
Conclusion
• Tackling a challenging detonation type classification task

• Proposed methodology to properly train and evaluate classifiers

• Application to SVMs and DRBMs

• DRBMs slightly superior overall, and less sensitive to the choice of
preprocessing hyperparameters than SVMs.
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Sensitivity to Preprocessing Choice
• Performance can vary a lot depending on various parameters govern-

ing data preprocessing, e.g. type of segmentation, number and size of
signal windows for Fast Fourier Transform, etc.

Effect of Preprocessing on Accuracy (SVMs, Realistic−by−Day)
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Segmentation: ApPeakNoTrunc ARLTruncated●

Example of SVM accuracy distribution in the REALISTIC-BY-DAY setting
when varying some preprocessing parameters.

• The accuracy residual measures the amount of variation in accuracy per-
formance that is due to varying the preprocessing parameters (type
of segmentation, number and size of windows for Fast Fourier Trans-
form, ...), while keeping the model hyper-parameters fixed

•We plot the distribution of residuals for two sets of experiments: on
the left in the REALISTIC-BY-DAY setting and for a single type of seg-
mentation (called ARLTruncated), and on the right in the REALIS-
TIC-BY-RANGE setting and for all kinds of segmentations being tried.

Model Sensitivity to Preprocessing Variations
(Realistic−by−Day, ARLTruncated)
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DRBM

Model Sensitivity to Preprocessing Variations
(Realistic−by−Day and −Range, all segmentations)
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DRBM

• Residuals of SVMs exhibit a greater variance than those of DRBMs (dif-
ference is statistically significant)

• Lower variability⇒ performance is more reliably estimated⇒DRBMs
are particularly useful when not much data is available

Experimental Results:
REALISTIC-BY-RANGE
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Box-plot over statistically-indistinguishable hyperparameter values for
each model type. DRBMs are superior to SVMs both in mean perfor-
mance (statistically significant) and in robustness (lower variance).

Experimental Results:
REALISTIC-BY-DAY
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Box-plot over statistically-indistinguishable hyperparameter values for
each model type. DRBMs are superior to SVMs both in mean perfor-
mance (statistically significant) and in robustness (lower variance).

Experimental Setting
• 5 repetitions of 5-fold cross-validation w.r.t. split constraints defined

by the REALISTIC-BY-DAY and REALISTIC-BY-RANGE settings

• Computation of the normalized classification accuracy to compensate
for class imbalance

• Trying a wide range of hyperparameter values, reporting results for
those leading to statistically indistinguishable performance compared
to the best

Classification Algorithm 2: DRBMs
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Restricted Boltzmann Machine
modeling the joint distribution
of inputs z and target class y

A Discriminative Restricted Boltzmann Machine combines generative
and discriminative training criteria by minimizing

−
∑

z(i)∈T

log p(y(i), z(i))− λ
∑

z(i)∈T

log p(y(i)|z(i))

where the model’s joint probability is
p(y, z) ∝ exp (h′Wz + b′z + c′h + d′~y + h′U~y)

Training performed by contrastive divergence for the generative part and
stochastic gradient descent for the discriminative part.

Classification Algorithm 1: SVMs
Find function f in reproducing kernel Hilbert spaceHK associated to ker-
nel K by:

argminf∈HK
C
∑

z(i)∈T

(
1− y(i)f (z(i))

)
+︸ ︷︷ ︸

hinge loss (bias)

+
1

2

∥∥ f ∥∥2︸ ︷︷ ︸
margin (variance)

Kernels being used:

• Linear: K(z(1), z(2)) = z(1)′z(2)

• Polynomial: K(z(1), z(2)) = (r + z(1)′z(2))p

• Radial Basis Function (RBF): K(z(1), z(2)) = e−γ‖z
(1)−z(2)‖2

Hyperparameters specific to each kernel are automatically chosen based
on an internal three-fold cross-validation on the training set.

Methodological Issues
•Data splits should mimic the kinds of variations expected between

training data and test field data. Two settings considered:

– REALISTIC-BY-DAY: Test and train recordings cannot come from the
same date

– REALISTIC-BY-RANGE: Test and train recordings cannot come from
the same sensor array
Number of groups of recordings defined by these constraints (ran-
domly assigned to the training or test data by repeated 5-fold cross-
validation):

Split Method MORTAR RPG ROCKET

REALISTIC-BY-DAY 5 7 2

REALISTIC-BY-RANGE 11 5 3

•Hyperparameters cannot be reliably estimated through double cross-
validation (low amount of data and splitting constraints)⇒
1. ANalysis Of VAriance (ANOVA) is performed to determine

statistically-significant main effects and interactions
2. Hyperparameters values leading to a performance not statistically

significantly different from the best performance are kept
3. Models are compared by the distribution of their performance over

the hyperparameters being kept

Summary of Available Data
Proving Ground MORTAR RPG ROCKET Total

APG 197 28 31 256

Dahlgren 0 7 0 7

Yuma 373 0 0 373

Total 570 35 31 636

• Class imbalance (90% MORTAR)

• Low variability in recording conditions (e.g. all ROCKETs are
from APG)

The Task
• Use machine learning and advanced signal processing al-

gorithms to distriminate launch signals from three weapon
classes: MORTAR, ROCKET, and rocket-propelled grenades
(RPGs)

•Many factors affect signal propagation: (1) the distance be-
tween receiver and source, (2) the presence of obstacles on
the terrain and nature of the ground, (3) the amplitude of the
source, (4) the time of day, and (5) the meteorological condi-
tions (cloud cover, wind, and humidity)

• Comparison of two classifiers: Support Vector Machine (SVM:
a classical non-parametric discriminant classifier), and Dis-
criminative Restricted Boltzmann Machine (DRBM: a recently
proposed hybrid that combines a discriminant criterion and a
generative criterion)

•Need a carefully-designed experimental setting in order to
properly evaluate the generalization performance of classifiers
as if they were deployed on the field

Abstract
Machine learning classification algorithms are relevant to a large
number of Army classification problems, including the determi-
nation of a weapon class from an acoustic signature of a tran-
sient. However, much such work has been focused on classifi-
cation of events from small weapons used for asymmetric war-
fare, which have been of importance in recent years. In this
work we consider classification of very different weapon classes,
such as mortar, rockets and RPGs, which are difficult to reliably
classify with standard techniques since they tend to have sim-
ilar acoustic signatures. To address this problem, we compare
two recently-introduced state-of-the-art machine learning algo-
rithms, Support Vector Machines and Discriminative Restricted
Boltzmann Machines, and develop how to use them to solve this
difficult acoustic classification task. We obtain classification ac-
curacy results that could make these techniques suitable for field-
ing on autonomous devices. Discriminative Restricted Boltzmann
Machines appear to yield slightly better accuracy than Support
Vector Machines, and are less sensitive to the choice of signal pre-
processing and model hyperparameters. Importantly, we also ad-
dress methodological issues that one faces in order to rigorously
compare several classifiers on limited data collected from field tri-
als; these questions are of significance to any application of ma-
chine learning methods to Army problems.
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