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Abstract

Machine learning classification algorithms are relevant to a large number of Army classification
problems, including the determination of a weapon class from a detonation acoustic signature.
However, much such work has been focused on classification of events from small weapons
used for asymmetric warfare, which have been of importance in recent years. In this work
we consider classification of very different weapon classes, such as mortar, rockets and RPGs,
which are difficult to reliably classify with standard techniques since they tend to have similar
acoustic signatures. To address this problem, we compare two recently-introduced state-of-
the-art machine learning algorithms, Support Vector Machines and Discriminative Restricted
Boltzmann Machines, and develop how to use them to solve this difficult acoustic classification
task. We obtain classification accuracy results that could make these techniques suitable for
fielding on autonomous devices. Discriminative Restricted Boltzmann Machines appear to yield
slightly better accuracy than Support Vector Machines, and are less sensitive to the choice of
signal preprocessing and model hyperparameters. Importantly, we also address methodological
issues that one faces in order to rigorously compare several classifiers on limited data collected
from field trials; these questions are of significance to any application of machine learning
methods to Army problems.
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1 Introduction

The objective of this work is to develop advanced signal processing and machine learning algorithms for
performing automatic target classification of impulsive sources (such as detonations) that perform well when
deployed in the field. In particular, we consider the task of discriminating launch signals generated by three
weapon classes: MORTAR, ROCKET, and rocket-propelled grenades (RPGs).

This task is difficult since a large number of factors affect the propagation of the detonation signal from
the impulsive source to the microphone. In particular, we note: (1) the distance between receiver and source,
(2) the presence of obstacles on the terrain and nature of the ground, (3) the amplitude of the source, (4) the
time of day, and (5) the meteorological conditions (cloud cover, wind, and humidity).

In addition to the acoustic signature of the weapon at the source, the factor believed to be most de-
terminant in the recorded signal is the nature of the ground along the trajectory from the explosion to the
microphone. Because there are many possible combinations of these factors, an ideal data collection would
involve as many different combinations of these as possible, and in particular as many different trajectories
and ground types as possible. Unfortunately, the data currently at our disposal for this study comes from
only three proving grounds (APG, Dahlgreen, Yuma), which makes the evaluation of classifier reliability
considerably more difficult. This data is described in more details in Section 2.1.

One of our contributions to the research on detonation classifiers regards statistical and methodological
issues related to the problem of data scarcity: How do we fairly evaluate performance? How do we compare
different classifiers in statistically trustworthy ways? In this paper we propose a carefully-designed exper-
imental setting in order to properly evaluate the generalization performance of classifiers as if they were
deployed on the field. We also analyze our experimental results by systematically assessing their statistical
significance.

We compare two statistical machine learning classifiers applied to our classification task: Support Vector
Machines (SVM: a classical non-parametric discriminant classifier), and Discriminative Restricted Boltz-
mann Machines (DRBM: a recently proposed hybrid that combines a discriminant criterion and a generative
criterion). Discriminant classifiers, such as SVMs, focus on learning the classification decision. In contrast,
generative classifiers try to capture the actual distribution of signals. Potential advantages of generative
classifiers include the ability to take advantage of unlabeled data, e.g., signals for which the weapon class is
unknown. They also have the potential to learn on their own a more refined representation of the input sig-
nal, one that captures the factors that explain the variations in the data. They have been proposed recently as
components of so-called deep architectures (Hinton, Osindero, and Teh 2006; Bengio, Lamblin, Popovici,
and Larochelle 2007; Ranzato, Poultney, Chopra, and LeCun 2007; Bengio 2009), an approach that departs
from existing non-parametric learning algorithms in order to learn the kind of highly-varying functions that
are presumably necessary in artificial intelligence tasks.

Our experiments are performed with these classifiers on the classification task of discriminating between
three main types of weapons studied here: ROCKET, RPG and MORTAR explosions. The experiments explore
interactions of classifier choice with various segmentation and preprocessing choices. We find that although
both SVMs and DRBMs can achieve comparable best performance, DRBMs perform slightly better, and
have the significant advantage of being less sensitive to the choice of preprocessing and algorithm hyperpa-
rameters. Since model evaluation is difficult for this task due to the specificities of the data (as detailed in
Section 2.1), such a conclusion indicates that DRBMs are particularly interesting in such a setting.

Organization of this Paper This paper is organized as follows: in Section 2 we provide an overview of the
data and signal processing techniques employed; we follow in Section 3 by an overview of the methodologi-
cal issues for a fair comparison between classification algorithms; in Section 4 we review the formulation of
the SVM and DRBM algorithms employed, followed by a presentation of experimental results in Section 5.
Finally, Section 6 concludes and suggests avenues for further research.

2



2 Data Overview and Preprocessing

2.1 Overview of Available Data

The acoustic data and associated meta-data that we have used to train and test statistical models come from
several different exercises that took place in 2004 and 2005. All of the data that we have used was recorded
by ground-based tetrahedral microphone arrays, and includes recordings for different types of weapons,
recorded at separate locations and at different dates and times.

