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Abstract

This paper studies the problem of ergodicity of transition probabilitymatrices in Marko�
vian models� such as hidden Markov models �HMMs�� and how it makes very di�cult the
task of learning to represent long�term context for sequential data� This phenomenon hurts
the forward propagation of long�term context information� as well as learning a hidden
state representation to represent long�term context� which depends on propagating credit
information backwards in time� Using results from Markov chain theory� we show that
this problem of di�usion of context and credit is reduced when the transition probabilities
approach � or �� i�e�� the transition probability matrices are sparse and the model essen�
tially deterministic� The results found in this paper apply to learning approaches based on
continuous optimization� such as gradient descent and the Baum�Welch algorithm�

�� Introduction

Problems of learning on temporal domains can be signi�cantly hindered by the presence
of long�term dependencies in the training data� A sequence of random variables �e�g��
a sequence of observations fy��y�� � � �yt� � � �yT g� denoted y

T
� � is said to exhibit long�term

dependencies if the variables yt at a given time t are signi�cantly dependent on the variables
yt� at much earlier times t� � t� In these cases� a system trained on this data �e�g�� to
model its distribution� or make classi�cations or predictions� has to be able to store for
arbitrarily long durations bits of information in its state variable� called xt here� In general�
the di�culty is not only to represent these long�term dependencies� but also to learn a
representation of past context which takes them into account� Recurrent neural networks
�Rumelhart� Hinton� � Williams� �	
�� Williams � Zipser� �	
	�� for example� have an
internal state and a rich expressive power that provide them with the necessary long�term
memory capabilities�

Algorithms that could e�ciently learn to represent long�term context would be useful in
many areas of Arti�cial Intelligence� For example� they could be applied to many problems
in natural language processing� both at the symbolic level �e�g�� learning grammars and
language models�� and subsymbolic level �e�g�� modeling prosody for speech recognition or
synthesis��

In order to train the learning system� however� an e
ective mechanism of credit assign�
ment through time is needed� To change the parameters of the system in order to change
the internal state of the system at time t� so as to �improve� the internal state of the system
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later in the sequence� one can recursively propagate credit or error information backwards
in time� For example� the Baum�Welch algorithm for HMMs �Baum� Petrie� Soules� �
Weiss� �	��� Levinson� Rabiner� � Sondhi� �	
�� and the back�propagation through time
algorithm for recurrent neural networks �Rumelhart et al�� �	
�� rely on such kind of re�
cursion� Numerous gradient�descent based algorithms have been proposed for solving the
credit assignment problems in recurrent networks �e�g�� Rumelhart et al�� �	
�� Williams �
Zipser� �	
	�� Yet� many researchers have found practical di�culties in training recurrent
networks to perform tasks in which the temporal contingencies present in the input�output
sequences span long intervals �Bengio� Simard� � Frasconi� �		�� Mozer� �		�� Rohwer�
�		��� Bengio et al� ��		�� have also found theoretical reasons for this di�culty and proved
a negative result for parametric dynamical systems with a non�linear state to next�state
recurrence� xt � ft�xt���� it will be increasingly di�cult to train such as system with
gradient descent as the duration of the dependencies to be captured increases� Let J be
the matrix of partial derivatives of the state to next�state function� Jij �

�xt�i
�xt���j

� A math�

ematical analysis of the problem shows that� depending on the norm jJ j of the Jacobian
matrix J � one of two conditions arises in such systems� When jJ j � �� the dynamics of
the network allow it to reliably store bits of information for arbitrary durations� even with
bounded input noise� however� gradients with respect to an error at a given time step van�
ish exponentially fast as one propagates them backward in time� On the other hand� when
jJ j � �� gradients can �ow backward� but the system is locally unstable and cannot reliably
store bits of information for a long time� Bengio et al� ��		�� showed how this hurts the
learning of long�term dependencies by putting exponentially more weight on the in�uence
of short�term dependencies �in comparison to long�term dependencies� over the gradient
of a cost function with respect to trainable parameters� The above negative result applies
to non�linear parameterized dynamical systems such as most recurrent networks� but not
to linear probabilistic models such as hidden Markov models �HMMs�� These models are
a special case of our previous result in which the ��norm jJ j � �� because this matrix is
a stochastic matrix� i�e�� a matrix A of transition probabilities Aij � P �xt � jjxt�� � i��
where the state variable xt can take a �nite number of values�
The main contribution of this paper is therefore an extension of the negative results

found by Bengio et al� ��		�� to the case of Markovian models� which include standard
HMMs �Baum et al�� �	��� Levinson et al�� �	
�� as well as variations of HMMs such as
Input�Output HMMs �IOHMMs� �Bengio � Frasconi� �		�b�� and Partially Observable
Markov Decision Processes �POMDPs� �Sondik� �	��� �	�
� Chrisman� �		��� We �nd
that in general� a phenomenon of di
usion of context and credit assignment� due to the
ergodicity of the transition probability matrices� hampers both the representation and the
learning of long�term context in the hidden state variable�
Both homogeneous and non�homogeneous Markovian models are considered� Homoge�

neous here means that the transition probabilities of the Markov model are constant over
time t� Non�homogeneous means that these transition probabilities are allowed to be dif�
ferent for each time step� e�g�� as a function of an external input that may be di
erent at
each time step� In the homogeneous case �e�g�� standard HMMs�� such models can learn the
distribution P �yT� � of output sequences y

