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Non- Local Learning: We are not doomed!
• complex 6= non- smooth (e.g. Kolmogorov complexity weak

prior that can buy a lot of power)
• similar 6= close in vector space ⇒ task- specific similarity
•nonlocal learning algorithms ⇒ can generalize even with

few training samples (Bengio and Larochelle, 2006), can
guess density shape near never seen examples, even though
no explicit and specific prior knowledge is used.
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Graph- Based Semi- Supervised Learning
A number of semi- supervised learning algorithms are based
on the idea of propagating labels on the nodes of a neighbor-
hood graph, starting from known labels, until some conver-
gence is obtained. Typical cost function optimized this way:

C(Ŷ ) = ‖Ŷl − Yl‖2 + µŶ >LŶ + µε‖Ŷ ‖2

Proposition: the number of regions with constant estimated
label is less than (or equal to) the number of labeled examples.

“Double curse”: with a Gaussian ker-
nel, we would need many labeled ex-
amples (one in each colored region),
and many unlabeled ones (along the
sinusoidal line).

⇒ a neighborhood graph may not be appropriate for the task
(e.g. parity problem).
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Manifold Learning
Many manifold learning algorithms can be written as in eq. 1
with KD having some locality property such that

∂f (x)

∂x
'

∑
xi∈N (x)

K̂D(x, xi)(xi − x)

i.e. the tangent plane of the
manifold is approximately in
the span of the vectors (xi−x)

with xi a near neighbor of x

⇒ high-variance estimators if
not enough training points in
neighborhood of x (curse of
the manifold dimensionality).

x
xi

Ex: kernel PCA with a Gaussian kernel, Locally Linear Em-
bedding, ISOMAP, ...
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Minimum Number of Bases
Corollary of (Schmitt, 2002): if KD is the Gaussian kernel
and f (·) changes sign at least 2k times along some straight line
(i.e. that line crosses the decision surface at least 2k times),
then there must be at least k bases (non- zeroαi’s).

decision surface

Class −1

Class 1

Ex: This “complex” sinusoidal
decision surface requires a
minimum of 10 Gaussians to
be learned with a Gaussian ker-
nel classifier.

Parity problem: learning the d- bits parity function

parity : (b1, . . . , bd) ∈ {0, 1}d 7→

{
1 if

∑d
i=1 bi is even

−1 otherwise

with a Gaussian kernel classifier requires at least 2d−1 bases
(when centered on training points).

Bottom-line: with a purely local kernel, it can be difficult to
learn a simple function that varies a lot.
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General Curse Idea
Setting: learned function expressed as a linear function of
(possibly data- dependent) kernel functions:

f (x) = b +

n∑
i=1

αiKD(x, xi) (1)

1. Locality: if the kernel is local in some sense, important prop-
erties of f (·) at point x will depend mostly on training ex-
amples xi in neighborhood N (x) of x.

Ex: derivative of the Gaussian
kernel w.r.t. distance ‖x−xi‖2.
The derivative of f (·) at x de-
pends on those xi in N (x) ⇒
e.g. shape of the decision sur-
face in a kernel classifier.
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2. Smoothness: important properties of f (·) at x vary slowly in
N (x) (i.e. f (·) is smooth, in some sense, within N (x)).

3. Complexity: if the target function for f (·) is “complex”, i.e.
it varies a lot, smoothness ⇒ need to consider many neigh-
borhoods (“tiling” the space with local patches).
CURSE! Locality ⇒ need training examples in each patch
(whose number may grow in O(constd)).
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Outlook
•Smoothness prior is the ba-

sis for many algorithms, that
learn only from local neigh-
borhoods of training data
•Makes them unfit to learn

functions that vary a lot, e.g.
needed for complex AI tasks
•Ex: SVMs with local ker-

nel, manifold learning al-
gorithms (LLE, ISOMAP,
kernel PCA), graph- based
semi-supervised learning, ...
•Need for non- locallearning!
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