From the various data sources, we have built a dataset containing the acoustic signatures of all unique
signatures of launches for weapons of types MORTAR, ROCKET and RPG. After a manual screening of the
data to remove low-quality samples, this dataset contains a total of 636 different launching signatures, each
having four individual signals (from the four microphones of a tetrahedral array). There is a severe class
imbalance between the three main weapon types: ROCKETs account for 5.8% of all signatures, RPGs account
for 4.7% and MORTARs for the other 89.5%, which means that there are at least 15 times more signatures
available for MORTARs than for any other class. This is a serious issue with multiple implications, which are
discussed throughout this paper.

This severe imbalance in the available data is not only present for the target classes on which we wish
to do classification, but also for the times and locations of the events recorded. As an example, 59% of the
signatures come from the Yuma proving ground, but less than 1% come from Dahlgren, and all the data
from Dahlgren is for RPGs and was collected on two consecutive afternoons. Also, all ROCKET signatures
available come from the same proving ground, APG, and these were also recorded on two consecutive days.
Section 3.1 explains the different ways in which we have chosen to split this data in order to obtain a scenario
which is as close as possible to what would happen in the field if a classification model were to be deployed.

When working on this dataset, one needs to take into account the fact that some of the launch events are
represented by more than one signature. In most cases, this is because there is more than one tetrahedral ar-
ray recording all of the events from an exercise, and therefore we get up to one signature per array per launch
event. This can be important when designing an experimental setup meant to evaluate the performance of a
model on new explosions, a topic that is discussed in Section 3.1.

2.2 Signal Segmentation

As the experiments presented in Section 5 will illustrate, the segmentation can have a significant impact on
classifier performance. Two manual segmentations are available for the signals we consider: one performed
by the ARL staff, and one performed by the ApSTAT staff. They are called respectively ARLTruncated and
ApPeakTruncated in this paper. When we do not use the end of the segmentation (i.e. the signal is not
right-truncated), they lead to the ARLNoTrunc and ApPeakNoTrunc segmentations.

2.3 Preprocessing by Spectral Features

Our preprocessing consists of spectral features obtained from the signal Fast Fourier Transform (FFT). We
extract 35 spectral coefficients on frames starting according to a segmentation policy (described below).
Frame length varies between 256 and 1024 samples (given a sampling rate of 1001.6 Hz) and Hamming
windowing is applied. Spectral coefficients are computed by applying a bank of triangular filters on the FFT.
The filters are normalized in power and spread log-uniformly between 0 and 450 Hz, a scale that focuses
more on low frequencies than the mel scale commonly used in speech recognition (Deller, Hansen, and
Proakis 1999; Quatieri 2001), since our experiments showed that most of the relevant spectral information
to discriminate between detonation signatures lies in frequencies lower than the ones often used in speech
processing. As a result, the log-scale preserves more of the important features for discrimination than the
mel scale (the latter being quasi-linear over the 0–500 Hz band).
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We vary the number of frames between one and four, depending on the experiments; the delay between
frames is usually kept constant at 128. When using more than one frame, first derivatives are added to the
features and are approximated by taking the difference between the spectral coefficients of two consecutive
frames.

In some contexts, we find it helpful to take the logarithm of the spectral coefficients before building the
final feature vector (in this case, first derivatives are computed on the log-coefficients as well). Additional
results with this variant are reported in Section 5.

3 Methodological Issues

3.1 Correctness Issues and Data Splits

A classifier is meant to be used in the field, on new data which at the time of developing the classifier are
not available, and we call such data the field data. For a cross-validation procedure to provide a correct es-
timation of future classification performance, a basic assumption needs to be verified: the relation between
the test data and the training data should be representative of the relation between field data and the train-
ing data. Because of this, we carried out performance evaluation within two different testing frameworks,
defined as follows:

• REALISTIC-BY-DAY: in this experimental setup, we ensure that a group of explosions recorded during
the same day is never split between the training and test sets. This is close to the expected use of such
an automatic system, that will be trained from data collected on a few military proving grounds, and
tested on new samples recorded under very different conditions. In this setup, we perform five-fold
cross-validation under the above constraint that data recorded during the same day must not be shared
by both the training and test sets. In order to reduce the impact of randomness on the performance
measure, the five-fold cross-validation is repeated five times, and we report the average performance
over these five repetitions.

• REALISTIC-BY-RANGE: the above REALISTIC-BY-DAY setting would be sufficient to evaluate per-
formance if conditions were really varying for each new day of recording explosions. Unfortunately,
this is not always the case: for instance, it can happen that recording sessions taking place over two
days or more use the same positioning of weapons and sensor arrays. As a result, explosions recorded
during day one of the session may look very similar to those recorded during day two, leading to
over-estimating the test accuracy. This motivated the definition of a second experimental setup, called
REALISTIC-BY-RANGE, where the constraint is instead that a group of explosions that share the same
positioning of weapon and sensor array is never split between the training and test sets. A five-time
repetition of five-fold cross-validation is used to assess a model’s accuracy, similar to the one de-
scribed in the REALISTIC-BY-DAY setting.

