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Abstract

In order to compare learning algorithms, experimental results reported in the machine
learning literature often use statistical tests of significance to support the claim that a new
learning algorithm generalizes better. Such tests should take into account the variability
due to the choice of training set and not only that due to the test examples, as is often
the case. This could lead to gross underestimation of the variance of the cross-validation
estimator, and to the wrong conclusion that the new algorithm is significantly better
when it is not. We perform a theoretical investigation of the variance of a cross-validation
estimator of the generalization error that takes into account the variability due to the
randomness of the training set as well as test examples. Our analysis shows that all the
variance estimators that are based only on the results of the cross-validation experiment
must be biased. This analysis allows us to propose new estimators of this variance. We
show, via simulations, that tests of hypothesis about the generalization error using those
new variance estimators have better properties than tests involving variance estimators
currently in use and listed in (Dietterich, 1998). In particular, the new tests have correct
size and good power. That is, the new tests do not reject the null hypothesis too often
when the hypothesis is true, but they tend to frequently reject the null hypothesis when
the latter is false.
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1 Generalization Error and its Estimation

In order to compare learning algorithms, experimental results reported in the machine learning
literature often use statistical tests of significance. Unfortunately, these tests often rely solely
on the variability due to the test examples and do not take into account the variability due
to the randomness of the training set. We perform a theoretical investigation of the
variance of a cross-validation estimator of the generalization error that takes into account the
variability due to the choice of training sets as well as of test examples (hold-out set). When
applying a learning algorithm (or comparing several algorithms), one is typically interested
in estimating its generalization error. Its estimation is rather trivial through cross-validation
or the bootstrap. Providing a variance estimate of the cross-validation estimator, so that
hypothesis testing and/or confidence intervals are possible, is more difficult, especially, as
pointed out in (Hinton, Neal, Tibshirani, & DELVE team members, 1995), if one wants to
take into account various sources of variability such as the choice of the training set (Breiman,
1996) or initial conditions of a learning algorithm (Kolen & Pollack, 1991). A notable effort
in that direction is Dietterich’s work (Dietterich, 1998). See also the review of bounds of the
accuracy of various cross-validation estimates in (Devroye, Gyröfi, & Lugosi, 1996). Building
upon (Dietterich, 1998), in this paper we take into account the variability due to the choice of
training sets and test examples. Specifically, an investigation of the variance to be estimated
allows us to provide two new variance estimators, one of which is conservative by construction.

The choice of estimator for the variance of an average test error (or of the difference between
the average error made by two algorithms) is very important: a poor choice of estimator
(especially if it is liberal, i.e. underestimates the variance) could lead to a profusion of
publications in which method A is incorrectly claimed to be better than a previously proposed
method B. Because of the approximately normal behavior of average error, an underestimation
of the standard deviation by a factor 2, say, can yield to about 6 times more “false claims” than
would have been expected for a test level of 5%. If the habit of making rigorous statistical
comparisons and in particular avoiding the use of a liberal estimator is not ingrained in
the machine learning community, it could be tempting for many researchers to use a liberal
estimate of variance when comparing their preferred algorithm against the competition. For
this reason, it is very important that reviewers insist on analyses of results that avoid liberal
estimators of variance (for confidence intervals or to test the null hypothesis of method A
being not better than method B).

Let us define what we mean by “generalization error” and say how it will be estimated in
this paper. We assume that data is available in the form Zn

1 = {Z1, . . . , Zn}. For example,
in the case of supervised learning, Zi = (Xi, Yi) ∈ Z ⊆ Rp+q , where p and q denote the
dimensions of the Xi’s (inputs) and the Yi’s (outputs). We also assume that the Zi’s are
independent with Zi ∼ P (Z), where the generating distribution P is unknown. Let L(D;Z),
where D represents a subset of size n1 ≤ n taken from Zn

1 , be a function from Zn1 ×Z to R.
For instance, this function could be the loss incurred by the decision that a learning algorithm
trained on D makes on a new example Z.

We are interested in estimating nµ ≡ E[L(Zn
1 ;Zn+1)] where Zn+1 ∼ P (Z) is independent

of Zn
1 . The subscript n stands for the size of the training set (Zn

1 here). Note that the above
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expectation is taken over Zn
1 and Zn+1, meaning that we are interested in the performance of

an algorithm rather than the performance of the specific decision function it yields on the data
at hand. Dietterich (Dietterich, 1998) has introduced a taxonomy of statistical questions in
Machine Learning, which we briefly summarize here. At the top level is whether the questions
refer to single or multiple domains (type 9). For single domains, Dietterich distinguishes
between the analysis of a single (given or already trained) predictor (types 1 through 4) and
the analysis of a learning algorithm that can yield such predictors given a training set (types
5 through 8). For the former, the training set is considered fixed, whereas for the latter the
training set is considered to be random. In this paper, we are concerned with the analysis of
the performance of learning algorithms (types 5 through 8), not of particular trained predictors.
Dietterich further splits types 5 through 8 according to whether the sample size is large or
not and whether one is interested in the generalization error of a single algorithm or wants to
compare the generalization errors of various algorithms.

Let us now introduce some notation and definitions. We shall call nµ the generalization
error even though it can go beyond that as we now illustrate. Here are two examples.

• Generalization error
We may take as our basic measurement

L(D;Z) = L(D; (X,Y )) = Q(F (D)(X), Y ), (1)

where F represents a learning algorithm that yields a function f = F (D)
(F (D) : Rp → Rq ), when training the algorithm on D, and Q is a loss function measur-
ing the inaccuracy of a decision f(X) when Y is observed. For instance, for classification
problems, we could have

Q(ŷ, y) = I[ŷ 6= y], (2)

where I[ ] is the indicator function, and in the case of regression,

Q(ŷ, y) =‖ ŷ − y ‖2, (3)

where ‖ · ‖ is the Euclidean norm. In that case nµ = E[L(Zn
1 , Zn+1)] is the generaliza-

tion error of algorithm F on data sampled from P .

• Comparison of generalization errors
Sometimes, what we are interested in is not the performance of algorithms per se, but
how two algorithms compare with each other. In that case we may want to consider

L(D;Z) = L(D; (X,Y )) = Q(FA(D)(X), Y )−Q(FB(D)(X), Y ), (4)

where FA(D) and FB(D) are decision functions obtained when training two algorithms
(respectively A and B) on D, and Q is a loss function. In this case nµ would be a
difference of generalization errors.

The generalization error is often estimated via some form of cross-validation. Since there
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are various versions of the latter, we lay out the specific form we use in this paper.

• Let Sj be a random set of n1 distinct integers from {1, . . . , n}(n1 < n). Here n1 is not
random and represents the size of a training set. We shall let n2 = n− n1 be the size of
the corresponding test set (or hold-out set).

• Let S1, . . . SJ be such random index sets (of size n1), sampled independently of each
other, and let Sc

j = {1, . . . , n} \ Sj denote the complement of Sj .

• Let ZSj = {Zi|i ∈ Sj} be the training set obtained by subsampling Zn
1 according to the

random index set Sj . The corresponding test set (or hold-out set) is ZScj
= {Zi|i ∈ Sc

j}.

• Let L(j, i) = L(ZSj ;Zi). According to (1), this could be the error an algorithm trained
on the training set ZSj makes on example Zi. According to (4), this could be the
difference of such errors for two different algorithms.

• Let µ̂j = 1
n2

∑
i∈Scj

L(j, i) denote the usual “average test error” measured on the test set
ZScj

.