T
� � y��y�� � � � �yT by associating an output distri�

�� For example� in the case of a recurrent neural network with recurrent weight matrix W and input vector
ut at time t� the next�state recurrence is ft�xt��� � tanh�Wxt�� � ut�
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bution P �ytjxt � i� to each value i of the discrete state variable xt� In the non�homogeneous
case� transition and output distributions are conditional on an input sequence� allowing to
model relationships between input and output sequences� In the case of IOHMMs �Bengio
� Frasconi� �		�b�� one thus learns a model P �yT� ju

T
� � of the conditional distribution of

an output sequence yT� when an input sequence u
T
� is given� This can be used to perform

sequence regression or classi�cation� as with recurrent networks� In the case of POMDPs
�Sondik� �	��� �	�
� Chrisman� �		��� used to control a process with a hidden state� one
wants not only to build such a model� but also to select a proper sequence aT� of �discrete�
actions in order to maximize a discounted sum of future rewards that depends on the ac�
tion taken� the observed output sequence yT� and the estimated distribution of the state
trajectory� Note that the sequence of actions aT� in POMDPs and the sequence of inputs
uT� in IOHMMs play a similar role in this paper� inasmuch as both are responsible for the
non�homogeneity of the Markov chain� In the following� we shall use the same symbol uT�
to denote the sequence that controls transition probabilities� i�e� inputs for IOHMMs and
actions for POMDPs�

The negative results presented in this paper are directly applicable to learning algorithms
such as the EM algorithm �Dempster� Laird� � Rubin� �	��� or other gradient�based opti�
mization algorithms� which rely on gradually and iteratively modifying continuous�valued
parameters �such as transition probabilities� or parameters of a function computing these
probabilities� in order to optimize a learning criterion�

�� Mathematical Preliminaries

A �rst�order Markovian model is de�ned by a discrete set of states f�� � � �ng� a probabilis�
tic transition function �state to next�state�� and a probabilistic output function �state to
output�� The discrete state variable xt can take values in f�� � � �ng at each time step� We
will write Aij for the element �i� j� of a matrix A� A

n � AA � � �A for the nth power of A�
and �An�ij for the element �i� j� of A

n� See �Rabiner� �	
	� for an introduction to HMMs�
and �Seneta� �	
�� for a basic reference on positive matrices�

The Markovian independence assumption implies that the state variable xt summarizes
the past of the sequence� P �xtjx�� x�� � � � � xt��� � P �xtjxt���� Another independence as�
sumption� when the state xt is hidden but an output yt is observed� is that the distribution
of yt at time t does not depend on the other past variables when xt is given� State transi�
tions at time t may depend on the ut �the current input for IOHMMs or the current action
for POMDPs� and can be collected into an n by n transition matrix At de�ned by

Aij�ut� � P�xt � j j xt�� � i�ut� ��

where � is a vector of adjustable parameters� In the homogeneous case� the transition
matrix is constant� i�e�� At � A� The parameters � are then usually directly identi�ed with
the elements of the transition matrix A�

Output emissions yt depend on ut and the present state� as speci�ed by the output
�also called emission� distribution P �yt j xt�ut���� with parameters �� For example� if the
Markov chain is homogeneous and the output values belong to a �nite alphabet of cardinality
k� then the parameters � can be collected in a k by n matrix B� Bli � P �yt � l j xt � i��
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An output sequence yT� can be generated according to the distribution P �y
T
� ju

T
� � �non�

homogeneous case� or P �yT� � �homogeneous case� represented by the model� as follows�
First an initial state x� is selected according to a distribution P �x�� on initial states �usu�
ally multinomial� sometimes requiring n � � extra parameters� or a �xed choice of a sin�
gle initial state�� Then the state xt can be recursively picked in function of the previ�
ous state xt��� by choosing an xt � f�� � � � � ng according to the multinomial distribution
P �xtjxt���ut� ��� At each time step� an output can then be generated according to the
distribution P �yt j xt�ut����
State transitions can be constrained by a directed graph G� whose nodes are associated

to the states of the Markov chain� In particular� the probability P �xt � i j xt�� � j� will
be constrained to be zero if there is no edge from node j to node i�

��� Learning in Markovian Models

The learning objective is often to maximize the output likelihood P �yT� ���� or the out�
put likelihood given the input P �yT� j u

T
� ���� where � comprises all the parameters of the

model� This can be accomplished with an EM algorithm when the form of the output
and transition probability models are simple enough� e�g� in the case of HMMs �Baum
et al�� �	��� Levinson et al�� �	
�� Rabiner� �	
	� or IOHMMs �Bengio � Frasconi� �		�b��
Alternatives� for maximizing the output likelihood or other criteria �such as the more dis�
criminant mutual information between the output sequence and the correct model� Bahl
et al� �	
��� are usually based on some gradient�based optimization algorithm� requiring
the computation of the gradient of the learning criterion with respect to the model parame�
ters� In all of these cases� the learning algorithms perform products involving the transition
probability matrices �Bengio � Frasconi� �		�a� �		�b�� such as

�i�t � P�yt�� xt � i j ut�� � P �yt j xt � i�ut�
P

�A�i�ut����t��
�i�t � P�y

T
t j xt � i�uTt � �

P
�Ai��ut���P �yt j xt�� � l�ut������t���

���

where the overall output likelihood is obtained from the �nal time step�

P �yT� ju
T
� � �

X
i

�i�T �

Note that if L is the learning criterion and �i�T �
�L

��i�T
� then �i�t �

�L
��i�t

� In terms of

matrices� we can write
�t � �tA�t � � ���A

�
���

�t � At�t � � �AT�T�T
���

where �t � ����t � � ��n�t��� �t � ����t � � � �n�t�
� and �t is a diagonal matrix of emission prob�

abilities P �ytjxt � i�ut� �for the i
th element�� The matrix At contains the transition

probabilities at time t� i�e� �At�ij � P�xt � j j xt�� � i�ut� ��� It can be easily veri�ed that
the compact notation