3.2 Hyperparameter Selection

A rigorous procedure for hyperparameter selection would rely on two-level cross-validation. Unfortunately,
given the very limited amounts of data in some of the classes that we must classify, we had to rely on
a different procedure since two-level cross-validation may result in severe instability: due to the splitting
constraints, instances from the minority classes can be nearly (or completely) absent from some valida-
tion folds, resulting in a disproportionate influence of those cases on hyperparameter choice. This makes
hyperparameter selection by two-level cross-validation very fragile and exhibiting a large variance.

As an alternative, we rely on the following systematic procedure drawing from classical inference to
select sets of “comparably well-performing” hyperparameters for purposes of model comparison:
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• On test results arising from a one-level cross-validation (performed in one of the two settings described
in 3.1), we carry out an ANalysis Of VAriance (ANOVA) to determine statistically-significant main
effects and interactions (Box, Hunter, and Hunter 2005; Croarkin and Tobias 2006).

• We keep all combinations of hyperparameters that are not statistically significantly different from the
best-performing set at the 5% level. This set of hyperparameters yields an empirical distribution of
test accuracies.

• Comparisons between models are performed by contrasting aspects of their respective accuracy dis-
tribution, for instance its mean, median or variance.

4 Classification Algorithms

We experimented with two learning algorithms for classification: the Support Vector Machine and the Dis-
criminative Restricted Boltzmann Machine. While the former is widely used and has demonstrated great
performance for a wide range of problems, the latter is more recent but has been shown to be more appro-
priate for certain problems with high-dimensional inputs, such as image and text data.

4.1 Support Vector Machines

The Support Vector Machine (SVM) is a well-known classification algorithm (Cortes and Vapnik 1995;
Vapnik 1998), and thus we only provide here the details specific to our experiment setting.

In particular, the choice of the kernel is as crucial as the choice of the input representation, and both are
tightly related. In all our experiments, inputs are fixed-size vectors that summarize an audio signal.1 We
considered in our experiments three widely used families of vector kernels: linear, polynomial and Radial
Basis Function (RBF). The hyperparameters specific to each kernel are automatically chosen based on an
“internal” three-fold cross-validation on the training set.

In their basic form, SVMs are fundamentally binary classifiers, so several methods have been proposed
to generalize them to more than two classes. The two main options are one-against-all and one-against-
one (Hsu and Lin 2002). In our experiments, both strategies performed almost the same.

4.2 Discriminative Restricted Boltzmann Machines

We now turn to the second classifier that we considered. We review the theoretical formulation of DRBMs,
building from the simpler Restricted Boltzmann Machine (RBM) model.

An RBM is an undirected generative (probabilistic) model that uses a layer of hidden variables to model
a distribution over visible variables. Though such models are most often trained to only model the inputs
of a classification task, they can also model the joint distribution of the inputs and associated target classes
(e.g. as in Larochelle and Bengio (2008) and Tieleman (2008), or in the last layer of a deep neural network
as in Hinton, Osindero, and Teh (2006)). In this paper, we present experiments with such a joint model,
which is depicted in Figure 1.

An RBM with H hidden units is a parametric model of the joint distribution between a layer of hidden
variables (often referred to as features) h = (h1, . . . ,hn) and the visible variables made of the inputs z =
(z1, . . . ,zd) and the target y, that takes the form

p(y,z,h) ∝ e−E(y,z,h)

1In the context of detonation classification, the choice of a fixed-size input vector—particularly in conjunction with spectral
features—is appropriate since there is low variance in the duration of detonation events.
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Figure 1: Restricted Boltzmann Machine modeling the joint distribution of inputs z and target class y (represented as
a one-hot vector by~y). The current state of the hidden units is labeled by h.

where

E(y,z,h) = −h′Wz−b′z− c′h−d′~y−h′U~y (1)

with parameters Θ = (W,b,c,d,U) and ~y = (1y=i)
C
i=1 for C classes. Though RBMs are usually applied on

problems with binary inputs, they can easily be generalized to real-valued inputs (Welling, Rosen-Zvi, and
Hinton 2005). We discuss later in this section how such a modification applies to our experiments.