Then the cross-validation estimate of the generalization error considered in this paper is

n2
n1

µ̂J =
1
J

J∑
j=1

µ̂j. (5)

Note that this an unbiased estimator of n1µ = E[L(Zn1
1 , Zn+1)], which is not quite the same

as nµ.
This paper is about the estimation of the variance of the above cross-validation estimator.

There are many variants of cross-validation, and the above variant is close to the popular
K-fold cross-validation estimator, which has been found more reliable than the leave-one-out
estimator (Kohavi, 1995). It should be noted that our goal in this paper is not to compare
algorithms in order to perform model selection (i.e. to choose exactly one among several
learning algorithms for a particular task, given a data set on which to train them). The use of
cross-validation estimators for model selection has sparked a debate in the last few years (Zhu
& Rohwer, 1996; Goutte, 1997) related to the “no free lunch theorem” (Wolpert & Macready,
1995), since cross-validation model selection often works well in practice but it is probably
not a universally good procedure.

This paper does not address the issue of model selection but rather that of estimating
the uncertainty in a cross-validation type of estimator for generalization error, namely n2

n1
µ̂J .

For this purpose, this paper studies estimators of the variance of n2
n1

µ̂J (in the sense that
different values of n2

n1
µ̂J would have been obtained if a different data set Zn

1 had been sampled
from the same unknown underlying distribution P and different random index sets Sj’s had
been generated). The application of the estimators studied in this paper may be for example
(1) to provide confidence intervals around estimated generalization error, or (2) to perform
a hypothesis test in order to determine whether an algorithm’s estimated performance is
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significantly above or below the performance of another algorithm. The latter is very important
when researchers introduce a new learning algorithm and they want to show that it brings a
significant improvement with respect to previously known algorithms.

We first study theoretically the variance of n2
n1

µ̂J in Section 2. This will lead us to two
new variance estimators we develop in Section 3. Section 4 shows how to test hypotheses or
construct confidence intervals. Section 5 describes a simulation study we performed to see
how the proposed statistics behave compared to statistics already in use. Section 6 concludes
the paper. Before proceeding with the rest of the paper, some readers may prefer to read
Appendix A.0 that presents some statistical prerequisites relevant to the rest of the paper.

2 Analysis of V ar[ n2
n1
µ̂J ]

In this section, we study V ar[ n2
n1

µ̂J ] and discuss the difficulty of estimating it. This section is
important as it enables us to understand why some inference procedures about n1µ presently
in use are inadequate, as we shall underline in Section 4. This investigation also enables us to
develop estimators of V ar[ n2

n1
µ̂J ] in Section 3. Before we proceed, we state a lemma that will

prove useful in this section, and later ones as well.

Lemma 1 Let U1, . . . , UK be random variables with common mean β and the following co-
variance structure

V ar[Uk] = δ, ∀k Cov[Uk, Uk′ ] = γ, ∀k 6= k′.

Let π = γ
δ be the correlation between Uk and Uk′ (k 6= k′). Let Ū = k−1∑K

k=1 Uk and
S2

U = 1
K−1

∑K
k=1(Uk − Ū)2 be the sample mean and sample variance respectively. Then

1. V ar[Ū ] = γ + (δ−γ)
K = δ

(
π + 1−π

K

)
.

2. If the stated covariance structure holds for all K (with γ and δ not depending on K),
then

• γ ≥ 0,

• limK→∞V ar[Ū ] = 0⇔ γ = 0.

3. E[S2
U ] = δ − γ.

Proof

1. This result is obtained from a standard development of V ar[Ū ].

2. If γ < 0, then V ar[Ū ] would eventually become negative as K is increased. We thus
conclude that γ ≥ 0. From item 1, it is obvious that V ar[Ū ] goes to zero as K goes to
infinity if and only if γ = 0.
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3. Again, this only requires careful development of the expectation. The task is somewhat
easier if one uses the identity

S2
U =

1
K − 1

K∑
k=1

(U2
k − Ū2) =

1
2K(K − 1)

K∑
k=1

K∑
k′=1

(Uk − Uk′)2.

Although we only need it in Section 4, it is natural to introduce a second lemma here as
it is a continuation of Lemma 1.

Lemma 2 Let U1, . . . , UK , UK+1 be random variables with mean, variance and covariance as
described in Lemma 1. In addition, assume that the vector (U1, . . . , UK , UK+1) follows the
multivariate Gaussian distribution. Again, let Ū = K−1∑K

k=1 Uk and S2
U = 1

K−1

∑K
k=1(Uk −

Ū)2 be respectively the sample mean and sample variance of U1, . . . , UK . Then

1.
√

1− π
UK+1−β√

S2
U

∼ tK−1,

2.
√

1−π
1+(K−1)π

√
K(Ū−β)√

S2
U

∼ tK−1,

where π = γ
δ as in Lemma 1, and tK−1 refers to Student’s t distribution with (K − 1) degrees

of freedom.
Proof See Appendix A.1.

To study V ar[ n2
n1

µ̂J ] we need to define the following covariances. In the following, Sj and
Sj′ are independent random index sets, each consisting of n1 distinct integers from {1, . . . , n}.
Also, expectations are totally unconditional, that is expectations (as well as variances and
covariances) are taken over Zn

1 , Sj, Sj′, i and i′.

• Let σ0 = σ0(n1) = V ar[L(j, i)] when i is randomly drawn from Sc
j . To establish that

σ0 does not depend on n2 we note that V ar[L(j, i)] = ESj ,i[V arZn1
[L(ZSj ;Zi)|Sj , i]] +

V arSj ,i[EZn1
[L(ZSj ;Zi)|Sj, i]]. Now the distribution of L(ZSj ;Zi) does not depend on

the particular realization of Sj and i, it is just the distribution of L(Zn1
1 ;Zn1+1). Thus

σ0 = ESj ,i[V ar[L(Zn1
1 ;Zn1+1)]] + V arSj ,i[ n1µ] = V ar[L(Zn1

1 ;Zn1+1)] depends only on
n1, not on n2.

• Let σ1 = σ1(n1, n2) = V ar[µ̂j ].

• Let σ2 = σ2(n1, n2) = Cov[L(j, i), L(j′ , i′)], with j 6= j′, i and i′ randomly and indepen-
dently drawn from Sc

j and Sc
j′ respectively.

• Let σ3 = σ3(n1) = Cov[L(j, i), L(j, i′)] for i, i′ ∈ Sc
j and i 6= i′, that is i and i′ are

sampled without replacement from Sc
j . Using a similar argument as for σ0 allows one to

show that σ3 does not depend on n2.
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Let us look at the mean and variance of µ̂j (i.e., over one set) and n2
n1

µ̂J (i.e. over J sets).
Concerning expectations, we obviously have E[µ̂j ] = n1µ and thus E[ n2

n1
µ̂J ] = n1µ. From

Lemma 1, we have

σ1 = σ1(n1, n2) = V ar[µ̂j] = σ3 +
σ0 − σ3

n2
=

(n2 − 1)σ3 + σ0

n2
. (6)

For j 6= j′, we have

Cov[µ̂j , µ̂j′ ] =
1
n2

2

∑
i∈Scj

∑
i′∈Sc

j′

Cov[L(j, i), L(j′ , i′)] = σ2, (7)

and therefore (using Lemma 1 again)

V ar[ n2
n1

µ̂J ] = σ2 +
σ1 − σ2

J
= σ1

(
ρ +

1− ρ

J

)
= σ2 +

σ3 − σ2

J
+

σ0 − σ3

n2J
, (8)

where ρ = σ2
σ1

= corr[µ̂j, µ̂j′ ]. Asking how to choose J amounts to asking how large is ρ. If it
is large, then taking J > 1 (rather than J = 1) does not provide much improvement in the
estimation of n1µ. We provide some guidance on the choice of J in Section 5.