A�t��t� � At�At��� � � �At��At ���

for products of matrices� can be used to describe the e
ect of the distribution of the state xt�
at time t� on the distribution of the state xt at time t � t�� A

�t��t�
ij � P�xt � j j xt� � i�utt� � ���

�� To verify equation �	�� just apply recursively the simple decomposition rule of probabilities P�a� �P
b
P�a j b�P�b��
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Therefore� we will study how this product evolves under various conditions� when t� t� in�
creases �for long�term dependencies�� We will �nd in what �rather general� conditions
A�t��t� tends to become ill�conditioned� more precisely� when xt becomes more and more
independent of xt� as t� t� increases� In Section ���� we also discuss equations ��� as T � t
increases� In the following subsection we �rst introduce some standard mathematical tools
for studying such products of non�negative matrices�

��� De�nitions

De�nition � �Non�negative matrices� A matrix A is said to be non�negative� written
A � �� if Aij � � �i� j�

Positive matrices are de�ned similarly�
By extension� we will also write A � B when �i� j� Aij � Bij �

De�nition � �Stochastic matrices� A non�negative square matrix A � Rn�n is called row
stochastic �or simply stochastic in this paper� if

Pn
j��Aij � � �i � � � � �n�

De�nition � �Allowable matrices� A non�negative matrix is said to be row �column� al�
lowable if every row �column� sum is positive� An allowable matrix is both row and column
allowable�

A non�negative matrix can be associated to the directed transition graph G that constrains
the Markov chain� The incidence matrix �A corresponding to a given non�negative matrix A
is the ��� matrix obtained by replacing all positive entries of A by a �� The incidence matrix
of A is a connectivity matrix corresponding to the graph G �assumed to be connected here��
Some algebraic properties of A are described in terms of the topology of G� Indices of the
matrix A correspond to nodes of G �we will also use �states of the model�� talking about a
Markovian model��

De�nition � �Irreducible Matrices� A non�negative n�n matrix A is said to be irreducible
if for every pair i� j of indices� � m � m�i� j� positive integer s�t� �Am�ij � ��

A matrix A is irreducible if and only if the associated graph is strongly connected �i�e��
there exists a path between any pair of states i� j�� A reducible matrix is one that is not
irreducible� If �k s�t� �Ak�ii � � �i�e�� there is a path of length k from node i to itself��
d�i� is called the period of index i if d�i� is the greatest common divisor �g�c�d�� of those k
for which �Ak�ii � � �i�e�� there are also paths of length k� �k� �k� etc���� with k � d�i��� In
an irreducible matrix all the indices have the same period d� which is called the period of
the matrix� The period of a matrix is the g�c�d� of the lengths of all cycles in the associated
transition graph G�
An example of a periodic matrix of period � is illustrated by the graph G� of Figure ��

All the paths starting from one of the states and returning to it are of length �k for some
positive integer k�

De�nition � �Primitive matrix� A non�negative matrix A is said to be primitive if there
exists a positive integer k s�t� Ak � ��
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Therefore� in a graph with a corresponding primitive matrix� one can always �nd a path
of length greater than some k between any two nodes� and if there exists a path of length
k between nodes i and j� there are also paths of length k � �� k � �� etc��� In the analysis
below� we will consider submatrices �and corresponding subgraphs� which are primitive�
Note that an irreducible matrix is either periodic or primitive �i�e�� of period ��� and that
a primitive stochastic matrix is necessarily allowable�

��� The Perron�Frobenius Theorem

Right eigenvectors v of a matrix A and their corresponding eigenvalues � have the following
properties �see Bellman� �	��� for more on eigenvalues and eigenvectors��

determinant�A� �I� � ��

where I is the identity matrix� and

Av � �v

i�e�� X
j

Aijvj � �vi�

Note that for a stochastic matrix A the largest eigenvalue has norm �� which can be shown
as follows� Letting i � argmaxj jvj j� we obtain

j�j �

������
X
j

Aij

vj
vi

������ 	
X
j

jAij j
jvj j

jvij
	
X
j

Aij 	 ��

Hence all the eigenvalues have norm less or equal to �� Let us de�ne the vector of ones
� � ��� �� � � � � ���� where v� denotes the transpose of v� Since A� � � by de�nition of
stochastic matrices� � is an eigenvalue and � is its corresponding right eigenvector�
The following theorem will be useful in characterizing homogeneous products of stochas�

tic matrices �as in HMMs��

Theorem � �Perron�Frobenius Theorem� Suppose A is an n � n non�negative primitive
matrix� Then there exists an eigenvalue r such that�

�� r is real and positive	


� r can be associated with strictly positive left and right eigenvectors	

�� r � j�j for any eigenvalue � 
� r	

�� the eigenvectors associated with r are unique to constant multiples�


� If � 	 B 	 A and � is an eigenvalue of B� then j�j 	 r� Moreover� j�j � r implies
B � A�

�� r is a simple root of the characteristic equation determinant�A� rI� � ��
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�See proof in the book by Seneta� �	
�� Theorem �����

A direct consequence of the Perron�Frobenius theorem for stochastic matrices is therefore
the following�

Corollary � Suppose A is a primitive stochastic matrix� Then its largest eigenvalue is �
and there is only one corresponding right eigenvector � � ��� �� � � � � ���� Furthermore� all
other eigenvalues are less than � in modulus�

Proof� A� � � by de�nition of stochastic matrices� As shown above� all the eigenvalues
have a modulus less or equal to �� Thus� we deduce from the Perron�Frobenius Theorem that
� is the largest eigenvalue� � is the unique associated eigenvector� and all other eigenvalues
� ���
In the next section we will discuss the consequences of this corollary for HMMs� As

shown by Seneta ��	
��� we should also note that if A is stochastic but periodic with period
d� then A has d eigenvalues of modulus � which are the d complex roots of ��

�� Ergodicity

In this section we analyze the case of a primitive transition matrix as well as the general case
with a so�called canonical re�ordering of the matrix indices �de�ned below�� We introduce
ergodicity coe�cients in order to measure the di�culty in learning long�term dependencies�

��� Simplest Case� Homogeneous and Primitive

A straightforward application of the Perron�Frobenius theorem and the associated corol�
lary � is given in the following theorem�

Theorem � If A is a primitive stochastic matrix� then as t � �� At � �v� where v�

is called the unique stationary distribution of the Markov chain� The rate of approach is
geometric�
�See proof in the book by Seneta� �	
�� Theorem �����

The intuition behind the proof simply relies on the fact that when a matrix A is taken
to a certain power An� it is equivalent to take its eigenvalues to the same power� As we
have seen earlier� all the eigenvalues are less or equal to one in modulus� Therefore� the
eigenvalues of A which are less than � are associated to near zero eigenvalues of An� as
n��� The only eigenvalues which do not converge to zero are those whose modulus is ��
There is only one such eigenvalue in the case of primitive stochastic matrix �associated to
the eigenvector ��� In the case of periodic matrices of period d� discussed below� there are
complex eigenvalues whose modulus is � and which are among the dth roots of unity�
We recall that the rank of a matrix A is the dimension of the linear subspace spanned

by the eigenvectors of A and corresponds to the number of linearly independent rows �or
columns�� Since the matrix A obtained by the product �v� of two vectors has rank �� we
obtain the following from Theorem �� If A is primitive� then limt��At converges to a
matrix whose eigenvalues are all � except for one eigenvalue � � � �with corresponding
eigenvector ��� i�e�� the rank of this product converges to �� which means that its rows are

	





Bengio � Frasconi

proportional� For a stochastic matrix� row proportionality is equivalent to row equality�
Since �At�t��ij � P �xt � jjxt� � i� it follows that the distribution over the states at time
t � t� becomes gradually independent of the distribution P �xt�� over the states at time t� as
t�t� increases� This is illustrated in Figure �� which shows products of �� �� � and � random
primitive stochastic matrices� and rapid convergence to row equality� i�e�� P �xt � jjxt� � i�
does not depend any more on i as t� t� becomes large� It means that� as one moves forward
in time� context information is di�used� and gradually lost� A consequence of Theorem �
is therefore that it is very di�cult to model long�term dependencies in sequential data
using a homogeneous HMM with a primitive transition matrix� After having introduced
ergodicity coe�cients in the next sections� we will be able to discuss the more general case
of non�homogeneous models �such as IOHMMs and POMDPs�� as well as� comment on the
di
usion of context information in the forward and backward HMM equations ����

��� Coe	cients of ergodicity

To study products of non�negative matrices and the loss of information about initial state
in Markov chains �particularly in the non�homogeneous case�� we will de�ne two coe�cients
of ergodicity� First� we introduce the projective distance between vectors v and w�

d�v�� w�� � max
i�j

ln�
viwj

vjwi

��

Note that some form of contraction takes place when d�v�A�w�A� 	 d�v�� w�� �Seneta� �	
���
i�e�� applying the linear operator A to the vectors v� and w� brings them �closer� �according
to the above projective distance��

De�nition 
 Birkho
�s contraction coe�cient �B�A�� for a non�negative column�allowable
matrix A� is de�ned in terms of the projective distance�

�B�A� � sup
v�w���v ���w

d�v�A�w�A�

d�v�� w��
�

Dobrushin�s coe�cient ���A�� for a stochastic matrix A� is de�ned as follows�

���A� �
�

�
max
i�j

X
k

jaik � ajk j� ���

Both �B and �� are called proper ergodicity coe�cients� i�e�� they have the properties that�
�rstly� � 	 ��A� 	 �� and secondly� that ��A� � � if and only if A has identical rows �and
therefore rank ��� The coe�cients of ergodicity quantify the ergodicity of a matrix� i�e�� at
what rate a power of the matrix converges to rank �� Furthermore� ��A�A�� 	 ��A����A��
�Seneta� �	
��� Therefore� as discussed in the next section� these coe�cients can also be
applied to quantify how fast a product of matrices converges to rank ��

��� Products of Stochastic Matrices

Let A���t� denote a forward product of stochastic matrices A�� A�� � � �At� From the properties
of �B and ��� if ��At� � �� �t � � then limt�� ��A���t�� � �� i�e�� limt��A���t� has rank �
and identical rows� Weak ergodicity of a product of matrices is then de�ned in terms of a
proper ergodic coe�cient � �such as �B or ��� converging to ��
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De�nition � �Weak Ergodicity� The products of stochastic matrices A�t��t� are weakly er�
godic if and only if for all t� � � as t��� ��A�t��t��� ��

The following theorem relates weak ergodicity to rank lossage in products of stochastic
matrices and� therefore to the problem of learning and representing long�term context�

Theorem � Let A���t� be forward products of non�negative and allowable matrices	 then
A���t� is weakly ergodic if and only if the following conditions both hold�

�� � t� s�t� A�t��t� � � � t � t�	


�
A
�t��t�
ik

A
�t��t�
jk

� Wij�t� � � as t��� i�e�� rows of A�t��t� tend to proportionality�

�See the proof in the book by Seneta ��	
��� Lemma ��� and �����

For stochastic matrices� row�proportionality ��nd condition above� is equivalent to row�
equality since rows sum to �� Note that the limit limt��A�t��t� itself does not need to exist
in order to have weak ergodicity� If such a limit exists and it is a matrix with all rows equal�
then the product is said to be strongly ergodic�

��� Canonical Decomposition and Periodic Graphs

Any non�negative matrix A can be rewritten by relabeling its indices in the following canon�
ical decomposition �Seneta� �	
��� with diagonal blocks Bi� Ci and Q�

A �

�
BBBBBBBBBBB�

B� � � � � � � � � �
� B� � � � � � � � �
���

���
���

� � � � Cs�� � � � � �
���

���
���

� � � � � � � � Cr �
L� L� � � � � � � Lr Q

�
CCCCCCCCCCCA

���
�����
��

Primitive diagonal
blocks B�� � � � � Bs

Periodic diagonal
blocks Cs��� � � � � Cr

���

where the Bi and Ci blocks are irreducible� the Bi blocks are primitive and the Ci blocks
are periodic� De�ne the corresponding sets of states as SBi

� SCi
� SQ� Q might be reducible�

but the groups of states in SQ leak into the B or C blocks� i�e�� SQ represents the transient
part of the state space� This decomposition is illustrated in Figure �� We will consider
three cases� paths starting from a state in Bi� Q or Ci� In the �rst case� for homogeneous
and non�homogeneous Markov models �with constant incidence matrix �At � �A��� because
P �xt � SQjxt�� � SQ� � �� limt�� P �xt � SQjx� � SQ� � �� In the second case� because
the Bi are primitive� we can apply Theorem � to these sub�matrices� and starting from a
state in SBi

� all information about an initial state at t� is gradually lost�

��� Periodic Graphs

A more di�cult case to analyze is the third case� i�e�� that of paths from state j at time t�
to state k at time t� with initial state j � SCi

associated to a periodic block� Let di be the
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Figure �� Transition graph corresponding to the canonical decomposition� Large dotted
circles represent subgroups of states associated to submatrices Bi� Ci� and Q
in equation ���� The large arrows on the upper right area generically represent
transitions from some states in Q to some states in Bi and Ci� Transitions among
states in each subgroup are depicted inside the large circles�
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Figure �� Periodic G� becomes primitive �period �� G� when adding loop with states ����
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period of the ith periodic block Ci� It can be shown �Seneta� �	
�� that taking d products
of periodic matrices with the same incidence matrix and period d yields a block�diagonal
matrix whose d blocks are primitive� Thus a product C�t��t� retains information about the
initial block in which xt� was� However� for every such block of size � �� information will
be gradually lost about the exact identity of the state within that block�

This is best demonstrated through a simple example� Consider the incidence matrix
represented by the graph G� of Figure �� It has period � and the only non�deterministic
transition is from state �� which can yield into either one of two loops� When many stochastic
matrices with this graph are multiplied together� information about the loop in which the
initial state was is gradually lost �i�e�� if the initial state was � or �� this information is
gradually lost�� What is retained is the phase information� i�e�� in which block �f�g� f�g�
or f���g� of a cyclic chain was the initial state� This suggests that it will be easy to learn
about the type of outputs associated to each block of a cyclic chain� but it will be hard
to learn anything else� Suppose now that the sequences to be modeled are slightly more
complicated� requiring an extra loop of period � instead of �� as in Figure �� In that case A
is primitive� all information about the initial state will be gradually lost�

�� Representing and Learning Long�Term Context

Based on the analysis of the previous section� which apply both the homogeneous and non�
homogeneous cases� we �nd in this section that in order to absolutely avoid all di
usion
of context and credit information �both learning and representing context�� the transitions
should be deterministic �� or � probability�� For HMMs� this unfortunately corresponds to
a system that can only model cycles �and is therefore not very useful for most applications��
Both learning and representing context are hurt by the same ergodicity phenomenon because
the state to next state transformation is linear� i�e�� forward and backward propagation are
symmetrical�

We discuss the practical impact of this ergodicity problem for incremental learning
algorithms �such as EM and gradient ascent in likelihood��

��� Learning Long�Term Dependencies� a Discrete Problem�

To better understand the problem� it is interesting to look at a particular instance of the
EM algorithm for HMMs� more speci�cally� at a form of the update rule for transition
probabilities�

Aij �
Aij

�L
�AijP

j Aij
�L
�Aij

� ���

where L is the likelihood of the training sequences� We might wonder if� starting from a
positive stochastic matrix� the learning algorithm could learn the topology� i�e�� replace some
transition probabilities by zeroes� Starting from Aij � � we could obtain a new Aij � � only
if �L