Consider for now that the input variables z are binary. It is simple to show that in an RBM, the condi-
tional distributions between layers are as follows:

p(z|h) = ∏
i

p(zi|h)

p(zi = 1|h) = sigm

(
bi +∑

j
W jih j

)
(2)

p(y|h) =
edy+∑ j U jyh j

∑y∗ edy∗+∑ j U jy∗h j
(3)

where sigm(·) is the logistic sigmoid. Equations 2 and 3 illustrate that the hidden units are meant to capture
predictive information about the input vector as well as the target class. The conditional distribution of
hidden units given inputs and target class, p(h|y,z), also has a similar form:

p(h|y,z) = ∏
j

p(h j|y,z)

p(h j = 1|y,z) = sigm

(
c j +U jy +∑

i
W jizi

)
. (4)

Since an RBM defines a distribution over all of its variables, there is more than one strategy that
can be used to train it. The most common one is known as generative training. Given a training set
T = {(z(i),y(i))} of NT pairs of input feature vectors and targets, we can train this generative model by
considering the minimization of the negative log-likelihood of that data:

Lgen =−
NT

∑
i=1

log p(y(i),z(i)). (5)
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Algorithm 1 Training update for RBM over (y(i),z(i)) using Contrastive Divergence.
Input: training pair (y(i),z(i)) and learning rate λ

{ Notation: a← b means a is set to value b
a∼ p means a is sampled from p}

{Positive phase}
y0← y(i), z0← z(i), ĥ0← sigm(c+Wz0 +U~y0)

{Negative phase}
h0 ∼ p(h|y0,z0), y1 ∼ p(y|h0), z1 ∼ p(z|h0)
ĥ1← sigm(c+Wz1 +U~y1)

{Update}
for θ ∈Θ do

θ← θ−λ

(
∂

∂θ
E(y0,z0, ĥ0)− ∂

∂θ
E(y1,z1, ĥ1)

)
end for

In order to minimize the negative log-likelihood (eq. 5), we would like an estimator of its gradient with
respect to the model parameters. The exact gradient of a likelihood term, for any parameter θ ∈ Θ can be
written as follows:

∂ log p(y(i),z(i))
∂θ

= −Eh|y(i),z(i)

[
∂

∂θ
E(y(i),z(i),h)

]
+Ey,z,h

[
∂

∂θ
E(y,z,h)

]
.

Though the first expectation is tractable, the second one is not. Fortunately, there exists a good stochastic
approximation of this gradient, called the contrastive divergence gradient (Hinton 2002). This approximation
replaces the expectation by a sample generated after a limited number of Gibbs sampling iterations, with
the sampler’s initial state for the visible variables initialized at the training sample (y(i),z(i)). Even when
using only one Gibbs sampling iteration, contrastive divergence has been shown to produce only a small
bias for a large speed-up in training time (Carreira-Perpiñán and Hinton 2005). Online training of an RBM
thus consists in cycling through the training examples and updating the RBM’s parameters according to
Algorithm 1, where the learning rate is controlled by λ.

Computing p(y,z) is intractable, but it is possible to compute p(y|z), sample from it, or choose the most
probable class. As shown by Salakhutdinov, Minh, and Hinton (2007), for reasonable numbers of classes C
(over which we must sum), this conditional distribution can be computed exactly and efficiently, by writing
it as follows:

p(y|z) =
edy ∏

H
j=1
(
1+ ec j+U j,y+∑i W j,izi

)
∑y∗ edy∗ ∏

H
j=1
(
1+ ec j+U j,y∗+∑i W j,izi

) . (6)

Precomputing the terms c j + ∑i W j,izi neurons and reusing them when at the time of computing the prod-
uct ∏

H
j=1
(
1+ ec j+U j,y∗+∑i W j,izi

)
for all classes y∗ permits to compute this conditional distribution in time

O(Hd +HC).
However, in a classification setting, one is ultimately only interested in correct classification, not neces-

sarily to have a good p(z). Because the modeling assumptions for p(z) implicitly made by the RBM can be
inappropriate, it can then be advantageous to optimize directly p(y|z) instead of p(y,z), by considering the
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minimization of the following cost:

Ldisc(T ) =−
NT

∑
i=1

log p(y(i)|z(i)). (7)

This training strategy is called discriminative training, and we refer to RBMs trained according to Ldisc as
Discriminative RBMs (DRBMs).

A DRBM can be trained by contrastive divergence but since p(y|z) can be computed exactly, we can
compute the exact gradient:

∂ log p(y(i)|z(i))
∂θ

= ∑
j

sigm(oy(i), j(z
(i)))

∂oy(i), j(z(i))
∂θ

− ∑
j,y∗

sigm(oy∗ j(z(i)))p(y∗|z(i))
∂oy∗ j(z(i))

∂θ

where oy, j(z) = c j +∑k W j,kzk +U j,y. This gradient can be computed efficiently and then used in a stochastic
gradient descent optimization. This discriminative approach has been used previously for fine-tuning the top
RBM of a Deep Belief Network (Hinton 2007).

