,770 documents. Query length is 3.01 on
average. Document title length is 7.78 on average.

As mentioned earlier, we have used only the title field of a
Web document for ranking in our experiments. As shown in Table
4, the title field is very effective for document retrieval, although
titles are much shorter than body texts.

Field NDCG@1 NDCG@3 NDCG@10
Body 0.275 0.310 0.375
Title 0.305 α 0.328 α 0.388 α
Table 4: Ranking results of two BM25 models, each uses a
different single field to represent Web documents. The superscript
݌indicates statistically significant improvements ሺ ߙ ൏ 0.05ሻ over
Body.

All the ranking models used in this study contain many free
hyper-parameters that must be estimated empirically. In all
experiments, we have used 2-fold cross validation: A set of results
on one half of the data is obtained using the parameter settings
optimized on the other half, and the global retrieval results are
combined from those of the two sets.

The performance of all ranking models we have evaluated has
been measured by mean Normalized Discounted Cumulative Gain
(NDCG) [21], and we will report NDCG scores at truncation
levels 1, 3, and 10. We have also performed a significance test
using the paired t-test. Differences are considered statistically
significant when the p-value is lower than 0.05.

In our experiments, the clickthrough data used for model
training include 30 million query and clicked-title pairs sampled
from one year query log files. The query-title pairs are pre-
processed in the same way as the evaluation data to ensure
uniformity. We test the models in ranking the documents in the
evaluation data set. There is no overlap between the training set
and the evaluation set.

5.2 Model Settings and Baseline Performance

We have compared the CLSM with five sets of baseline models,
as shown in Table 5. The first set includes two widely used lexical
matching methods, BM25 and the unigram language model
(ULM). The second set includes a set of state-of-the-art latent
semantic models which are learned either on documents only in an
unsupervised manner (PLSA and LDA) or on clickthrough data in
a supervised way (BLTM). The third set includes a phrase-based
translation model (PTM) that intends to directly model the
contextual information within a multi-term phrase. This set also
includes a word-based translation model (WTM) which is a
special case of the phrase-based translation model. Both
translation models are learned on the same clickthrough data
described in Section 5.1. The fourth set includes the MRF based
term-dependency model and the latent concept expansion (LCE)
model. The fifth set includes the DSSM, which is a deep neural
network based model, which is also learned on the same
clickthrough data. In order to make the results comparable, we re-
implement these models following the descriptions in
[11][15][20][25][26]. Details are elaborated in the following
paragraphs.

BM25 and ULM are used as baselines. Both models use the
term vector representation for queries and documents. BM25
(Row 1 in Table 5) follows the BM25 term weighting function
used in the Okapi system. ULM (Row 2) is a unigram language
model with Dirichlet smoothing [42]. Both ULM and BM25 are
state-of-the-art document ranking models based on term matching.
They have been widely used as baselines in related studies.

PLSA (Rows 3 and 4) is our implementation of the model
proposed in [19], and was trained on documents only (i.e., the title
side of the query/clicked-title pairs). Different from [19], our
version of PLSA was learned using MAP estimation as in [15].
We experimented with different numbers of topics, and the results
of using 100 topics and 500 topics are reported in Row 3 and 4,
respectively. In our experiments, they give similar performance.

LDA (Row 5 and 6) is our implementation of the model in
[39]. It was trained on documents only (i.e., the title side of the
query/clicked-title pairs). The LDA model is learned via Gibbs
sampling. The number of topics is set to 100 and 500,
respectively. LDA gives slightly better results than the PLSA, and
LDA with 500 topics significantly outperforms BM25 and ULM.

BLTM (Row 7) is the best performer among different versions
of the bilingual topic models described in [15]. It is trained on
query-title pairs using the EM algorithm with a constraint
enforcing the paired query and title to have same fractions of
terms assigned to each hidden topic. The number of topics is set to
100 as in [15]. We see that using clickthrough data for model
training leads to improvement over PLSA and LDA. BLTM also
significantly outperforms BM25 and ULM.

MRF (Row 8) models the term dependency using a MRF as
described in [25]. We use cross-validation method to tune the
optimal parameters for the feature weights.