�Aij
� �� i�e�� on a local maximum of the likelihood L� Thus the EM training algorithm

will not exactly obtain zero probabilities� Transition probabilities might however approach
�� Furthermore� once Aij has taken a near�zero value� it will tend to remain small� This
suggests that prior knowledge �or initial values of the parameters�� rather than learning�
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should be used� if possible� to determine the important elements of the topology� and for
establishing the long�term relations between elements of the observed sequences�

It is also interesting to ask in which conditions we are guaranteed that there will not
be any di
usion �of in�uence in the forward phase� and credit in the backward phase of
training�� It requires that all of the eigenvalues have a norm that is �� This can be achieved
with periodic matrices C �of period d�� which have d eigenvalues that are the d roots of � on
the complex unit circle� To avoid any loss of information also requires that Cd � I be the
identity� since any diagonal block of Cd with size more than � will bring a loss of information
�because of ergodicity of primitive matrices�� This can be generalized to reducible matrices
whose canonical form is composed of periodic blocks Ci with C

d
i � I �

The condition we are describing actually corresponds to a matrix with only ��s and
��s� For this type of matrix� the incidence matrix �At of At is equal to the matrix At itself�
Therefore� when �At is �xed� the Markov chain is also homogeneous� It appears that many
interesting computations cannot be achieved with such constraints �i�e�� only allowing one or
more cycles of the same period and a purely deterministic and homogeneous Markov chain��
Furthermore� if the parameters of the system are the transition probabilities themselves �as
in ordinary HMMs�� such solutions correspond to a subset of the corners of the ��� hypercube
in parameter space� Away from those solutions� learning is mostly in�uenced by short term
dependencies� because of di
usion of credit� Furthermore� as seen in equation ���� algorithms
like EM will tend to stay near a corner once it is approached� This suggests that discrete
optimization algorithms� rather continuous local algorithms� may be more appropriate to
explore the �legal� corners of this hypercube�

Examples of to this approach are found in the area of grammar inference for natural
language modeling �e�g�� variable memory length Markov models� Ron et al�� �		�� or con�
structive algorithms for learning context�free grammars� Lari � Young� �		�� Stolcke �
Omohundro� �		��� The problem of di
usion studied here applies only to algorithms that
use gradient information �such as the Baum�Welch and gradient�based algorithms� and a
gradual modi�cation of transition probabilities� It would be interesting to evaluate how
such constructive and discrete search algorithms perform when properly solving the task
requires to learn to represent long�term context� On the basis of the results of this paper�
however� we believe that in order to successfully learn long�term dependencies� such algo�
rithms should look for very sparse topologies �or very deterministic models�� Note that some
of the already proposed approaches �Ron et al�� �		�� are limited in the type of context
that can be represented �e�g�� no loops in the graph and the constraint that all intermediate
observations between times t� and t must be represented by the state variable in order to
model the in�uence of yt� on yt��

��� Di
usion of Credit

We have already found above that except in the special case of � or � transition probabilities�
the state variable becomes more and more independent of remote past states �and therefore
of remote past inputs and outputs�� Since this prevents robustly representing long�term
context� learning such a long�term context is also made more and more di�cult for longer
term dependencies�
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However� it is interesting to consider how the ergodicity of the transition probability
matrix directly a
ects the the forward�backward equations ��� �to propagate context in�
formation forward and backward� used in learning algorithms such as EM and �implicitly�
gradient descent� In particular� let us consider the Dobrushin ergodicity coe�cient of these
matrix products� First� let Vt � At�t � � �AT�T � then

���Vt� 	 ���At�����t� � � ����AT �����T� �
TY
��t

���������A�� ���

We have already seen that ���At� � � unless the transition probabilities are all � or ��
Remember that the emission probability matrix �� is diagonal� Applying the de�nition of
�� �equation �� to a diagonal matrix D� we obtain

���D� �
�

�
max
i�j

�
jDii �Dij j� jDij �Djj j

	
�
�

�
max
i�j

�
jDiij� jDjjj

	
with i 
� j�

Therefore�

����t� �
�

�
max
i�j

�
P �ytjxt � i�ut� � P �ytjxt � j�ut�

	
with i 
� j�

which is the average of the two largest emission probabilities at this time step� Therefore�
when the transition probabilities are not all � or �� in the case of discrete outputs� ����t� 	 ��
and the ergodicity coe�cient of the matrix product Vt in equation ��� converges to � as
T � t increases� Note that this product gives the gradient of �i�T with respect to �j�t �from
equation �� and is used in the EM algorithm �Baum et al�� �	��� Levinson et al�� �	
�� as
well as in gradient�based algorithms �Bridle� �		�� Bengio� De Mori� Flammia� � Kompe�
�		�� Bengio � Frasconi� �		�b��

For example� in the case of a learning criterion L�

�L

��t
� Vt

�L

��T

where �L
��t

is the vector � �L
����t

� � � �L
��n�t

�� Since Vt is used to propagate credit backwards�

its convergence to rank � means that long�term credit is gradually lost as it is propagated
backwards� the gradient of the learning criterion with respect to all the past states becomes
the same� i�e�� �L

��t
converges to a multiple of ��� �� � � � � ���

The continuous emissions case is more di�cult because the density P �ytjxt � i�ut�
can locally be greater than one� The above result can still be obtained if we restrict our
attention to the cases in which the product of the largest emission probabilities at each time
step is bounded� which is the most likely in practice� In the case where it is not bounded� we
conjecture that the same result can be obtained by considering scaled emission probability
matrices� with a scaling factor st that is � when the emission probability is less than �� and
that is �	maxi P �ytjxt � i�ut� otherwise� Letting Ut � Atst�t � � �ATsT�T � although the
overall gradient with respect to all the past states can grow very large �as T � t increases��
the rank of Ut still converges to �� and the vector �t �

�L
��t

also converges to a �possibly
very large� multiple of ��� �� � � � � ���
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Figure �� Typical problem with short�term dependencies hiding the long�term dependen�
cies�

In practice we train HMMs with �nite sequences� However� training will become more
and more numerically ill�conditioned as one considers longer term dependencies� Consider
as in Figure � two events et �occurring at time t� and e� �occurring at time � much earlier
than t�� and suppose there are also �interesting� events occurring in between �i�e�� events
which should in�uence the state variable at time t in order to better model outputs at time
t or later�� Let us consider the overall in�uence of states at times s � t upon the likelihood
of the outputs at time t� Because of the phenomenon of di
usion of credit� and because
gradients are added together� the in�uence of intervening events �especially those occurring
shortly before t� will be much stronger than the in�uence of e� � Furthermore� this problem
gets geometrically worse as t � � increases�

��� Sparse Matrices and Prior Knowledge

Clearly a positive matrix �corresponding to a fully�connected graph� is primitive� Thus in
order to learn long�term dependencies� we would like to have many zeros in the matrix of
transition probabilities �which reduces the problem of di
usion� as con�rmed by the exper�
iments described in Section � and illustrated in Figure ��� Unfortunately� this generally
supposes prior knowledge of an appropriate connectivity graph� In practical applications of
HMMs� for example to speech recognition �Lee� �	
	� Rabiner� �	
	� or protein secondary
structure modeling �Chauvin � Baldi� �		��� prior knowledge is heavily used in setting
up the connectivity graph� As illustrated in Figure �� in speech recognition systems the
meaning of individual states is usually �xed a�priori except within phoneme models� The
representation of long�term context is therefore not learned by the HMM� Transition prob�
abilities between groups of states representing a phoneme in a certain context are �learned�
from text or labeled speech data� However� in that case the �model� is a Markov model�
not a hidden Markov model� learning consists in counting co�occurrence of events such as
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Figure �� Learning of a representation of context in speech recognition HMMs is typically
limited to what happens within a phoneme� Higher�level representations are cho�
sen from prior knowledge and those parameters are often estimated from simple
co�occurrence statistics�

phonemes or words� The hard problem of learning a representation of context is therefore
avoided by choosing it on the basis of prior knowledge�

Another direction of research should be in ways to incorporate some prior knowledge
with learning from examples� preferably in a way that simpli�es the problem of learning
�new� long�term dependencies� Our current research in this direction is based on the old
AI idea of using a multi�scale representation� The state variable is decomposed into several
�sub�state� variables �whose Cartesian product is equal to the �full� state variable�� each
operating at a di
erent time scale� The a�priori assumption is that long�term context will
be represented by �slow� state variables� which must be insensitive to the precise timing of
events� This allows the propagation of context �and credit� for learning� over long durations
through those higher�level state variables� To impose these multiple time scales� one can
introduce constraints on the transition probabilities� such that the �slow� variables always
have a small probability of changing at any time step� Another useful assumption is that the
transition probabilities can be factored in terms of the conditional sub�state probabilities at
each time scale� given the full state� We conjecture that the hypothesis behind this multi�
scale structure is appropriate for most �natural� sequence learning tasks �such as those
humans perform��
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�� Experiments

In this section we report some experimental results� Firstly� we study� from a numerical
point of view� the convergence of products of stochastic matrices� Then we report an
example of training in a problem in which the span of temporal dependencies is arti�cially
controlled�

��� Di
usion� Numerical Simulations

In this experiment we measure how �and if� di
erent kinds of products of stochastic ma�
trices converged� for example to a matrix with equal rows� We ran � simulations� each with
an 
�state non�homogeneous Markov chain but with di
erent constraints on the transition
graph� �� G is fully connected� �� G is a left�to�right model �i�e�� the incidence matrix �A is
upper triangular�� �� G is left�to�right but only one�state skips are allowed �i�e�� �A is upper
bidiagonal�� �� At are periodic with period �� Results shown in Figures � and � con�rm the
convergence towards zero of the ergodicity coe�cient at a rate that depends on the graph
topology� The exception is� as expected� the case of periodic matrices� Note how the sparser
graphs have a larger ergodicity coe�cient� which should ease the learning of long�term de�
pendencies� In Figure �� we represent visually the convergence of fully connected matrices
to row equality� in only � time steps� towards equal rows� Each of the transition probability
matrices At �t � �� �� �� �� was chosen randomly from a uniform distribution�

��� Training Experiments

To evaluate how di
usion impairs training� a set of controlled experiments were performed�
in which the training sequences were generated by a simple homogeneous HMM with long�
term dependencies� depicted in Figure ��

Two branches generate similar sequences except for the �rst and last symbol� The
extent of the long�term context is controlled by the self transition probabilities of states �
and �� � � P �xt � �jxt�� � �� � P �xt � �jxt�� � ��� Span or �half�life� is log����	 log����
i�e�� �span � ���� Following Bengio et al� ��		��� data was generated for various span of
long�term dependencies ���� to ������

For each series of experiments� varying the span� �� di
erent training trials were run
per span value� with ��� training sequences�� Training was stopped either after a max�
imum number of epochs ������ of after the likelihood did not improve signi�cantly� i�e��
�l�t�� l�t� ���	jl�t�j� ����� where l�t� is the logarithm of the likelihood of the training
set at epoch t� A trial is considered successful �converged� when it yields a likelihood almost
as good or better than the likelihood of the generating HMM on the same data�

If the HMM is fully connected �except for the �nal absorbing state� and has just the
right number of states� trials almost never converge to a good solution �� in ��� did��
Increasing the number of states and randomly putting zeroes in the transition matrix helps
convergence� This con�rms common intuition� although using more states than strictly
necessary may result in worse generalization to new examples and� hence� may not be an
advisable solution to solve convergence problems� The randomly connected HMMs had �

	� This relatively small number of training sequences appeared su
cient since the likelihood of the gener�
ating HMM did not improve much when trained on this data�
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Figure �� Convergence of Dobrushin�s coe�cient �see De�nition �� in product of stochastic
matrices associated to non�homogeneous Markov chains constrained by di
erent
transition graphs� The �attening of the bottom curve is due to the limits of
numerical precision in the computer experiments�
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Figure �� Evolution of matrix products A���t� for a model having a fully connected transition
graph� Matrix elements �transition probabilities� are visualized with gray levels�
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Figure �� Generating HMM� Numbers in state circles denote state indices� numbers out of
state circles denote output symbols� This HMM was used to generate the training
data for the experiments summarized in Figure 
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times more states than the generating HMM and random connections were created with
�� probability� Figure 
 shows the average number of converged trials for these di
erent
types of HMM topologies� In all cases the number of successful trials rapidly drops to zero
beyond some value of span� In failed trials� the equivalent of states � and � of the generating
HMM are usually confused� i�e�� these solutions don�t take the beginning of the sequence
into account to represent the distribution of the symbols near the end of the sequence�
It is interesting to note that HMMs with many more states than necessary but sparse
connectivity performed much better� Typically� a sparser graph corresponds to a larger
coe�cient of ergodicity �as exempli�ed in Figure ��� which allows long�term dependencies
to be represented and learned more easily�

Another interesting observation is that in many cases� the training curve goes through
one or more very �at plateaus� Such plateaus could be explained by the di
usion problem�
the relative gradient with respect to some parameters is very small �thus the algorithm
appears to be stuck�� These plateaus can become a very serious problem when their slope
approaches numerical precision or their length becomes unacceptable�

�� Conclusion and Future Work

In previous work on recurrent networks �Bengio et al�� �		�� we had found that� for these
nonlinear dynamical parameterized systems� propagating credit over the long term was in�
compatible with storing information for the long term� Basically� with enough non�linearity
�larger weights� to store long�term context robustly� gradients back�propagated through
time vanish rapidly� In this paper� we have also found negative results concerning the rep�
resentation and learning of long�term context� but they apply to Markovian models such as
HMMs� IOHMMs or POMDPs� For these models� we found that both the representation
and the learning of long�term context information are tied together� In general� they are
both hurt by the ergodicity of the transition probability matrix �or submatrices of it�� How�
ever� when the transition probabilities are close to � and �� information can be stored for the
long term and credit can be propagated over the long term� Like our �ndings for recurrent
networks� this suggests that the problem of learning long�term dependencies looks more like
a discrete optimization problem� It appears di�cult for local learning algorithm such as
EM or gradient descent to learn optimal transition probabilities near � or �� i�e�� to learn
the topology� while taking into account long�term dependencies� This should encourage
research on alternative �discrete� algorithms for discovering HMM topology �especially for
representing long�term context�� such as those proposed by Stolcke � Omohundro ��		��
and Ron et al� ��		��� Our results suggest that such algorithms should strive to discover
sparse topologies� or almost deterministic models� The arguments presented here are essen�
tially an application of established mathematical results on Markov chains to the problem
of learning long term dependencies in homogeneous and non�homogeneous HMMs� These
arguments were also supported by experiments on arti�cial data� studying the phenomenon
of di
usion of credit and the corresponding di�culty in training HMMs to learn long�term
dependencies�

IOHMMs �Bengio � Frasconi� �		�� �		�b� and POMDPs �Sondik� �	��� �	�
� Chris�
man� �		�� are non�homogeneous variants of HMMs� i�e�� the transition probabilities are
function of the input �for IOHMMs� or the action �for POMDPs� at each time t� The re�
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sults of this paper suggests that such non�homogeneous Markovian models could be better
suited �in some situations� to representing and learning long�term context� For such mod�
els� forcing transition probabilities to be near � or � still allows the system to model some
interesting phenomena and perform useful computations� In practice� this means that the
underlying dynamics of state evolution to be modeled should be deterministic� For example�
a deterministic IOHMM can recognize strings from a deterministic grammar� taking into
account long�term dependencies �Bengio � Frasconi� �		�b�� For HMMs this constraint
restricts the model to simple cycles� which are not very interesting�

Our analysis and numerical experiments also suggest that using many more hidden states
than necessary� with a sparse connectivity� reduces the di
usion problem� Another related
issue to be investigated is whether techniques of symbolic prior knowledge injection �see�
e�g�� Frasconi� Gori� Maggini� � Soda� �		�� can be exploited to choose good topologies� or
combine speci�c a�priori knowledge with learning from examples�

Based on the analysis presented here� we are also exploring another approach to learning
long�term dependencies that consists in building a hierarchical representation of the state�
This can be achieved by introducing several sub�state variables whose Cartesian product
corresponds to the system state� Each of these sub�state variables can operate at a di
erent
time scale� thus allowing credit to propagate over long temporal spans for some of these
variables�
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