The advantage brought by discriminative training usually depends on the amount of available training
data. Smaller training sets tend to favor generative learning and bigger ones favor discriminative learning
(Ng and Jordan 2002). However, instead of solely relying on one or the other perspective, one can adopt a
hybrid discriminative/generative approach simply by combining the respective training criteria. Though
this method cannot be interpreted as a maximum likelihood approach for a particular generative model as in
Lasserre, Bishop, and Minka (2006), it proved useful here and elsewhere (Bouchard and Triggs 2004). In
this work, we used the following criterion:

Lhybrid(T ) = Ldisc(T )+αLgen(T ) (8)

where the weight of the generative criterion is controlled by α. Here, the generative criterion can also be
seen as a data-dependent regularizer for a DRBM. To train a DRBM in this context, we can use stochastic
gradient descent and add for each example the gradient contribution due to Ldisc with α times the stochastic
gradient estimator associated with Lgen for that example.

For this paper, we used the DRBM with and without additional generative training. Also, since z is
real valued,1 we used Gaussian visible units (Welling, Rosen-Zvi, and Hinton 2005; Bengio, Lamblin,
Popovici, and Larochelle 2007) for the inputs. Gaussian units are obtained by adding the quadratic term
∑

d
i=1 a2

i z2
i in the energy function of Equation 1. From this new energy function, we can show that each

conditional distribution p(zi|h) is now a Gaussian distribution of mean µi and variance parameter σ2
i :

µi =
bi +W′

·,ih
2a2

i
, σ

2
i =

1
2a2

i
, ∀i ∈ {1, . . . ,d}, (9)

while the other conditional distributions of Equations (3), (4) and (6) remain the same.
In order to determine the number of iterations over the training set T to train our model, we first divide

the original T into two parts T 4
5 and T 1

5 (according to a 4
5 and 1

5 split), where we train our model on T 4
5 and

use T 1
5 to determine when to stop training using early-stopping (i.e. we stop when the accuracy on T 1

5 starts
dropping). Then, we look at the training conditional negative log-likelihood Ldisc(T

4
5 ) that was reached,

and retrain our model from scratch on the whole training set until either the same conditional negative log-
likelihood is reached for Ldisc(T ), or we have performed a maximum number of iterations equal to twice as
many iterations as what was required on T 4

5 .
1We usually normalize the inputs in the [−1,1] range.
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5 Experiments

In the context of the classification task we are interested in, it is sensible to assume a uniform prior on test
classes: we want the classifier to be equally apt at recognizing all classes, regardless of imbalances that
may arise due to limited data. For this reason, all the results that we report in the following sections are
normalized accuracies, which correct for the unequal class frequencies.

5.1 Results with Realistic-by-Day

5.1.1 Support Vector Machines

To give a flavor of the dramatic impact of preprocessing choice on performance, Fig. 2 illustrates the distri-
bution of accuracies obtained by all experiments run with SVMs in the REALISTIC-BY-DAY setting. Each
data point on this plot represents a test-accuracy result. The figure separately examines two segmentations
(ApPeakNoTrunc and ARLTruncated), several number of FFT windows and whether the logarithm of the
FFT coefficients is taken.

We first note that the best performance is obtained with the automatic segmentation of ApPeakNo-
Trunc. However, performance is remarkably constant under the ARLTruncated segmentation, and exhibits
a noticeable decrease only when taking a single FFT window. In contrast, the ApPeakNoTrunc segmentation
interacts strongly with both the number of windows and taking the log: taking a longer portion of the
signal can considerably improve performance, taking it from the 50’s to the low 80’s; likewise, for this
segmentation, the additional normalization brought forth by the log is beneficial.

5.1.2 Discriminative Restricted Boltzmann Machines

To evaluate DRBMs in the REALISTIC-BY-DAY setting, we first analyze the influence of hyperparameters
through the following ANOVA table. This table shows that all hyperparameters that we considered have a
significant effect on performance, but also that interactions are important. Figure 3 summarizes the impact
of main effects.

We separately analysed interactions up to the third order between, respectively, the DRBM and pre-
processing hyperparameters. Some of those interactions turn out to be significant, and for this reason,
understanding regions of good performance in the space of hyperparameters is a bit involved. The DRBM
generative learning weight has a clear optimal value of 0.03 among the values tried. At this value, the effect
of the number of hidden units (either 50 or 150) is not significant, nor is the learning rate (both 0.001 and
0.003 are equally good).1 As to the preprocessing hyperparameters, the segmentation method ApPeakNo-
Trunc dominates the alternative ARLTruncated, and at this value, there is no significant difference between
taking either 4 or 6 FFT windows (the two optimal values). Moreover, a window size of 256 is optimal at
these settings.