LCE (Row 9) is a latent concept expansion model proposed in
[26]. It leverages the term-dependent information by adding n-
gram and (unordered n-gram) as features into the log-linear
ranking model. In our experiments, we re-implemented LCE
following [26]. Both MRF and LCE outperform BM25 and ULM
significantly.

WTM (Row 10) is our implementation of the word-based
translation model described in [12], which is a special case of the
phrase-based translation model, listed here for comparison.

0%

5%

10%

15%

20%

25%

30%

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

>=
1
5

Query

Doc Title

PTM (Row 11) is the phrase-based translation model proposed
in [12]. It is supposed to be more powerful than WTM because
words in the relationships are considered with contextual words
within a phrase. Therefore, more precise translations can be
determined for phrases than for words. The model is trained on
query-title pairs. The maximum length of a phrase is set to three.
Our results are consistent with that of [11], showing that phrase
models are more effective for retrieval than word models when
large amounts of clickthrough data are available for training.

DSSM (Row 12 and 13) is the best variant of DSSM proposed
in [20]. It includes the letter-trigram based word hashing layer,
two non-linear hidden layers, each of which has 300 neurons, and
an output layer that has 128 neurons. In our experiments, we
found that learning two separate neural networks, one for the
query and one for the document title, gives better performance
than sharing the same neural network for both of the query and the
document title. Therefore, we always use two separate neural
networks in our experiments thereafter. We have experimented
with using different number of negative samples, ܬ, in the training
of the DSSM. Row 12 uses the setting of ൌ 4 , where Row uses
the setting of ܬ ൌ 50. The DSSMs are trained on the same query-
title pairs described in section 5.1 3. The results in Table 5 confirm
that the DSSM (e.g., Row 13) outperforms other competing
models in Rows 1 to 11 significantly. The results also show that
using more negative samples in training leads to better results
(e.g., Row 13 vs. Row 12).

CLSM (Row 14 and 15) is the proposed CLSM described in
Sections 3 and 4. The convolutional layer and max-pooling layer
each has 300 neurons, and the final output layer has 128 neurons.
Two separate convolutional neural networks are used in the
experiments. We have also experimented with using different
number of negative samples, ܬ, in the training of the CLSM. The
model is trained on the same query-title clickthrough dataset
described in section 5.1.

5.3 Results

The main results of our experiments are summarized in Table 5.
First, we observe that the CLSM (ܬ ൌ 50) outperforms the state-
of-the-art term matching based document ranking models, BM25
and ULM, with a substantial margin of 4.3% in NDCG@1. The
CLSM also outperforms the state-of-the-art topic model based
approaches (i.e., PLSA, LDA, and BLTM) with a statistically
significant margin from 3.2% to 4.0%. Further, compared to
previous term-dependency models, the CLSM with the best
setting outperforms MRF, LCE and PTM by a substantial
improvement of 3.3%, 3.6%, and 2.9% NDCG@1 respectively.
This demonstrates CLSM’s effectiveness in capturing the
contextual structure useful for semantic matching. Finally, we
obtain significant 2.2% to 2.3% NDCG@1 improvement of the
CLSM over DSSM, a state-of-the-art neural network based model.
This demonstrates the importance of CLSM’s capability of
modeling fine-grained word n-gram level and sentence-level
contextual structures for IR, as the DSSM is based on the bag-of-
words representation and cannot capture such information.

We then further investigated the performance of CLSM using

3 For comparison, we re-implemented the DSSM on the current

data set. The data set used in [20] is encoded in a bag-of-words
representation format and thus not suitable for this study
(personal communication).

different context window sizes and present the experimental
results in Table 6. In Table 6, we first observe that even with a
context window size of one, the CLSM still significantly
outperforms the DSSM, demonstrating that it is far more effective
for IR to capture salient local features than simply summing over
the contributions from all words uniformly. Then, when
increasing the window size from one to three, we observe another
significant improvement, attributes to the capability of modeling
word-tri-gram contextual information. When the window size is
increased to five, however, no significant gain is observed. Our
interpretation is that because the average lengths of the queries
and the document titles are only three and eight words
respectively, window sizes larger than three do not provide much
extra context information. Moreover, big context windows lead to
more model parameters to learn, and thus increase the difficulty of
parameter learning. In the next subsection, we will present an in-
depth analysis on the performance of the CLSM.