Equation (8) lends itself to an interesting interpretation. First we get that σ2 = V ar[ n2
n1

µ̂∞]
with

n2
n1

µ̂∞ = lim
J→∞

n2
n1

µ̂J = lim
J→∞

1
J

J∑
j=1

µ̂j =
1( n

n1

)
n2

∑
s∈C({1,...,n},n1)

∑
i∈{1,...,n}\s

L(Zs;Zi),

where C({1, . . . , n}, n1), as defined in Appendix A.2, is the set of all possible subsets of n1

distinct integers from {1, . . . , n}. We justify the last equality as follows. What happens when
J goes to infinity is that all possible errors (there are

( n
n1

)
n2 different ways to choose a training

set and a test example) appear with relative frequency 1

( nn1
)n2

. In other words, n2
n1

µ̂∞ is like
n2
n1

µ̂J except that all
( n
n1

)
possible training sets are chosen exactly once. Briefly, sampling

infinitely often with replacement is equivalent to sampling exhaustively without replacement
(i.e. a census). We also have n2

n1
µ̂∞ = ESj [µ̂j|Zn

1 ] ∀j and therefore n2
n1

µ̂∞ = E[ n2
n1

µ̂J |Zn
1 ] .

Thus σ2 = V ar[E[ n2
n1

µ̂J |Zn
1 ]] so that we must have E[V ar[ n2

n1
µ̂J |Zn

1 ]] = σ1−σ2
J .

We shall often encounter σ0, σ1, σ2 and σ3 in the future, so some knowledge about those
quantities is valuable. Here’s what we can say about them.

Proposition 1 For given n1 and n2, we have 0 ≤ σ2 ≤ σ1 ≤ σ0 and 0 ≤ σ3 ≤ σ1.
Proof For j 6= j′ we have

σ2 = Cov[µ̂j , µ̂j′ ] ≤
√

V ar[µ̂j ]V ar[µ̂j′ ] = σ1.

Since σ0 = V ar[L(j, i)], i ∈ Sc
j and µ̂j is the mean of the L(j, i)’s, then σ1 = V ar[µ̂j ] ≤

V ar[L(j, i)] = σ0. The fact that limJ→∞V ar[ n2
n1

µ̂J ] = σ2 provides the inequality 0 ≤ σ2.
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Regarding σ3, we deduce σ3 ≤ σ1 from (6) while 0 ≤ σ3 is derived from the fact that
limn2→∞V ar[µ̂j ] = σ3.

Naturally the inequalities are strict provided L(j, i) is not perfectly correlated with L(j, i′),
µ̂j is not perfectly correlated with µ̂j′ , and the variances used in the proof are positive.

A natural question about the estimator n2
n1

µ̂J is how n1, n2 and J affect its variance.

Proposition 2 The variance of n2
n1

µ̂J is non-increasing in J and n2.
Proof

• V ar[ n2
n1

µ̂J ] is non-increasing (decreasing actually, unless σ1 = σ2) in J as obviously
seen from (8). This means that averaging over many train/test improves the estimation
of n1µ.

• From (8), we see that to show that V ar[ n2
n1

µ̂J ] is non-increasing in n2, it is sufficient
to show that σ1 and σ2 are non-increasing in n2. For σ1, this follows from (6) and
Proposition 3. Regarding σ2, we show in Appendix A.2 that it is non-increasing in n2.
All this to say that for a given n1, the larger the test set size, the better the estimation
of n1µ.

The behavior of V ar[ n2
n1

µ̂J ] with respect to n1 is unclear, but we conjecture as follows.

Conjecture 1 In most situations, V ar[ n2
n1

µ̂J ] should decrease in n1.
Argument 1 The variability in n2

n1
µ̂J comes from two sources: sampling decision rules

(training process) and sampling testing examples. Holding n2 and J fixed freezes the second
source of variation as it solely depends on those two quantities, not n1. The problem to solve
becomes: how does n1 affect the first source of variation? It is not unreasonable to expect
that the decision function yielded by a “stable” learning algorithm is less variable when the
training set is larger. See (Kearns & Ron, 1997) showing that for a large class of algorithms
including those minimizing training error, cross-validation estimators are not much worse
than the training error estimator (which itself improves in O(V Cdim/n1) as the size of the
training set increases (Vapnik, 1982)). Therefore we conclude that, for many cases of interest,
the first source of variation, and thus the total variation (that is V ar[ n2

n1
µ̂J ]) is decreasing in

n1.

Regarding the estimation of V ar[ n2
n1

µ̂J ], we show below that we can easily estimate unbi-
asedly (σ1 − σ2), (σ0 − σ3) and (σ2 + ( n1µ)2).

• From Lemma 1, we obtain readily that the sample variance of the µ̂j’s (call it S2
µ̂j

as
in equation (9)) is an unbiased estimate of σ1 − σ2 = σ3 − σ2 + σ0−σ3

n2
. Let us interpret

this result. Given Zn
1 , the µ̂j ’s are J independent draws (with replacement) from a hat

containing all
( n
n1

)
possible values of the µ̂j’s. The sample variance of those J observations

(S2
µ̂j

) is therefore an unbiased estimator of the variance of µ̂j , given Zn
1 , i.e. an unbiased

1Here we are not trying to prove the conjecture but to justify our intuition that it is correct.
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estimator of V ar[µ̂j|Zn
1 ], not V ar[µ̂j]. This permits an alternative derivation of the

expectation of the sample variance. Indeed, we have

EZn1 ,S. [S
2
µ̂j ] = EZn1

[ES. [S
2
µ̂j |Z

n
1 ]] = EZn1

[V arSj [µ̂j|Zn
1 ]]

= V arZn1 ,Sj [µ̂j ]−V arZn1
[ESj [µ̂j |Zn

1 ]] = σ1 −V arZn1
[ n2

n1
µ̂∞] = σ1 − σ2,

where S. denotes the random index sets (S1, . . . , SJ). Note that E[µ̂j |Zn
1 ] = n2

n1
µ̂∞ and

V ar[ n2
n1

µ̂∞] = σ2 both come from the discussion after equation (8).

• For a given j, the sample variance of the L(j, i)’s (i ∈ Sc
j ) is unbiased for σ0 − σ3

according to Lemma 1 again. We may average these sample variances over j to obtain
a more accurate estimate of σ0 − σ3.

• From equation (7) we have E[µ̂j µ̂j′ ] = σ2 + ( n1µ)2 for j 6= j′, so the sample average of
the µ̂jµ̂j′ will be unbiased for (σ2 + ( n1µ)2).

