Université
de Montreéal

Outlook

e Smoothness prior 1s the ba-
s1s for many algorithms, that
learn only from local neigh-
borhoods of training data
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Ny e Makes them unfit to learn

functions that vary a lot, e.g.
needed for complex Al tasks

eEx: SVMs with local ker-
nel, manifold learning al-
gorithms (LLE, ISOMAP,
kernel PCA), graph- based
semi-supervised learning, ...

The Only kernel Adventure That

: Asks the Question:, What's Sharper,
Neural Networks or SVMs ?

@ Need for non- locallearning!
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General Curse Idea

Setting: learned function expressed as a linear function of
(possibly data- dependent) kernel functions:

flz)=b+ Y oKplz, ) (1)

i=1
1. Locality: if the kernel 1s local in some sense, important prop-
erties of f(-) at point x will depend mostly on training ex-

amples x; in neighborhood N () of .

0.45

Ex: derivative of the Gaussian o
kernel w.r.t. distance ||z —z;||*.
The derivative of f(-) at x de- o=
pends on those z; in N (z) =
e.g. shape of the decision sur- o
face in a kernel classifier.

2. Smoothness: important properties of f(-) at x vary slowly in
N (z) (i.e. f(-)is smooth, in some sense, within N ()).

3. Complexity: if the target function for f(-) is “complex”, i.e.
it varies a lot, smoothness = need to consider many neigh-
borhoods (“tiling” the space with local patches).

CURSE! Locality = need training examples in each patch
(whose number may grow in O(const?)).
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The Curse of Highly Variable Functions tor Local
Kernel Machines

Minimum Number of Bases

Corollary of (Schmitt, 2002): if K 1s the Gaussian kernel
and f(-) changes sign at least 2k times along some straight line
(1.e. that line crosses the decision surface at least 2k times),
then there must be at least k£ bases (non- zeroco;’s).

Ex: This “complex” sinusoidal
decision surface requires a
minimum of 10 Gaussians to
be learned with a Gaussian ker-
nel classifier.

Class -1

decision surface

Class 1

Parity problem: learning the d- bits parity function

1if S°¢ . b; is even

ity : (by,...,b 1}
parity : (by,...,bq) € {0,1}" — —1 otherwise

with a Gaussian kernel classifier requires at least 27! bases
(when centered on training points).

Bottom-line: with a purely local kernel, 1t can be difficult to
learn a simple function that varies a lot.
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Manifold Learning

Many manifold learning algorithms can be written as 1n eq. 1
with K p having some locality property such that

of(x :
g;)ﬁ Z KD(.CL’,.CEZ')(Q’JZ'—CE)

;€N (x)

1.e. the tangent plane of the

manifold 1s approximately in o x
the span of the vectors (z; — x) ' |
with x; a near neighbor of «

= high-variance estimators 1f
not enough training points in
neighborhood of x (curse of
the manifold dimensionality).

Ex: kernel PCA with a Gaussian kernel, Locally Linear Em-
bedding, ISOMAP, ...
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Graph- Based Semi- Supervised Learning

A number of semi- supervised learning algorithms are based
on the 1dea of propagating labels on the nodes of a neighbor-
hood graph, starting from known labels, until some conver-
gence 1s obtained. Typical cost function optimized this way:

C(Y)=[Yi = Y|P + uY TLY + pe||Y))?

Proposition: the number of regions with constant estimated
label is less than (or equal to) the number of labeled examples.
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' “Double curse”: with a Gaussian ker-

nel, we would need many labeled ex-

A AW AW\ amples (one in each colored region),
and many unlabeled ones (along the

sinusoidal line).

= nibohood ah may not be appropriate for the task
(e.g. parity problem).
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Non- Local Learning: We are not doomed!

e complex # non- smooth (e.g. Kolmogorov complexity weak
prior that can buy a lot of power)

e similar # close in vector space = task- specific similarity

e nonlocal learning algorithms = can generalize even with
few training samples (Bengio and Larochelle, 2006), can
guess density shape near never seen examples, even though
no explicit and specific prior knowledge 1s used.
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