1Interaction tables between these hyperparameters are rather large and are omitted for clarity.
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Effect of Preprocessing on Accuracy (SVMs, Realistic−by−Day)
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Figure 2: Effect of preprocessing on accuracy for SVMs, under the REALISTIC-BY-DAY setting. Accuracies appear
on the x-axis, and a kernel density estimate is given in the y-axis; this representation illustrates the distributional effect
on classification accuracy of an hyperparameter choice, across all other hyperparameter choices (which appear as
individual points over which the distribution is plotted). The segmentation type (line styles), number of FFT windows
and whether to take the logarithm of the FFT coefficients are independently varied. The automatic segmentation
(ApPeakNoTrunc) is clearly superior when considering the best of the other design choices (taking log-spectra with 6
FFT windows).
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Figure 3: Impact of hyperparameters on classification accuracy for DRBMs, in the REALISTIC-BY-DAY scenario.
Only main effects are included, but since several hyperparameter interactions are significant, direct conclusions about
performance cannot be drawn solely from this plot; see the text for details.

Df Sum Sq Mean Sq F value Pr(>F)

Weight of Generative Term 5 0.0403 0.0081 66.182 < 2.2e-16 ***

Discriminative Learning Rate 1 0.0011 0.0011 8.800 0.0037518 **

Number of Hidden Units 1 0.0015 0.0015 12.253 0.0006904 ***

Segmentation Type 1 0.0685 0.0685 561.619 < 2.2e-16 ***

Number of FFT Windows 3 0.4132 0.1377 1129.877 < 2.2e-16 ***

FFT Window Duration 1 0.0296 0.0296 242.840 < 2.2e-16 ***

Wt Gen Term : Learn. Rate Ix 5 0.0008 0.0002 1.348 0.2504596

Wt Gen Term : Nb Hidden Ix 5 0.0014 0.0003 2.328 0.0479247 *

Learn. Rate : Nb Hidden Ix 1 0.0012 0.0012 9.727 0.0023604 **

Segm Type : Nb FFT Windows Ix 3 0.3021 0.1007 826.043 < 2.2e-16 ***

Segm Type : FFT Window Dur Ix 1 0.0036 0.0036 29.803 3.377e-07 ***

Nb Windows: Window Dur Ix 1 3.33e-06 3.33e-06 0.027 0.8691031

Wt Gen Term : Learning Rate

: Nb Hidden Ix 5 0.0004 0.0001 0.602 0.6981798

Residuals 102 0.0124 0.0001

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

11



Effect of Preprocessing on Accuracy (SVMs, Realistic−by−Range)
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Figure 4: Effect of preprocessing on accuracy for SVMs, under the REALISTIC-BY-RANGE setting. The segmentation
type (line styles), number of FFT windows and whether to take the logarithm of the FFT coefficients are independently
varied.

5.1.3 Comparison between SVM and DRBM on Realistic-by-Day

Finally, we can restrict attention only to the respective “best” subsets of hyperparameters previously identi-
fied for SVMs and DRBMs (up to statistically identifiable differences through the ANOVAs), and directly
compare the two model types. Figure 6 shows the distribution of test accuracies achieved by each model.
Although the distributions overlap, the mean accuracy shows a slight advantage for DRBMs, at 78.2%,
against 77.7% for SVMs. The difference is significant at the 90% level (p = 0.08).

5.2 Results with Realistic-by-Range

5.2.1 Support Vector Machines

The impact of preprocessing choices on the accuracy of SVMs under the REALISTIC-BY-RANGE scenario
is depicted in Fig. 4. (This should be compared to the same plot for the REALISTIC-BY-DAY setting in
Fig. 2.) We observe significant differences between the two settings. First, different segmentations are now
preferable (either ARLTruncated or ARLNoTrunc rather than ApPeakNoTrunc), and since the first two differ
only by their endpoints but exhibit comparable accuracy, we conclude that the start of the segmentation
is what matters most in this setting. Moreover, taking the logarithm of the coefficients uniformly helps
performance, and the number of FFT windows does not appear so important, so long as more than one
window is taken.

12



5.2.2 Discriminative Restricted Boltzmann Machines

For DRBMs in the REALISTIC-BY-RANGE setting, the ANOVA table below shows that most hyperparam-
eters are significant except the number of hidden units. The FFT window duration is also barely significant.
A plot of the pairwise mean accuracy differences in the hyperparameter levels (main effects only) appears
in Fig. 5.

Statistically significant interactions between hyperparameters makes choosing good-performing subsets
slightly elaborate: the generative learning weight should be between 0.003 and 0.01, the learning rate be-
tween 0.001 and 0.01, with the ARLTruncated segmentation and 4 FFT windows.

Df Sum Sq Mean Sq F value Pr(>F)

Weight of Generative Term 6 0.41470 0.06912 91.7878 < 2.2e-16 ***

Discriminative Learning Rate 3 0.11391 0.03797 50.4260 < 2.2e-16 ***

Number of Hidden Units 1 0.00003 0.00003 0.0367 0.8485

Segmentation Type 1 0.44070 0.44070 585.2551 < 2.2e-16 ***

Number of FFT Windows 3 0.56485 0.18828 250.0461 < 2.2e-16 ***

FFT Window Duration 1 0.00228 0.00228 3.0296 0.0849 .