Since we can estimate (σ1−σ2), (σ0−σ3) and (σ2 +( n1µ)2) without bias, we are thus able to
estimate unbiasedly any linear combination of (σ0 − σ3), (σ3 − σ2) and (σ2 + ( n1µ)2). This is
not sufficient to estimate V ar[ n2

n1
µ̂J ] shown in (8) unbiasedly. We now tackle the question of

whether or not there exists an unbiased estimator of V ar[ n2
n1

µ̂J ]. Potential estimators may be
put in two classes: (i) those that are linear and/or quadratic in the L(j, i)’s, (ii) those that are
not. Because of the general framework of the paper, it is impossible to say anything about the
distribution of the L(j, i)’s beyond their means and covariances (to say anything more requires
assumptions about the distribution of Zn

1 , the learning algorithms and the loss function L ).
Hence we are only able to derive mathematical expectations for estimators within class (i).
We obviously cannot identify an unbiased estimator of V ar[ n2

n1
µ̂J ] in class (ii) since we cannot

derive expectations in this class. The following proposition shows that there is no unbiased
estimator of V ar[ n2

n1
µ̂J ] in class (i).

Proposition 3 There is no general unbiased estimator of V ar[ n2
n1

µ̂J ] that involves the
L(j, i)’s in a quadratic and/or linear way.
Proof Let ~Lj be the vector of the L(j, i)’s involved in µ̂j and ~L be the vector obtained by
concatenating the ~Lj’s; ~L is thus a vector of length n2J. We know that ~L has expectation
n1µ1n2J and variance

V ar[~L] = σ21n2J1′n2J + (σ3 − σ2)IJ ⊗ (1n21
′
n2

) + (σ0 − σ3)In2J ,

where Ik is the identity matrix of order k, 1k is the k× 1 vector filled with 1’s and ⊗ denotes
Kronecker’s product. We consider estimators of V ar[ n2

n1
µ̂J ] of the following form

V̂ [ n2
n1

µ̂J ] = ~L′A~L + b′~L

Using the fact that 1′n2JA1n2J = trace(A1n2J1′n2J), we have

E[V̂ [ n2
n1

µ̂J ]] = trace(AV ar[~L]) + E[~L]′AE[~L] + b′E[~L]
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= (σ3 − σ2)trace(A(IJ ⊗ (1n21
′
n2

))) + (σ0 − σ3)trace(A)
+ (σ2 + n1µ

2)1′n2JA1n2J + n1µb′1n2J .

Since we wish V̂ [ n2
n1

µ̂J ] to be unbiased for V ar[ n2
n1

µ̂J ], we want 0 = b′1n2J = 1′n2JA1n2J to get
rid of n1µ in the above expectation. Once those restrictions are incorporated into V̂ [ n2

n1
µ̂J ],

we have

E[V̂ [ n2
n1

µ̂J ]] = (σ3 − σ2)trace(A(IJ ⊗ (1n21
′
n2

))) + (σ0 − σ3)trace(A).

Since V ar[ n2
n1

µ̂J ] is not a linear combination of (σ3 − σ2) and (σ0 − σ3) alone, we conclude
that V̂ [ n2

n1
µ̂J ] cannot be unbiased for V ar[ n2

n1
µ̂J ] in general.

3 Estimation of V ar[ n2
n1
µ̂J ]

We are interested in estimating n2
n1

σ2
J = V ar[ n2

n1
µ̂J ] where n2

n1
µ̂J is as defined in (5). We

provide two new estimators of V ar[ n2
n1

µ̂J ] that shall be compared, in Section 5, to estimators
currently in use and presented in Section 4. The first estimator is simple but may have a
positive or negative bias for the actual variance V ar[ n2

n1
µ̂J ]. The second estimator is meant

to lead to conservative inference (see Appendix A.0), that is, if our Conjecture 1 is correct,
its expected value exceeds the actual variance V ar[ n2

n1
µ̂J ].

3.1 First Method: Approximating ρ

Let us recall from (5) that n2
n1

µ̂J = 1
J

∑J
j=1 µ̂j. Let

S2
µ̂j =

1
J − 1

J∑
j=1

(µ̂j − n2
n1

µ̂J)2 (9)

be the sample variance of the µ̂j ’s. According to Lemma 1,

E[S2
µ̂j ] = σ1(1− ρ) =

1− ρ

ρ + 1−ρ
J

σ1

(
ρ +

1− ρ

J

)
=

σ1

(
ρ + 1−ρ

J

)
1
J + ρ

1−ρ

=
V ar[ n2

n1
µ̂J ]

1
J + ρ

1−ρ

, (10)

so that
(

1
J + ρ

1−ρ

)
S2

µ̂j
is an unbiased estimator of V ar[ n2

n1
µ̂J ]. The only problem is that

ρ = ρ(n1, n2) = σ2(n1,n2)
σ1(n1,n2) , the correlation between the µ̂j’s, is unknown and difficult to estimate.

Indeed, neither σ1 nor σ2 can be written as a linear combination of n1µ, (σ2 + ( n1µ)2),
(σ0 − σ3) and (σ3 − σ2), the only quantities we know how to estimate unbiasedly (besides
linear combinations of these). We use a very naive surrogate for ρ as follows. Let us recall
that µ̂j = 1

n2

∑
i∈Scj
L(ZSj ;Zi). For the purpose of building our estimator, let us proceed as

if L(ZSj ;Zi) depended only on Zi and n1, i.e. the loss does not depend on the actual n1

examples (ZSj ) used for training but only on the number of training examples (n1) and on

10



the testing example (Zi). Then it is not hard to show that the correlation between the µ̂j’s
becomes n2

n1+n2
. Indeed, when L(ZSj ;Zi) = f(Zi), we have

µ̂1 =
1
n2

n∑
i=1

I1(i)f(Zi) and µ̂2 =
1
n2

n∑
k=1

I2(k)f(Zk),

where I1(i) is equal to 1 if Zi is a test example for µ̂1 and is equal to 0 otherwise. Naturally,
I2(k) is defined similarly. We obviously have V ar[µ̂1] = V ar[µ̂2] with

V ar[µ̂1] = E[V ar[µ̂1|I1(.)]]+V ar[E[µ̂1|I1(.)]] = E

[
V ar[f(Z1)]

n2

]
+V ar[E[f(Z1)]] =

V ar[f(Z1)]
n2

,

where I1(.) denotes the n× 1 vector made of the I1(i)’s. Moreover,

Cov[µ̂1, µ̂2] = E[Cov[µ̂1, µ̂2|I1(.), I2(.)]] + Cov[E[µ̂1|I1(.), I2(.)], E[µ̂2|I1(.), I2(.)]]

= E

[
1
n2

2

n∑
i=1

I1(i)I2(i)V ar[f(Zi)]

]
+ Cov[E[f(Z1)], E[f(Z1)]]

=
V ar[f(Z1)]

n2
2

n∑
i=1

n2
2

n2
+ 0 =

V ar[f(Z1)]
n

,

so that the correlation between µ̂1 and µ̂2 (µ̂j and µ̂j′ with j 6= j′ in general) is n2
n .

Therefore our first estimator of V ar[ n2
n1

µ̂J ] is
(

1
J + ρo

1−ρo

)
S2

µ̂j
where ρo = ρo(n1, n2) =

n2
n1+n2

, that is
(

1
J + n2

n1

)
S2

µ̂j
. This will tend to overestimate or underestimate V ar[ n2

n1
µ̂J ]

according to whether ρo > ρ or ρo < ρ.
By construction, ρo will be a good substitute for ρ when L(ZSj ;Z) does not depend much

on the training set ZSj , that is when the decision function of the underlying algorithm does
not change too much when different training sets are chosen. Here are instances where we
might suspect this to be true.

• The capacity (VC dimension) of the algorithm is not too large relative to the size of the
training set (for instance a parametric model that is not too complex).