Models NDCG@1 NDCG@3 NDCG@10

1 BM25 0.305 0.328 0.388
 2 ULM 0.304 0.327 0.385
3 PLSA (T=100) 0.305 0.335 α 0.402 α
4 PLSA (T=500) 0.308 0.337 α 0.402 α
5 LDA (T=100) 0.308 0.339 α 0.403 α
6 LDA (T=500) 0.310 α 0.339 α 0.405 α
7 BLTM 0.316 α 0.344 α 0.410 α
8 MRF 0.315 α 0.341 α 0.409 α
9 LCE 0.312 α 0.337 α 0.407 α

10 WTM 0.315 α 0.342 α 0.411 α
11 PTM (maxlen = 3) 0.319 α 0.347 α 0.413 α
12 DSSM (ܬ ൌ 4) 0.320 α 0.355 αβ 0.431 αβ
13 DSSM (ܬ ൌ 50) 0.327 αβ 0.363 αβ 0.438 αβ
14 CLSM (ܬ ൌ 4) 0.342 αβγ 0.374 αβγ 0.447 αβγ
15 CLSM (ࡶ ൌ ૞૙) 0.348 αβγ 0.379 αβγ 0.449αβγ
Table 5: Comparative results with the previous state of the art
approaches. BLTM, WTM, PTM, DSSM, and CLSM use the same
clickthrough data described in section 5.1 for learning.
Superscripts ߙ, ,ߚ and 	ߛ indicate statistically significant
improvements ሺ݌ ൏ 0.05ሻ over BM25, PTM, and DSSM (ܬ ൌ
50), respectively.

Models NDCG

@1
NDCG
@3

NDCG
@10

1 DSSM (ܬ ൌ 50) 0.327 0.363 0.438
2 CLSM (ܬ ൌ 50) win =1 0.340 α 0.374 α 0.443 α
3 CLSM (ܬ ൌ 50) win =3 0.348 αβ 0.379 αβ 0.449 αβ
4 CLSM (ܬ ൌ 50) win =5 0.344 α 0.376 α 0.448 αβ
Table 6: Comparative results of the CLSMs using different
convolution window sizes. The setting of the DSSM is
300/300/128 and the setting of the CLSM is K=300, L=128.
Superscripts ߙ and 	ߚ indicate statistically significant
improvements ሺ݌ ൏ 0.05ሻ over DSSM and CLSM (win=1),
respectively.

5.4 Analysis

In order to gain a better understanding of the difference
between models, we compare the CLSM with the DSSM query by
query under their best settings, i.e., row 13 and row 15 in table 5,
respectively.

For each query, we checked the relevance label of the top-1
document retrieved by the DSSM and the CLSM, respectively.
We count the number of times that the retrieved document is in
each of the five relevance category, from bad to perfect, for both
models. The distributions of the relevance labels of the top-1
returned documents are plotted in Figure 3. Compared with the
DSSM, overall, the CLSM returns more relevant documents, i.e.,
the percentages of returned documents in the bad or fair
categories decrease substantially, and the percentage of returned
documents in the good category increases substantially. The
counts in the excellent and perfect categories also increase,
although the absolute numbers are small.

Figure 3: Percentage of top-1 ranked documents in each of the
five relevance categories, retrieved by the CLSM and the DSSM,
respectively.

Models DSSM

 Label bad fair good+

CLSM
bad 3052 626 342
fair 738 2730 631

good+ 601 981 2370
Table 7: CLSM vs DSSM on Top-1 search results. The three
relevance categories, good, excellent, and perfect, are merged into
one good+ category.

A more detailed comparison between the CLSM and the

DSSM is presented in table 7. We observe that for 8,152 of the
total 12,071 queries, both the CLSM and the DSSM return the
documents of the same quality. However, in the cases where they
return documents with different qualities, the advantage of the
CLSM over the DSSM can be clearly observed. For example,
there are 601 queries for which the CLSM returns good or better
quality Top-1 documents while the DSSM’s Top-1 returns are
bad, much more than the opposite cases. There are also 981
queries for which the CLSM returns good or better Top-1
documents while the DSSM returns fair documents, much more
than the 631 opposite cases.