Wt Gen Term : Learn. Rate Ix 9 0.03714 0.00413 5.4806 4.378e-06 ***

Wt Gen Term : Nb Hidden Ix 6 0.03068 0.00511 6.7913 4.830e-06 ***

Learn. Rate : Nb Hidden Ix 3 0.00416 0.00139 1.8408 0.1448

Segm Type : Nb FFT Windows Ix 3 0.07140 0.02380 31.6080 2.230e-14 ***

Gt Gen Term : Learning Rate

: Nb Hidden Ix 9 0.00530 0.00059 0.7820 0.6333

Residuals 98 0.07379 0.00075

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

5.2.3 Comparison between SVM and DRBM on Realistic-by-Range

To conclude this investigation we restrict the hyperparameters of SVMs and DRBMs to their best-performing
respective subsets (up to statistical comparability) to compare these two model types in the REALISTIC-BY-
RANGE setting. Figure 6 shows the distribution of test accuracies obtained by each model. In this setting,
DRBMs appear to outperform SVMs by a substantial margin, the former reaching 80.8% mean accuracy
and the latter 74.4%. This difference in mean accuracy is extremely statistically significant (p < 10−6).

5.3 Are DRBMs Less Sensitive to Preprocessing Choice?

We have seen that the choice of preprocessing hyperparameters has a very significant impact on performance
in both the REALISTIC-BY-DAY and REALISTIC-BY-RANGE settings (e.g. Figure 2 and 4). Beyond raw
accuracy results, this section tackles a different question and examines whether one model (among SVMs
and DRBMs) exhibits more sensitivity to preprocessing choice than the other.

The analysis technique must be approached with care, since both methods involve very different model-
specific hyperparameters. We are not quite interested in determining which is the more sensitive model at
the best hyperparameter settings, but rather the expected sensitivity to preprocessing variations for any fixed
model-specific hyperparameter setting.

In the spirit of ANOVA models, one relatively simple avenue is to attempt to explain the measured test
accuracy for an experiment by a set of parameters that depend only on the combination of model-specific
hyperparameters used for that experiment, and letting the remaining variations (due to preprocessor choice)
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Figure 5: Impact of hyperparameters on classification accuracy for DRBMs, in the REALISTIC-BY-RANGE scenario.
Only main effects are included, but since several hyperparameter interactions are significant, direct conclusions about
performance cannot be drawn solely from this plot; see the text for details.
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Figure 6: Left: Accuracies achieved by SVMs and DRBMs under the REALISTIC-BY-DAY setting. Statistically-
indistinguishable hyperparameter values for each model type are included in this plot. In this realistic setting, DRBMs
are superior to SVMs both in mean performance (statistically significant) and in terms of robustness (lower variance).
Right: Accuracies achieved by SVMs and DRBMs under the REALISTIC-BY-RANGE setting.

14



be absorbed by the residuals. Let Acci be the test accuracy obtained by experiment i, and let h(i) be an
integer denoting the unique combination of hyperparameters used for this experiment. For instance, for an
SVM, the possible hyperparameters are the choice of kernel (three possibilities), and the multiclass strategy
(two possibilities). If we perform experiments with all six combinations, then h(i) will be an integer between
1 and 6. Note that preprocessing hyperparameters are voluntarily excluded from these combinations, since
this is about them that we are trying to carry out inferences.

The resulting test accuracy for experiment i is represented as

Acci = βh(i) + εi, (10)

where βh(i) represents the mean accuracy obtained by all experiments sharing hyperparameter combination
h(i). This representation is an instance of a so-called random-effects model in statistics (McCulloch, Searle,
and Neuhaus 2008; Pinheiro and Bates 2000), where parts of the model structure depends on characteris-
tics of the test case (here the specific combination of hyperparameters pertaining to experiment i). These
parameters are fit by simple linear regression.

Note that the regression residual εi absorbs all the variability in the accuracy Acci that is excluded
from the main causes, specifically that due to the choice of preprocessor (since this is the only remaining
source of variance, after we control for model-specific hyperparameters). Hence, and this is the core of the
approach we follow here, we can test hypotheses about the distribution of those residuals, and if that of
SVMs exhibits a greater variance than that of DRBMs, we can conclude the former are more affected by the
choice of preprocessing hyperparameters.

Let εSV M and εDRBM respectively be the set of residuals belonging to experiments performed with SVMs
and DRBMs. From introductory statistics, it is well known that under the null hypothesis of equality of
variance and assuming that εSV M and εDRBM are both drawn from a normal distribution, the ratio

Var[εSV M]
Var[εDRBM]

is distributed according to Fisher’s F distribution with P,Q Degrees Of Freedom (DOF), where P and Q are
respectively the number of DOF in the numerator and denominator.1 This forms the basis of the F-test used
for comparing variances that is used here.