• The algorithm is robust relative to perturbations in the training set. For instance,
one could argue that the support vector machine (Burges, 1998) would tend to fall in
this category. Classification and regression trees (Breiman, Friedman, Olshen, & Stone,
1984) however will typically not have this property as a slight modification in data
may lead to substantially different tree growths so that for two different training sets,
the corresponding decision functions (trees) obtained may differ substantially on some
regions. K-nearest neighbors techniques will also lead to substantially different decision
functions when different training sets are used, especially if K is small.
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3.2 Second Method: Overestimating V ar[ n2
n1
µ̂J ]

Our second method aims at overestimating V ar[ n2
n1

µ̂J ]. As explained in Appendix A.0, this
leads to conservative inference, that is tests of hypothesis with actual size less than the nominal
size. This is important because techniques currently in use have the opposite defect, that is
they tend to be liberal (tests with actual size exceeding the nominal size), which is normally
regarded as less desirable than conservative tests.

We have shown at the end of Section 2 that n2
n1

σ2
J = V ar[ n2

n1
µ̂J ] could not be estimated

unbiasedly without some prior knowledge about σ0, σ1, σ2, σ3 (we showed after (10) how this
can be done when ρ = σ2

σ1
is known). However, as we show below, we may estimate unbiasedly

n2

n′1
σ2

J = V ar[ n2

n′1
µ̂J ] where n′1 = bn2 c − n2 < n1 (we assume n2 < bn2 c). Let n2

n′1
σ̂2

J be the
unbiased estimator, developed below, of the above variance. Since n′1 < n1, we have (according
to Conjecture 1) V ar[ n2

n′1
µ̂J ] ≥ V ar[ n2

n1
µ̂J ], so that n2

n′1
σ̂2

J will tend to overestimate n2
n1

σ2
J , that

is E[ n2

n′1
σ̂2

J ] = n2

n′1
σ2

J ≥ n2
n1

σ2
J .

Here’s how we may estimate n2

n′1
σ2

J without bias. The main idea is that we can get two
independent instances of n2

n′1
µ̂J which allows us to estimate n2

n′1
σ2

J without bias. Of course
variance estimation from only two observations is noisy. Fortunately, the process by which
this variance estimate is obtained can be repeated at will, so that we may have many unbiased
estimates of n2

n′1
σ2

J . Averaging these yields a more accurate estimate of n2

n′1
σ2

J .
Obtaining a pair of independent n2

n′1
µ̂J ’s is simple. Suppose, as before, that our data set Zn

1

consists of n = n1 +n2 examples. For simplicity, assume that n is even2. We have to randomly
split our data Zn

1 into two distinct data sets, D1 and Dc
1, of size bn2 c each. Let µ̂(1) be the

statistic of interest ( n2

n′1
µ̂J) computed on D1. This involves, among other things, drawing J

train/test subsets from D1, respectively of size n′1 and n2. Let µ̂c
(1) be the statistic computed

on Dc
1. Then µ̂(1) and µ̂c

(1) are independent since D1 and Dc
1 are independent data sets 3,

so that (µ̂(1) −
µ̂(1)+µ̂c

(1)

2 )2 + (µ̂c
(1) −

µ̂(1)+µ̂c
(1)

2 )2 = 1
2(µ̂(1) − µ̂c

(1))
2 is unbiased for n2

n′1
σ2

J . This
splitting process may be repeated M times. This yields Dm and Dc

m, with Dm ∪Dc
m = Zn

1 ,
Dm ∩Dc

m = ∅ and |Dm| = |Dc
m| = bn2 c for m = 1, . . . ,M . Each split yields a pair (µ̂(m), µ̂

c
(m))

that is such that

E

[
(µ̂(m) − µ̂c

(m))
2

2

]
=

1
2
V ar[µ̂(m) − µ̂c

(m)] =
V ar[µ̂(m)] + V ar[µ̂c

(m)]

2
= n2

n′1
σ2

J .

2When n is odd, everything is the same except that splitting the data in two will result in a leftover
observation that is ignored. Thus Dm and Dc

m are still disjoint subsets of size bn2 c from Zn1 , but Zn1 \(Dm∪Dc
m)

is a singleton instead of being the empty set.
3Independence holds if the train/test subsets selection process in D1 is independent of the process in Dc

1.
Otherwise, µ̂1 and µ̂c1 may not be independent, but they are uncorrelated, which is all we actually need.
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This allows us to use the following unbiased estimator of n2

n′1
σ2

J :

n2

n′1
σ̂2

J =
1

2M

M∑
m=1

(µ̂(m) − µ̂c
(m))

2. (11)

Note that, according to Lemma 1, the variance of the proposed estimator is V ar[ n2

n′1
σ̂2

J ] =
1
4V ar[(µ̂(m)−µ̂c

(m))
2]
(
r + 1−r

M

)
with r = Corr[(µ̂(m)−µ̂c

(m))
2, (µ̂(m′)−µ̂c

(m′))
2] for m 6= m′. We

may deduce from Lemma 1 that r > 0, but simulations yielded r close to 0, so that V ar[ n2

n′1
σ̂2

J ]

decreased roughly like 1
M . We provide some guidance on the choice of M in Section 5.

Note that the computational effort to obtain this variance estimator is proportional to
JM . We could reduce this by a factor J if we use n2

n′1
σ̂2

1 to overestimate V ar[ n2
n1

µ̂J ], but
we suspect that overestimation might be too gross as E[ n2

n′1
σ̂2

1] = n2

n′1
σ2

1 ≥ n2

n′1
σ2

J ≥ n2
n1

σ2
J .

We considered this ultra-conservative estimator of n2
n1

σ2
J when we performed the simulations

presented in Section 5 but, as we suspected, the resulting inference was too conservative. We
do not show the results to avoid overcrowding the paper. We could also have gone half way
by using n2

n′1
σ̂2

J ′ with 1 < J ′ < J , but we did not pursue this for the same reason as above.

4 Inference about n1
µ

We present seven different techniques to perform inference (confidence interval or test) about
n1µ. The first three are methods already in use in the machine-learning community, the
others are methods we put forward. Among these new methods, two were shown in the
previous section; the other two are the “pseudo-bootstrap” and corrected “pseudo-bootstrap”
(described later). Tests 4 of the hypothesis H0 : n1µ = µ0 (at significance level α) have the
following form

reject H0 if |µ̂− µ0| > c
√

σ̂2, (12)

while confidence intervals for n1µ (at confidence level 1− α) will look like

n1µ ∈ [µ̂− c
√

σ̂2, µ̂ + c
√

σ̂2]. (13)

Note that in (12) or (13), µ̂ will be an average, σ̂2 is meant to be a variance estimate of µ̂ and
(using the central limit theorem to argue that the distribution of µ̂ is approximately Gaussian)
c will be a percentile from the N(0, 1) distribution or from Student’s t distribution. The only
difference between the seven techniques is in the choice of µ̂, σ̂2 and c. In this section we lay
out what µ̂, σ̂2 and c are for the seven techniques considered and comment on whether each
technique should be liberal or conservative based on its political ratio. All this is summarized
in Table 1. The properties (size and power of the tests) of those seven techniques shall be

4At this point, we encourage readers to consult Appendix A.0.
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investigated in Section 5.
We are now ready to introduce the statistics we will consider in this paper.