To help better understand what is learned by the CLSM, we
show several examples selected from the CLSM result on the
evaluation data set in Table 8. Each row includes a query and the
title of the top 1 document ranked by CLSM. In both of the query
and the document title, the words that most significantly
contribute to the semantic meaning, e.g., words contribute to the
most active five neurons at the max pooling layer, are marked in
bold. To further illustrate the CLSM’s capability for semantic
matching, we trace the activation of neurons at the max-pooling
layer for the first three examples in Table 8 and elaborate these
examples in Figure 4. We first project both the query and the
document title to the max-pooling layer, respectively. Then, we
evaluate the activation values of neurons at the max-pooling layer,
and show the indices of the neurons that have high activation
values for both query and document title, e.g., the product of the
activation values of the query and the document title at a neuron is
larger than a threshold. After that, we trace back to the words that
win these neurons in both the query and the document title. In
Figure 4, we show the indices of these matching neurons and the
words in the query and the document title that win them.

In the first example, though there is no overlap between the
key words “warm environment arterioles” in the query and the
word “thermoregulation” in the document, they both have high
activation values at a similar set of neurons, and thus lead to a
query-document match in the semantic space. Similar behavior is
observed in the second example. “auto” and “calculator” in the
query and “car” and “estimates” in the document activate similar
neurons, thus leading to a query-document match in the semantic
space as well. The third example is more complicated. “vitamin d”
is closely associated to “calcium absorbing”, and “excessive
calcium absorbing” is a symptom of “sarcoidosis”. In Figure 4 (c),
we observe that both “calcium” in the document title and “d”
(with its context “vitamin”) in the query gives high activation at
neuron 88, while “sarcoidosis” in the document title and
“absorbs” “excessive” and “vitamin” in the query have high
activations at the set of neurons 90, 66, 79. Our analysis indicates
that different words with related semantic meanings activate the
similar set of neurons, resulting to a high overall matching score.
This demonstrates the effectiveness of the CLSM in extracting the
salient semantic meaning in queries and documents for Web
search.

6. SUMMARY

In this paper, we have reported a novel deep learning architecture
called the CLSM, motivated by the convolutional structure of the
CNN, to extract both local contextual features at the word-n-gram
level (via the convolutional layer) and global contextual features
at the sentence-level (via the max-pooling layer) from text. The
higher layer(s) in the overall deep architecture makes effective use

0%

10%

20%

30%

40%

Bad Fair Good Excellent Perfect

DSSM
CLSM

Query Title of the top-1 returned document retrieved by CLSM

warm environment arterioles do what thermoregulation wikipedia the free encyclopedia
auto body repair cost calculator software free online car body shop repair estimates
what happens if our body absorbs excessive amount vitamin d calcium supplements and vitamin d discussion stop sarcoidosis
how do camera use ultrasound focus automatically wikianswers how does a camera focus
how to change font excel office 2013 change font default styles in excel 2013
12 fishing boats trailers trailer kits and accessories motorcycle utility boat snowmobile
acp ariakon combat pistol 2.0 paintball acp combat pistol paintball gun paintball pistol package

deal marker and gun
Table 8: Samples of queries and the top-1 documents ranked by the CLSM. Words marked in bold are those that contribute to the five
most active neurons at the max-pooling layer.

of the extracted context-sensitive features to generate latent
semantic vector representations which facilitates semantic
matching between documents and queries for Web search
applications. We have carried out extensive experimental studies
of the proposed model whereby several state-of-the-art semantic
models are compared and significant performance improvement
on a large-scale real-world Web search data set is observed.

Extended from our previous work [20] [33], the CLSM and its
variations have also been demonstrated giving superior
performance on a range of natural language processing tasks
beyond information retrieval, including machine translation [13],
semantic parsing and question answering [40], entity search and
online recommendation [14]. In the future, the CLSM can be
further extended to automatically capture a wider variety of types
of contextual features from text than our current settings.

(a)

(b)

(c)

Figure 4: Illustration of semantic matching between a query and a
document title at the max-pooling layer, after word-n-gram
contextual feature extraction and the max pooling operation. The
indices of the neurons at the max-pooling layer that have high
activation values for both query and document title are shown.