Restricting attention to the ARLTruncated segmentation under the REALISTIC-BY-DAY setting, we fit
a model of the form (10) to experiment results, and plot the pattern of residuals in Fig. 7 (left). From
inspection, the residuals of SVMs exhibit a much greater variance than those of DRBMs. This is confirmed
formally by an F-test, which gives an extremely significant variance ratio of 5.19 (for SVMs in the numerator
and DRBMs in the denominator), with 95% confidence intervals ranging from 2.93 to 9.47. Since the
confidence interval does not include the point 1.0, we conclude that this ratio is significantly greater than
one, implying that the performance of SVMs appears more affected by the choice of preprocessing in this
context.

We would like to generalize this conclusion to other settings and segmentations, ideally through a joint
test. A difficulty with a direct application of the model (10) is that individual settings and segmentations
introduce a significant variance in and of themselves, and not controlling for those effects would result in a
test losing all its statistical power. To work around this complication, we shall incorporate fixed effects in the
previous random effects model, yielding a so-called mixed-effects model. In this context, the fixed effects
are shared between SVMs and DRBMs and control for the following variables:

• Segmentation (either ARLTruncated or ApPeakNoTrunc),

1Roughly speaking, the number of DOF in the regression residuals is computed as the number of observations in the training
set minus the number of parameters that are part of the regression model.
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Model Sensitivity to Preprocessing Variations
(Realistic−by−Day, ARLTruncated)
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Figure 7: Left: Sensitivity of SVMs and DRBMs to the choice of preprocessing for the ARLTruncated segmentation,
under the REALISTIC-BY-DAY setting. Right: Same results, across all segmentations and for both REALISTIC-BY-
DAY and REALISTIC-BY-RANGE settings. DRBMs are seen to exhibit lower variance than SVMs, implying that they
are less sensitive to the choice of preprocessing hyperparameters.

• Evaluation setting (either REALISTIC-BY-DAY or REALISTIC-BY-RANGE),

• and Number of FFT windows.

Although the latter factor is technically part of preprocessing, we have seen (e.g. Fig. 2) that in some
circumstances its choice is so important as to dwarf the impact of all other hyperparameters. As we shall
see, our conclusions are no less diminished by inclusion of this factor.

Let p(i) be an integer denoting the specific combination of the three above variables used for experiment
i, and h(i) denoting the specific combination of model hyperparameters, as previously. The mixed-effects
model that we consider is specified as

Acci = αp(i) +βh(i) + εi,

where αp(i) is the fixed effects part (with parameters shared between SVMs and DRBMs) controlling for
the previous two “setting” variables, βh(i) is the random effects part controlling for model hyperparameters,
and εi is a residual absorbing unmodeled causes (i.e. the remaining preprocessing hyperparameters). Fitting
models of this type is, in general, more involved than simple linear regression and is usually performed by
restricted maximum likelihood (REML) estimation (McCulloch, Searle, and Neuhaus 2008).

However, analysis of the residuals can proceed as previously. Figure 7 (right) displays the obtained
residuals under the mixed-effects model for all experiments, for both SVMs and DRBMs. Although the
difference is less striking than before, the observed variance ratio is nevertheless of 2.16, with a 95% con-
fidence interval between 1.65 and 2.86 (under the hypotheses of the F-test). Again, since the interval is
beyond the value 1.0, we reject the null of equality of variance. We conclude that there is significant ev-
idence in favor of the proposition that DRBMs exhibit less variability to the choice of preprocessing than
SVMs across segmentations and evaluation settings.
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Table 1: Summary of the best accuracy results obtained for the detonation main-type classification problem,
for each evaluation setting and model type. The ± denote 95% confidence intervals.

REALISTIC-BY-DAY REALISTIC-BY-RANGE

Best
Results

SVMs 80.4% ± 1.4% 84.2% ± 1.3%
DRBMs 82.7% ± 1.3% 83.0% ± 1.3%

Median
Results

SVMs 77.7% ± 1.4% 74.0% ± 1.5%
DRBMs 79.1% ± 1.4% 80.8% ± 1.4%

5.4 Summary of Results

This section presented many experimental results on the detonation main-type classification problem. A
summary of our best models (for both SVMs and DRBMs) and each of the two evaluation settings ap-
pears in Table 1. This table also contains the median performance obtained after selecting the statistically-
comparable “best” subset of hyperparameters (following the methodology outlined in 3.2).

6 Conclusion

In this paper we highlighted the challenges of a detonation type classification task where one must differ-
entiate betweeen launches of MORTARs, ROCKETs and RPGs. We described how to properly train and evaluate
classifiers so as to be able to perform model selection and estimate their generalization ability.

We applied our methodology to two types of classifiers: Support Vector Machines (SVMs) and Discrim-
inative Restricted Boltzmann Machines (DRBMs). Although both SVMs and DRBMs exhibit comparable
final performance when selecting the best models, we note that DRBMs are slightly superior overall, and
are less sensitive to the choice of preprocessing hyperparameters than SVMs. This makes them particularly
appealing classification tools for such a task where model selection is difficult.
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