1. t test statistic
Let the available data Zn

1 be split into a training set ZS1 of size n1 and a test set ZSc1
of

size n2 = n− n1, with n2 relatively large (a third or a quarter of n for instance). One
may consider µ̂ = n2

n1
µ̂1 to estimate n1µ and σ̂2 = S2

L
n2

where S2
L is the sample variance

of the L(1, i)’s involved in n2
n1

µ̂1 = n−1
2

∑
i∈Sc1

L(1, i) 5. Inference would be based on the
(incorrect) belief that

n2
n1

µ̂1 − n1µ√
S2
L

n2

∼ N(0, 1). (14)

We use N(0, 1) here (instead of tn2−1 for instance) as n2 is meant to be fairly large
(greater than 50, say).

Lemma 1 tells us that the political ratio here is

V ar[ n2
n1

µ̂1]

E

[
S2
L

n2

] =
n2σ3 + (σ0 − σ3)

σ0 − σ3
> 1,

so this approach leads to liberal inference. This phenomenon grows worse as n2 increases.

Note that S2
L is a biased estimator of σ0 (the unconditional variance of L(1, i) =

L(ZS1 ;Zi), i 6∈ S1), but is unbiased for the variance of L(1, i) conditional on the train-
ing set ZS1

6. That is so because, given ZS1 , the L(1, i)’s are independent variates.

5We note that this statistic is closely related to the McNemar statistic (Everitt, 1977) when the problem
at hand is the comparison of two classification algorithms, i.e. L is of the form (4) with Q of the form (2).
Indeed, let LA−B(1, i) = LA(1, i) − LB(1, i) where LA(1, i) indicates whether Zi is misclassified (LA(1, i) = 1)
by algorithm A or not (LA(1, i) = 0); LB(1, i) is defined likewise. Of course, algorithms A and B share the
same training set (S1) and testing set (Sc1). We have n2

n1 µ̂1 = n10−n01
n2

, with njk being the number of times
LA(1, i) = j and LB(1, i) = k, j = 0, 1, k = 0, 1. McNemar’s statistic is devised for testing H0 : n1µ = 0 (i.e.
the LA−B(1, i)’s have expectation 0) so that one may estimate the variance of the LA−B(1, i)’s with the mean
of the (LA−B(1, i)− 0)2’s (which is n01+n10

n2
) rather than with S2

L. Then (12) becomes

reject H0 if

∣∣∣∣ n10 − n01√
n10 + n01

∣∣∣∣ > z1−α/2,

with zp the quantile p of N(0, 1), which squared leads to the McNemar’s test (not corrected for continuity).
6From this, we can rederive that S2

L is biased for the unconditional variance as follows:

E[S2
L] = E[E[S2

L|ZS1 ]] = E[V ar[L(1, i)|ZS1 ]]

≤ E[V ar[L(1, i)|ZS1 ]] + V ar[E[L(1, i)|ZS1 ]] = V ar[L(1, i)].

14



Therefore, although (14) is wrong, we do have

n2
n1

µ̂1 −E[ n2
n1

µ̂1|ZS1 ]√
S2
L

n2

≈ N(0, 1)

in so far as n2 is large enough for the central limit theorem to apply. Therefore this
method really allows us to make inference about E[ n2

n1
µ̂1|ZS1 ] = E[L(1, i)|ZS1 ] =

E[L(ZS1 ;Zi)|ZS1 ], i 6∈ S1, that is the generalization error of the specific rule obtained by
training the algorithm on ZS1 , not the generalization error of the algorithm per se. That
is, according to Dietterich’s taxonomy (Dietterich, 1998) briefly explained in Section 1,
it deals with questions of type 1 through 4 rather than questions of type 5 through 8.

2. Resampled t test statistic
Let us refresh some notation from Section 1. Particularly, let us recall that n2

n1
µ̂J =

1
J

∑J
j=1 µ̂j. The resampled t test technique7 considers µ̂ = n2

n1
µ̂J and σ̂2 =

S2
µ̂j

J where S2
µ̂j

is the sample variance of the µ̂j’s (see (9)). Inference would be based on the (incorrect)
belief that

n2
n1

µ̂J − n1µ√
S2
µ̂j

J

∼ tJ−1. (15)

Combining (8) and Lemma 1 gives us the following political ratio

V ar[ n2
n1

µ̂J ]

E

[
S2
µ̂j

J

] =
JV ar[ n2

n1
µ̂J ]

E[S2
µ̂j

]
=

Jσ2 + (σ1 − σ2)
σ1 − σ2

> 1,

so this approach leads to liberal inference, a phenomenon that grows worse as J increases.
Dietterich (Dietterich, 1998) observed this empirically through simulations.

As argued in Section 2, S2
µ̂j

/J actually estimates (without bias) the variance of n2
n1

µ̂J

conditional on Zn
1 . Thus while (15) is wrong, we do have

n2
n1

µ̂J −E[ n2
n1

µ̂J |Zn
1 ]√

S2
µ̂j

J

≈ tJ−1.

Recall from the discussion following (8) that E[ n2
n1

µ̂J |Zn
1 ] = n2

n1
µ̂∞. Therefore this

method really allows us to make inference about n2
n1

µ̂∞, which is not too useful because
we want to make inference about n1µ.

7When the problem at hand is the comparison of two classification algorithms, i.e. L is of the form (4)
with Q of the form (2), this approach is what Dietterich (Dietterich, 1998) calls the “resampled paired t test”
statistic.
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3. 5x2 cv t test
Dietterich (Dietterich, 1998)8 split Zn

1 in half M = 5 times to yield D1,D
c
1, . . . ,D5,D

c
5

as in Section 3 and let

µ̃(m) = bn/2c−1
∑

i∈Dc
m

L(Dm;Zi), µ̃c
(m) = bn/2c−1

∑
i∈Dm

L(Dc
m;Zi).

He then used µ̂ = µ̃(1), σ̂2 = σ̂2
Diet = 1

10

∑5
m=1(µ̃(m)− µ̃c

(m))
2 and c = t5,1−α/2. Note that

the political ratio is
V ar[µ̃(1)]

E[σ̂2]
=

σ1(bn/2c, bn/2c)
σ1(bn/2c, bn/2c) − σ4

where σ4 = Cov[µ̃(m), µ̃
c
(m)].

Remarks

• As Dietterich noted, this allows inference for bn/2cµ which may be substantially
distant from nµ.

• The choice of M = 5 seems arbitrary.

• The statistic was developed under the assumption that the µ̃(m)’s and µ̃c
(m)’s are 10

independent and identically distributed Gaussian variates. Even in this ideal case,

tD =
µ̂− bn/2cµ√

σ̂2
=

µ̃(1) − bn/2cµ√
1
10

∑5
m=1(µ̃(m) − µ̃c

(m))
2

(16)

is not distributed as t5 as assumed in (Dietterich, 1998) because µ̃(1) and (µ̃(1)−µ̃c
(1))

are not independent. That is easily fixed in two different ways:

– Take the sum from m = 2 to m = 5 and replace 10 by 8 in the denominator of
(16) which would result in tD ∼ t4,

– Replace the numerator by
√

2(
µ̃(1)+µ̃c

(1)

2 − bn/2cµ) which would lead to tD ∼ t5

as µ̃(1) + µ̃c
(1) and µ̃(1) − µ̃c

(1) are independent.

In all cases, more degrees of freedom could be exploited; statistics distributed as t8

can be devised by appropriate use of the 10 (assumed) independent variates.