REFERENCES
[1] Bengio, Y., 2009. Learning deep architectures for AI. In

Foundamental Trends in Machine Learning, vol. 2, no. 1.
[2] Bendersky, M., Metzler, D., and Croft, B., 2011.

Parameterized concept weighting in verbose queries. In
SIGIR, pp. 605-614.

[3] Berger, A., and Lafferty, J. 1999. Information retrieval as
statistical translation. In SIGIR, pp. 222-229.

[4] Blei, D. M., Ng, A. Y., and Jordan, M. J. 2003. Latent
Dirichlet allocation. In Journal of Machine Learning
Research, 3: 993-1022.

[5] Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M.,
Hamilton, and Hullender, G. 2005. Learning to rank using
gradient descent. In ICML, pp. 89-96.

[6] Buckley, D., Allan, J., and Salton, G. 1995. Automatic re-
trieval approaches using SMART: TREC-2. Information
Processing and Management, 31: 315-326.

[7] Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P., 2011. Natural language
processing (almost) from scratch. In Journal of Machine
Learning Research, vol. 12.

[8] Deng, L., Abdel-Hamid, O., and Yu, D., 2013. A deep
convolutional neural network using heterogeneous pooling
for trading acoustic invariance with phonetic confusion, in
ICASSP.

[9] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T.,
and Harshman, R. 1990. Indexing by latent semantic analysis.
Journal of the American Society for Information Science,
41(6): 391-407.

[10] Dumais, S. T., Letsche, T. A., Littman, M. L., and Landauer,
T. K. 1997. Automatic cross-linguistic information retrieval
using latent semantic indexing. In AAAI-97 Spring
Symposium Series: Cross-Language Text and Speech
Retrieval.

[11] Gao, J., Nie, J-Y., Wu, G. and Cao, G. 2004. Dependence
language model for information retrieval. In SIGIR.

[12] Gao, J., He, X., and Nie, J-Y. 2010. Clickthrough-based
translation models for web search: from word models to
phrase models. In CIKM, pp. 1139-1148.

[13] Gao, J., He, X., Yih, W-T., and Deng, L., 2014. Learning
continuous phrase representations for translation modeling.
In ACL.

[14] Gao, J., Pantel, P., Gamon, M., He, X., Deng, L., and Shen,
Y. 2014. Modeling interestingness with deep neural networks.
In EMNLP.

[15] Gao, J., Toutanova, K., Yih., W-T. 2011. Clickthrough-based
latent semantic models for web search. In SIGIR, pp. 675-
684.

[16] Girolami, M., and Kaban, A. 2003. On an equivalence
between PLSA and LDA. In SIGIR, pp. 433-434.

[17] He, X., Deng, L., and Chou, W., 2008. Discriminative
learning in sequential pattern recognition. In IEEE Signal
Processing Magazine. vol 5.

[18] Hinton, G., and Salakhutdinov, R., 2010. Discovering binary
codes for documents by learning deep generative models. In
Topics in Cognitive Science, pp 1-18.

[19] Hofmann, T. 1999. Probabilistic latent semantic indexing. In
SIGIR, pp. 50-57.

[20] Huang, P., He, X., Gao, J., Deng, L., Acero, A., and Heck, L.
2013. Learning deep structured semantic models for web
search using clickthrough data. In CIKM.

[21] Jarvelin, K. and Kekalainen, J. 2000. IR evaluation methods
for retrieving highly relevant documents. In SIGIR.

[22] Lavrenko, V., and Croft, B., 2001. Relevance-based language
models. In SIGIR, pp. 120-127.

[23] Lu, Z. and Li, H. 2013. A deep architecture for matching
short texts. In NIPS.

[24] Lv, Y., and Zhai, C., 2009. Positional Language Models for
Information Retrieval. In SIGIR, pp. 299-306.

[25] Metzler, D. and Croft, B. 2005. A Markov random field
model for term dependencies. In SIGIR.

[26] Metzler, D., and Croft, B. 2007. Latent Concept Expansion
using Markov Random Fields. In SIGIR, pp. 311-318.

