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Abstract

This paper studies the convergence properties of the well known
K
Means clustering algorithm� The K
Means algorithm can be de

scribed either as a gradient descent algorithm or by slightly extend

ing the mathematics of the EM algorithm to this hard threshold
case� We show that the K
Means algorithm actually minimizes the
quantization error using the very fast Newton algorithm�

� INTRODUCTION

K
Means is a popular clustering algorithm used in many applications� including the
initialization of more computationally expensive algorithms �Gaussian mixtures�
Radial Basis Functions� Learning Vector Quantization and some Hidden Markov
Models�� The practice of this initialization procedure often gives the frustrating
feeling that K
Means performs most of the task in a small fraction of the overall
time� This motivated us to better understand this convergence speed�

A second reason lies in the traditional debate between hard threshold �e�g� K

Means� Viterbi Training� and soft threshold �e�g� Gaussian Mixtures� Baum Welch�
algorithms �Nowlan� �

��� Soft threshold algorithms are often preferred because
they have an elegant probabilistic framework and a general optimization algorithm
named EM �expectation
maximization� �Dempster� Laird and Rubin� �
���� In the
case of a gaussian mixture� the EM algorithm has recently been shown to approxi�
mate the Newton optimization algorithm �Xu and Jordan� �

��� We prove in this
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paper that the corresponding hard threshold algorithm� K
Means� minimizes the
quantization error using exactly the Newton algorithm�

In the next section� we derive the K
Means algorithm as a gradient descent pro

cedure� Section 	 extends the mathematics of the EM algorithm to the case of
K
Means� This second derivation of K
Means provides us with proper values for
the learning rates� In section � we show that this choice of learning rates opti

mally rescales the parameter space using Newton�s method� Finally� in section �
we present and discuss a few experimental results comparing various versions of the
K
Means algorithm� The � clustering algorithms presented here were chosen for a
good coverage of the algorithms related to K
Means� but this paper does not have
the ambition of presenting a literature survey on the subject�

� K�MEANS AS A GRADIENT DESCENT

Given a set of P examples �xi�� the K
Means algorithm computes k prototypes
w � �wk� which minimize the quantization error� i�e�� the average distance between
each pattern and the closest prototype�

E�w�
def
�
X
i

L�xi� w�
def
�
X
i

�

�
min
k

�xi � wk�
� ���

Writing si�w� for the subscript of the closest prototype to example xi� we have

E�w� �
X
i

�

�
�xi � wsi�w��

� ���

��� GRADIENT DESCENT ALGORITHM

We can then derive a gradient descent algorithm for the quantization error�

�w � ��t
�E�w�
�w

� This leads to the following batch update equation �updating pro

totypes after presenting all the examples��

�wk �
X
i

�
�t�xi � wk� if k � si�w�
� otherwise� �	�

We can also derive a corresponding online algorithm which updates the prototypes
after the presentation of each pattern xi�

�w � ��t
�L�xi� w�

�w
� i�e��

�wk �

�
�t�xi � wk� if k � si�w�
� otherwise� ���

The proper value of the learning rate �t remain to be speci�ed in both batch and
online algorithms� Convergence proofs for both algorithms �Bottou� �

�� exist
for decreasing values of the learning rates satisfying the conditions

P
�t � � andP

��t � �� Following �Kohonen� �
�
�� we could choose �t � ���t� We prove
however in this paper that there exist a much better choice of learning rates�



� K�MEANS AS AN EM STYLE ALGORITHM

��� EM STYLE ALGORITHM

The following derivation of K
Means is similar to the derivation of �MacQueen�
�
���� We insist however on the identity between this derivation and the mathe

matics of EM �Liporace� �
��� �Dempster� Laird and Rubin� �
����

Although K�Means does not �t in a probabilistic framework� this similarity holds
for a very deep reason� The semi
ring of probabilies �������� and the idempo

tent semi
ring of hard
threshold scores ���Min��� share the most signi�cant al

gebraic properties �Bacceli� Cohen and Olsder� �

��� This assertion completely
describes the similarities and the potential di�erences between soft
threshold and
hard
threshold algorithms� A complete discussion however stands outside the scope
of this paper�

The principle of EM is to introduce additional �hidden� variables whose knowledge
would make the optimization problem easier� Since these hidden variables are un

known� we maximize an auxiliary function which averages over the values of the
hidden variables given the values of the parameters at the previous iteration� In
our case� the hidden variables are the assignments si�w� of the patterns to the pro

totypes� Instead of considering the expected value over the distribution on these
hidden variables� we just consider the values of the hidden variables that minimize
the cost� given the previous values of the parameters�

Q�w�� w�
def
�
X
i

�

�
�xi �w�si�w��

�

The next step consists then in �nding a new set of prototypes w� which mini

mizes Q�w�� w� where w is the previous set of prototypes� We can analytically
compute the explicit solution of this minimization problem� Solving the equation
�Q�w�� w���w�k � � yields�

w�
k
�

�

Nk

X
i�k�si�w�

xi ���

where Nk is the number of examples assigned to prototype wk� The algorithm
consists in repeatedly replacing w byw� using update equation ��� until convergence�
Since si�w�� is by de�nition the best assignment of patterns xi to the prototypes
w�
k
� we have the following inequality�

E�w�� �Q�w�� w� �
�

�

X
i

�xi �w�si�w���
� � �xi � w�si�w��

� � �

Using this result� the identity E�w� � Q�w�w� and the de�nition of w�� we can
derive the following inequality�

E�w�� �E�w� � E�w�� �Q�w�� w� � Q�w�� w��Q�w�w�

� Q�w�� w��Q�w�w� � �

Each iteration of the algorithm thus decreases the otherwise positive quantization
error E �equation �� until the error reaches a �xed point where condition w�� � w�

is veri�ed �unicity of the minimum of Q��� w���� Since the assignment functions
si�w� are discrete� there is an open neighborhood of w� on which the assignments
are constant� According to their de�nition� functions E��� and Q��� w�� are equal
on this neighborhood� Being the minimum of function Q��� w��� the �xed point w�

of this algorithm is also a local minimum of the quantization error E� �



��� BATCH K�MEANS

The above algorithm ��� can be rewritten in a form similar to that of the batch
gradient descent algorithm �	��

�wk � w�k �wk �
X
i

�
�
Nk

�xi �wk� if k � s�xi� w�
� otherwise�

���

This algorithm is thus equivalent to a batch gradient descent with a speci�c� pro

totype dependent� learning rate �

Nk
�

��� ONLINE K�MEANS

The online version of our EM style update equation ��� is based on the computation
of the mean �t of the examples x�� � � � � xt with the following recursive formula�

�t�� �
�
t�� �t �t � xt��� � �t �

�
t�� �xt�� � �t�

Let us introduce new variables nk which count the number of examples so far
assigned to prototype wk� We can then rewrite ��� as an online update applied
after the presentation of each pattern xi�

�nk �

�
� if k � s�xi� w�
� otherwise�

�wk �

�
�
nk
�xi �wk� if k � s�xi� w�

� otherwise�
���

This algorithm is equivalent to an online gradient descent ��� with a speci�c� proto

type dependent� learning rate �

nk
� Unlike in the batch case� the pattern assignments

s�xi� w� are thus changing after each pattern presentation� Before applying this al

gorithm� we must of course set nk to zero and wk to some initial value� Various
methods have been proposed including initializing wk with the �rst k patterns�

��� CONVERGENCE

General convergence proofs for the batch and online gradient descent �Bottou� �

��
Driancourt� �

�� directly apply for all four algorithms� Although the derivatives
are unde�ned on a few points� these theorems prove that the algorithms almost
surely converge to a local minimum because the local variations of the loss function
are conveniently bounded �semi
di�erentiability�� Unlike previous results� the above
convergence proofs allow for non
linearity� non
di�erentiability �on a few points�
�Bottou� �

��� and replacing learning rates by a positive de�nite matrix �Drian

court� �

���

� K�MEANS AS A NEWTON OPTIMIZATION

We prove in this section that Batch K
Means ��� applies the Newton algorithm�

��� THE HESSIAN OF K�MEANS

Let us compute the Hessian H of the K
Means cost function ���� This matrix
contains the second derivatives of the cost E�w� with respect to each pair of pa

rameters� Since E�w� is a sum of terms L�xi� w�� we can decompose H as the sum



of matrices Hi for each term of the cost function�

L�xi� w� � min
k

�

�
�xi � wk�

��

Furthermore� the Hi can be decomposed in blocks corresponding to each pair of
prototypes� Since L�xi� w� depends only on the closest prototype to pattern xi� all
these blocks are zero except block �si�w�� si�w�� which is the identity matrix� Sum

ming the partial Hessian matrices Hi thus gives a diagonal matrix whose diagonal
elements are the counts of examples Nk assigned to each prototype�

H �

�
BB�

N�I � � � � �
� N�I � � � �
���

���
���

� � � � � NKI

�
CCA

We can thus write the Newton update of the parameters as follows�

�w � �H�� �E�w�

�w

which can be exactly rewritten as the batch EM style algorithm ��� presented earlier�

�wk �
X
i

�
�
Nk

�xi � wk� if k � s�xi� w�
� otherwise�

���

��� CONVERGENCE SPEED

When optimizing a quadratic function� Newton�s algorithm requires only one step�
In the case of a non quadratic function� Newton�s algorithm is superlinear if we
can bound the variations of the second derivatives� Standard theorems that bound
this variation using the third derivative are not useful for K
Means because the
gradient of the cost function is discontinuous� We could notice that the variations
of the second derivatives are however nicely bounded and derive similar proofs for
K
Means�

For the sake of brevity however� we are just giving here an intuitive argument� we
can make the cost function inde�nitely di�erentiable by rounding up the angles
around the non di�erentiable points� We can even restrict this cost function change
to an arbitrary small region of the space� The iterations of K
Means will avoid
this region with a probability arbitrarily close to �� In practice� we obtain thus a
superlinear convergence�

Batch K
Means thus searches for the optimal prototypes at Newton speed� Once
it comes close enough to the optimal prototypes �i�e� the pattern assignment is
optimal and the cost function becomes quadratic�� K
Means jumps to the optimum
and terminates�

Online K
Means bene�ts of these optimal learning rates because they remove the
usual conditioning problems of the optimization� However� the stochastic noise
induced by the online procedure limits the �nal convergence of the algorithm� Final
convergence speed is thus essentially determined by the schedule of the learning
rates�

Online K
Means also bene�ts from the redundancies of the training set� It converges
signi�cantly faster than batch K
Means during the �rst training epochs �Darken
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and Moody� �

��� After going through the �rst few patterns �depending of the
amount of redundancy�� online K
Means indeed improves the prototypes as much
as a complete batch K
Means epoch� Other researchers have compared batch and
online algorithms for neural networks� with similar conclusions �Bengio� �

���

� EXPERIMENTS

Experiments have been carried out with Fisher�s iris data set� which is composed of
��� points in a four dimensional space representing physical measurements on var

ious species of iris �owers� Codebooks of six prototypes have been computed using
both batch and online K
Means with the proper learning rates ��� and ���� These
results are compared with those obtained using both gradient descent algorithms
�	� and ��� using learning rate �t � ���	�t that we have found optimal� Results are
also compared with likelihood maximization with the EM algorithm� applied to a
mixture of six Gaussians� with �xed and uniform mixture weights� and �xed unit
variance� Inputs were scaled down empirically so that the average cluster variance
was around unity� Thus only the cluster positions were learned� as for the K
Means
algorithms�

Each run of an algorithm consists in �a� selecting a random initial set of prototypes�
�b� running the algorithm during �� epochs and recording the error measure Et after
each epoch� �c� running the batch K
Means algorithm� during �� more epochs in
order to locate the local minimum E� corresponding to the current initialization
of the algorithm� For the four K
Means algorithms� Et is the quantization error
�equation ��� For the Gaussian mixture trained with EM� the cost Et is the negative

�except for the case of the mixture of Gaussians� in which the EM algorithm was applied
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logarithm of the likelihood of the data given the model�

Twenty trials were run for each algorithm� Using more than twenty runs did not
improve the standard deviation of the averaged measures because various initializa

tions lead to very di�erent local minima� The value E� of the quantization error
on the local minima ranges between 		�� and ����� This variability is caused by
the di�erent initializations and not by the di�erent algorithms� The average values
of E� for each algorithm indeed fall in a very small range ����� to ������

Figure � shows the average value of the residual error Et � E� during the �rst
�� epochs� Online K
Means �black circles� outperforms all other algorithms during
the �rst �ve epochs and stabilizes on a level related to the stochastic noise of the
online procedure� Batch K
Means �black squares� initially converges more slowly
but outperforms all other methods after � epochs� All �� runs converged before the
��th epoch� Both gradients algorithms display poor convergence because they do
not bene�t of the Newton e�ect� Again� the online version �white circles� starts
faster then the batch version �white square� but is outperformed in the long run�
The negative logarithm of the Gaussian mixture is shown on the curve with no
point marks� and the scale is displayed on the right of Figure ��

Figure � show the �nal convergence properties of all �ve algorithms� The evolutions
of the ratio �Et�� � E����Et � E�� characterize the relative improvement of the
residual error after each iteration� All algorithms exhibit the same behavior after a
few epochs except batch K
Means �black squares�� The fast convergence of this ratio
to zero demonstrates the �nal convergence of batch K
Means� The EM algorithm
displays a better behavior than all the other algorithms except batch K
Means�
Clearly� however� its relative improvement ratio doesn�t display the fast convergence
behavior of batch K
Means�



The online K
Means curve crosses the batch K
Means curve during the second
epoch� suggesting that it is better to run the online algorithm ��� during one epoch
and then switch to the batch algorithm ����

� CONCLUSION

We have shown with theoretical arguments and simple experiments that a well
implemented K
Means algorithm minimizes the quantization error using Newton�s
algorithm� The EM style derivation of K
Means shows that the mathematics of EM
are valid well outside the framework of probabilistic models� Moreover the provable
convergence properties of the hard threshold K
Means algorithm are superior to
those of the EM algorithm for an equivalent soft threshold mixture of Gaussians�
Extending these results to other hard threshold algorithms �e�g� Viterbi Training�
is an interesting open question�
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