4. Conservative Z
We estimate n1µ by µ̂ = n2

n1
µ̂J and use σ̂2 = n2

n′1
σ̂2

J (equation 11) as its conservative
variance estimate. Since n2

n1
µ̂J is the mean of many (Jn2 to be exact) L(j, i)’s, we may

expect that its distribution is approximatively normal. We then proceed as if

Z =
n2
n1

µ̂J − n1µ√
n2

n′1
σ̂2

J

(17)

8Dietterich only considered the comparison of two classification algorithms, that is L of the form (4) with
Q of the form (2).
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was a N(0, 1) variate (even though n2

n′1
σ̂2

J is designed to overestimate V ar[ n2
n1

µ̂J ]) to
perform inference, leading us to use c = z1−α/2 in (12) or (13), where z1−α/2 is the
percentile 1−α of the N(0, 1) distribution. Some would perhaps prefer to use percentile
from the t distribution, but it is unclear what the degrees of freedom ought to be. People
like to use the t distribution in approximate inference frameworks, such as the one we
are dealing with, to yield conservative inference. This is unnecessary here as inference
is already conservative via the variance overestimation. Indeed, the political ratio

V ar[ n2
n1

µ̂J ]
E[ n2

n′1
σ̂2

J ]
=

n2
n1

σ2
J

n2

n′1
σ2

J

is smaller than 1 if we believe in Conjecture 1.

Regarding the choice of n2 (and thus n1), we may take it to be small relatively to n (the
total number of examples available). One may use n2 = n

10 for instance provided J is
not smallish.

5. Pseudo-Bootstrap
To estimate the variance of µ̂ = n2

n1
µ̂J by a procedure similar to the bootstrap (Efron

& Tibshirani, 1993), we obtain R other instances of that random variable, by redoing
the computation with different splits on the same data Zn

1 ; call these µ̌1, . . . , µ̌R. Thus,
in total, (R + 1)J training and testing sets are needed here. Then one could consider
σ̂2 = σ̌2, where σ̌2 is the sample variance of µ̌1, . . . , µ̌R, and take c = tR−1,1−α/2, as
σ̌2 has R − 1 degrees of freedom. Of course n2

n1
µ̂J , µ̌1, . . . , µ̌R are R + 1 identically

distributed random variables. But they are not independent as we find, from (7), that
the covariance between them is σ2. Using Lemma 1, we have

V ar[ n2
n1

µ̂J ]
E[σ̌2]

=
n2
n1

σ2
J

n2
n1σ

2
J − σ2

=
Jσ2 + (σ1 − σ2)

σ1 − σ2
> 1.

Note that this political ratio is the same as its counterpart for the resampled t-test

because E[σ̌2] = E[
S2
µ̂j

J ]. So the pseudo-bootstrap leads to liberal inference that should
worsen with increasing J just like the resampled t test statistic. In other words, the
pseudo-bootstrap only provides a second estimator of σ1−σ2

J which is more complicated

and harder to compute than
S2
µ̂j

J which is also unbiased for σ1−σ2
J .

6. Corrected resampled t-test statistic
From our discussion in Section 3, we know that an unbiased estimator of n2

n1
σ2

J is(
1
J + ρ

1−ρ

)
S2

µ̂j
, where S2

µ̂j
is the sample variance of the µ̂j ’s. Unfortunately ρ, the

correlation between the µ̂j’s, is unknown. The resampled t-test boldly puts ρ = 0. We
propose here to proceed as if ρ = ρ0 = n2

n1+n2
as our argument in Section 3 suggests.

So we use σ̂2 =
(

1
J + n2

n1

)
S2

µ̂j
. We must say again that this approximation is gross, but

we feel it is better than putting ρ = 0. Furthermore, in the ideal case where the vector
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of the µ̂j’s follows the multivariate Gaussian distribution and ρ is actually equal to ρ0,

Lemma 2 states that
n2
n1

µ̂J− n1µ√
σ̂2

∼ tJ−1. This is why we use c = tJ−1,1−α/2.

Finally, let us note that the political ratio

V ar[ n2
n1

µ̂J ]
E[σ̂2]

=
1
J + ρ

1−ρ
1
J + n2

n1

will be greater than 1 (liberal inference) if ρ > ρ0. If ρ < ρ0, the above ratio is smaller
than 1, so that we must expect the inference to be conservative. Having mentioned
earlier that conservative inference is preferable to liberal inference, we therefore hope
that the ad hoc ρ0 = n2

n1+n2
will tend to be larger than the actual correlation ρ.

7. Corrected pseudo-bootstrap statistic
Naturally, the correction we made in the resampled t test can be applied to the pseudo-
bootstrap procedure as well. Namely, we note that

(
1 + J ρ

1−ρ

)
σ̌2, where σ̌2 is the

sample variance of the µ̌r’s, is unbiased for n2
n1

σ2
J . Naively replacing ρ by ρ0 leads us to

use σ̂2 =
(
1 + Jn2

n1

)
σ̌2. Furthermore, in the ideal case where ρ is actually equal to ρ0,

and the vector made of n2
n1

µ̂J , µ̌1, . . . µ̌R follows the multivariate Gaussian distribution,

Lemma 2 states that
n2
n1

µ̂J− n1µ√
σ̂2

∼ tR−1. This is why we use c = tR−1,1−α/2. Finally
note that, just like in the corrected resampled t-test, the political ratio is

V ar[ n2
n1

µ̂J ]
E[σ̂2]

=
1
J + ρ

1−ρ
1
J + n2

n1

.

We conclude this section by providing in Table 1 a summary of the seven inference methods
considered in the present section.

5 Simulation study

We performed a simulation study to investigate the power and the size of the seven statistics
considered in the previous section. We also want to make recommendations on the value
of J to use for those methods that involve n2

n1
µ̂J . Simulation results will also lead to a

recommendation on the choice of M when the conservative Z is used.
We will soon introduce the three kinds of problems we considered to cover a good range

of possible applications. For a given problem, we shall generate 1000 independent sets of data
of the form {Z1, . . . , Zn}. Once a data set Zn

1 = {Z1, . . . Zn} has been generated, we may
compute confidence intervals and/or a tests of hypothesis based on the statistics laid out in
Section 4 and summarized in Table 1. A difficulty arises however. For a given n, those seven
methods don’t aim at inference for the same generalization error. For instance, Dietterich’s
method aims at n/2µ (we take n even for simplicity), while the others aim at n1µ where n1

would usually be different for different methods (e.g. n1 = 2n
3 for the t-test and n1 = 9n

10 for
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Name µ̂ σ̂2 c V ar[µ̂]
E[σ̂2]

1. t-test (McNemar) n2
n1

µ̂1
1
n2

S2
L z1−α/2

n2σ3+(σ0−σ3)
σ0−σ3

> 1
2. resampled t n2

n1
µ̂J

1
J S2

µ̂j
tJ−1,1−α/2 1 + J ρ

1−ρ > 1

3. Dietterich’s 5× 2 cv n/2
n/2µ̂1 σ̂2

Diet t5,1−α/2
σ1

σ1−σ4

4. conservative Z n2
n1

µ̂J
n2

n′1
σ̂2

J z1−α/2

n2
n1

σ2
J

n2
n′

1

σ2
J

< 1

5. pseudo-bootstrap n2
n1

µ̂J σ̌2 tR−1,1−α/2 1 + J ρ
1−ρ > 1

6. corrected resampled t n2
n1

µ̂J

(
1
J + n2

n1

)
S2

µ̂j
tJ−1,1−α/2

1+J ρ
1−ρ

1+J
n2
n1

7. corrected pseudo-bootstrap n2
n1

µ̂J

(
1 + Jn2

n1

)
σ̌2 tR−1,1−α/2

1+J ρ
1−ρ

1+J
n2
n1

Table 1: Summary description of the seven inference methods considered in relation to the
rejection criteria shown in (12) or the confidence interval shown in (13). zp and tk,p refer to
the quantile p of the N(0, 1) and Student tk distributions respectively. The political ratio,
that is V ar[µ̂]

E[σ̂2] , indicates if inference according to the corresponding method will tend to be
conservative (ratio less than 1) or liberal (ratio greater than 1). See Section 4 for further
details.

methods using n2
n1

µ̂J). In order to compare the different techniques, for a given n, we shall
always aim at n/2µ. The use of the statistics other than Dietterich’s 5×2 cv shall be modified
as follows.