[27] Mikolov, T., Yih, W., and Zweig, G., 2013. Linguistic
regularities in continuous space word representations. In
NAACL HLT.

[28] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.
2013. Distributed representations of words and phrases and
their compositionality. In NIPS.

[29] Mnih A., and Kavukcuoglu, K., 2013. Learning word
embeddings efficiently with noise-contrastive estimation. In
NIPS.

[30] Montavon, G., Orr, G., Müller, K., 2012. Neural Networks:
Tricks of the Trade (Second edition). Springer.

[31] Platt, J., Toutanova, K., and Yih, W. 2010. Translingual
document representations from discriminative projections. In
EMNLP, pp. 251-261.

[32] Salakhutdinov R., and Hinton, G., 2007. Semantic hashing.
in Proc. SIGIR Workshop Information Retrieval and
Applications of Graphical Models.

[33] Shen, Y., He, X., Gao, J., Deng, L., and Mesnil, G., 2014.
Learning semantic representations using convolutional neural
networks for web search. In WWW.

[34] Socher, R., Huval, B., Manning, C., Ng, A., 2012. Semantic
compositionality through recursive matrix-vector spaces. In
EMNLP.

[35] Song, F. and Croft, B. 1999. A general language model for
information retrieval. In CIKM, pp. 316-321.

[36] Sparck-Jones, K. 1998. What is the role of NLP in text
retrieval? In: Natural language information retrieval (Ed. T.
Strzalkowski), Dordrecht: Kluwer.

[37] Tur, G., Deng, L., Hakkani-Tur, D., and He, X., 2012.
Towards deeper understanding deep convex networks for
semantic utterance classification. In ICASSP

[38] Wang, K., Li, X., and Gao, J. 2010. Multi-style language
model for web scale information retrieval. In SIGIR.

[39] Wei, X., and Croft, W. B. 2006. LDA-based document
models for ad-hoc retrieval. In SIGIR, pp. 178-185.

[40] Yih, W-T., He, X., and Meek, C., 2014. Semantic parsing for
single-relation question answering. In ACL.

[41] Zeiler, M., Taylor, G., and Fergus, R., 2011. Adaptive
deconvolutional networks for mid and high level feature
learning. In ICCV.

[42] Zhai, C. and Lafferty, J. 2001. A study of smoothing
methods for language models applied to ad hoc information
retrieval. In SIGIR, pp. 334-342.

APPENDIX
The CLSM is trained using stochastic gradient descent. Let
 ሺΛሻ be a sample-wise loss function, the model parameters areݏݏ݋݈
updated by

Λ௧ ൌ Λ௧ିଵ െ ߳௧
ሺΛሻݏݏ݋݈߲

߲Λ
|ஃୀஃ೟షభ (7)

where ߳௧ is the learning rate at the ݐ௧௛ iteration, Λ௧ and Λ௧ିଵ are
the model parameters at the ݐ௧௛ and the ሺݐ െ 1ሻ௧௛ iterations,
respectively.
For each query ܳ, we denote by ܦା the clicked document, and
ሼܦ௝

ି; ݆ ൌ 1,… ,4ሽ the unclicked document. In the following,
referring to Figure 1 and Eq. (5) – (7) for definitions of variables,

we then derive
డ௟௢௦௦ሺஃሻ

డஃ
 as follows.

First, the loss function in Eq. (7) can be written as:

ሺΛሻݏݏ݋݈ ൌ log ቆ1 ൅෍ exp	൫െߛ	Δ௝൯
௝

ቇ (8)

where Δ௝ ൌ ܴሺܳ, ାሻܦ െ ܴሺܳ, ௝ܦ
ିሻ.

The gradient of the loss function w.r.t. the semantic projection
matrix ௦ܹ is

ሺΛሻݏݏ݋݈߲

߲ ௦ܹ
ൌ෍ߙ௝

௝

߲Δ௝
߲ ௦ܹ

 (9)

where
߲Δ௝
߲ ௦ܹ

ൌ
߲ܴሺܳ, ାሻܦ

߲ ௦ܹ
െ
߲ܴሺܳ,ܦ௝

ିሻ

߲ ௦ܹ
 (10)

and

௝ߙ ൌ
െγ exp	ሺെ	ߛ	Δ௝ሻ

1 ൅ ∑ exp	ሺെ	ߛ	Δ௝ᇱሻ௝ᇱ
 (11)

To simplify the notation, let ܽ, ܾ, ܿ be ݕொ்ݕ஽ , 1/ฮݕொฮ , and 	1/
 as the activation function in our ݄݊ܽݐ ஽‖ , respectively. Withݕ‖
model, each term in the right-hand side of Eq. (10) can be
calculated using the following formula:

߲ܴሺܳ, ሻܦ

߲ ௦ܹ
ൌ

߲
߲ ௦ܹ

஽ݕொ்ݕ
‖஽ݕ‖‖ொݕ‖

ൌ ௬ೂߜ
ሺொ,஽ሻݒொ

் ൅ ௬ವߜ
ሺொ,஽ሻݒ஽

் (12)

where ߜ௬ೂ
ሺொ,஽ሻ and ߜ௬ವ

ሺொ,஽ሻ for a pair of ሺܳ, ሻ are computed asܦ

௬ೂߜ
ሺொ,஽ሻ ൌ ൫1 െ ொ൯ݕ ∘ ൫1 ൅ ொ൯ݕ ∘ ሺܾܿݕ஽ െ ܾܽܿଷݕொሻ

௬ವߜ
ሺொ,஽ሻ ൌ ሺ1 െ ஽ሻݕ ∘ ሺ1 ൅ ஽ሻݕ ∘ ሺܾܿݕொ െ ܾܽܿଷݕ஽ሻ

(13)

where the operator ∘ is the element-wise multiplication
(Hadamard product).
In order to compute the gradient of the loss function w.r.t. the
convolution matrix, ௖ܹ , first we also need to calculate ሼߜሽ for
each Δ௝ at the max layer. For example, each ߜ in the max layer, v,
can be calculated through back propagation as

௩ೂߜ
ሺொ,஽ሻ ൌ ൫1 ൅ ொ൯ݒ ∘ ൫1 െ ொ൯ݒ ∘ ௦ܹ

௬ೂߜ்
ሺொ,஽ሻ

௩ವߜ
ሺொ,஽ሻ ൌ ሺ1 ൅ ஽ሻݒ ∘ ሺ1 െ ஽ሻݒ ∘ ௦ܹ

௬ವߜ்
ሺொ,஽ሻ

(14)

Then we need to trace back to the local features that win in the
max operation, i.e.,

ொሺ݅ሻݐ ൌ argmax
௧ୀଵ,…, ೂ்

ሼ݄௧ሺ݅ሻሽ, ݅ ൌ 1,… , ܭ

஽ሺ݅ሻݐ ൌ argmax
௧ୀଵ,…, ವ்

ሼ݄௧ሺ݅ሻሽ, ݅ ൌ 1,… , ܭ
(15)

Then, the gradient of the loss function w.r.t. the convolution
matrix, ௖ܹ , can be computed as

ሺΛሻݏݏ݋݈߲

߲ ௖ܹ
ൌ෍ߙ௝

௝

߲Δ௝
߲ ௖ܹ

 (16)

where for the i-th row of ௖ܹ, e.g., ௖ܹ,௜, ݅ ൌ 1,… , :we have ,ܭ

߲Δ௝
߲ ௖ܹ,௜

ൌ ቀߜ௩ೂ
ሺொ,஽శሻሺ݅ሻ݈ொ,௧ೂሺ௜ሻ

் ൅ ௩ವశߜ
ሺொ,஽శሻሺ݅ሻ݈஽శ,௧ವశሺ௜ሻ

் ቁ

െ ൬ߜ௩ೂ
൫ொ,஽ೕ

ష൯
ሺ݅ሻ݈ொ,௧ೂሺ௜ሻ

் ൅ ௩ವೕషߜ
൫ொ,஽ೕ

ష൯
ሺ݅ሻ݈஽ೕష,௧ವೕషሺ௜ሻ

் ൰

where ߜሺ݅ሻ is the i-th element of ߜ, and ݈ொ,௧ and ݈஽,௧ is the context
window vector at the t-th position of Q or D, as defined in section
3.3, respectively.