• t test statistic
We take n1 = n2 = n

2 . This deviates slightly from the normal usage of the t test where
n2 is one third, say, of n, not one half.

• Methods other that the t-test and Dietterich’s 5× 2 cv
For methods involving n2

n1
µ̂J where J is a free parameter, that is all methods except

the t-test and Dietterich’s 5 × 2 cv, we take n1 = n2 = n
2 . This deviates substantially

from the normal usage where n1 would be 5 to 10 times larger than n2, say. For that
reason, we also take n1 = n

2 and n2 = n
10 (assume n is a multiple of 10 for simplicity).

This is achieved by throwing away 40% of the data. Note that when we will address the
question of the choice of J (and M for the conservative Z), we shall use n1 = 9n

10 and
n2 = n

10 , more in line with the normal usage.

• Conservative Z
For the conservative Z, we need to explain how we compute the variance estimate.
Indeed, formula (11) suggests that we have to compute n2

0 σ̂2
J whenever n1 = n2 = n

2 !
What we do is that we choose n2 as we would normally do (10% of n here) and do the
variance calculation as usual ( n2

n/2−n2
σ̂2

J = n/10
2n/5σ̂

2
J). However, as explained above, we use

n/2
n/2µ̂J and n2

n/2µ̂J = n/10
n/2 µ̂J instead of n2

n−n2
µ̂J as the cross-validation estimators. Recall

that we have argued in Section 2 that n2
n1

σ2
J was decreasing in n1 and n2. Consequently
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the variances of n/2
n/2µ̂J and n2

n/2µ̂J are smaller than n2

n/2−n2
σ2

J , so that n2

n/2−n2
σ̂2

J still
acts as a conservative variance estimate, that is

E[ n2

n/2−n2
σ̂2

J ] = n2

n/2−n2
σ2

J = V ar[ n2

n/2−n2
µ̂J ] ≥ V ar[ n2

n/2µ̂J ] ≥ V ar[ n/2
n/2µ̂J ].

Thus the variance overestimation will be more severe in the case of n/2
n/2µ̂J .

We consider three kinds of problems to cover a good range of possible applications:

1. Prediction in simple normal linear regression

We consider the problem of estimating the generalization error in a simple Gaussian
regression problem. We thus have Z = (X,Y ) with X ∼ N(µX , σ2

X) and Y |X ∼ N(a +
bX, σ2

Y |X) where σ2
Y |X is constant (does not depend on X). The learning algorithms are

(A) Sample mean
The decision function is FA(ZS)(X) = 1

n1

∑
i∈S Yi = ȲS , that is the mean of the

Y ’s in the training set ZS . Note that this decision function does not depend on X.
We use a quadratic loss, so that LA(j, i) = (FA(ZSj )(Xi)− Yi)2 = (ȲSj − Yi)2.

(B) Linear regression
The decision function is FB(ZS)(X) = âS + b̂SX where âS and b̂S are the intercept
and the slope of the ordinary least squares regression of Y on X performed on
the training set ZS . Since we use a quadratic loss, we therefore have LB(j, i) =
(FB(ZSj )(Xi)− Yi)2 = (âSj + b̂SjXi − Yi)2.

On top of inference about the generalization errors of algorithm A ( n1µA) and algorithm
B ( n1µB), we also consider inference about n1µA−B = n1µA − n1µB, the difference
of those generalization errors. This inference is achieved by considering LA−B(j, i) =
LA(j, i) − LB(j, i).

Table 2 describes the four simulations we performed for the regression problem. For
instance, in Simulation 1, we generated 1000 samples of size 200, with µx = 10, σ2

X = 1,
a = 100, b = 1 and σ2

Y |X = 97. It is shown in (Nadeau & Bengio, 1999) that

n1µA = n1+1
n1

(σ2
Y |X + b2σ2

X) and n1µB = n1+1
n1

n1−2
n1−3σ2

Y |X . Thus the first and third
simulation correspond to cases where the two algorithms generalize equally well (for
n1 = n

2 ); in the second and fourth case, the linear regression generalizes better than
the sample mean 9. The table also provides some summary confidence intervals for
quantities of interest, namely n1µ, ρ(n1, n2) = σ2(n1,n2)

σ1(n1,n2) and r.

2. Classification of two Gaussian populations
We consider the problem of estimating the generalization error in a classification problem

9The parameters of the simulations displayed in Tables 2, 3 and 4 were more or less chosen arbitrarily.
However, efforts were made so that one or two simulations for each problem would correspond to n1µA−B = 0
(i.e. n1µA = n1µB).
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Simulation 1 Simulation 2 Simulation 3 Simulation 4
n 200 200 2000 2000
µX 10 10 10 10
a 100 100 100 100
b 1 2 0.1 0.1
σ2

X 1 2 1 5
σ2

Y |X 97 64 9.97 9

n/2µA ∗ [98.77,100.03] [72.30,73.25] [9.961,10.002] [9.040,9.075]
n/2µB [98.69,99.96] [64.89,65.73] [9.961,10.002] [8.999,9.034]
n/2µA−B ∗ [-0.03,0.19] [7.25,7.68] [-0.001,0.001] [0.039,0.043]

9n/10µA ∗ [98.19, 99.64] [71.92, 72.99] [9.952,9.998] [9.026,9.067 ]
9n/10µB [97.71, 99.16] [64.30,65.24] [9.948,9.993] [8.982,9.023 ]
9n/10µA−B ∗ [0.36,0.60 ] [7.45,7.93 ] [0.003,0.006] [0.042,0.047]
ρA(n

2 , n
2 ) [0.466,0.512] [0.487,0.531] [0.484,0.531] [0.471,0.515]

ρB(n
2 , n

2 ) [0.467,0.514] [0.473,0.517] [0.483,0.530] [0.472,0.517]
ρA−B(n

2 , n
2 ) [0.225,0.298] [0.426,0.482] [0.226,0.282] [0.399,0.455]

ρA(n
2 , n

10) [0.148,0.179] [0.165,0.193] [0.162,0.194] [0.147,0.176]
ρB(n

2 , n
10) [0.152,0.183] [0.156,0.183] [0.162,0.194] [0.147,0.175]

ρA−B(n
2 , n

10) [0.103,0.143] [0.146,0.184] [0.089,0.128] [0.131,0.165]
ρA(9n

10 , n
10) [0.090,0.115] [0.094,0.117] [0.090,0.111] [0.088,0.108]

ρB(9n
10 , n

10) [0.092,0.117] [0.089,0.111] [0.090,0.111] [0.088,0.108]
ρA−B(9n

10 , n
10) [0.062,0.091] [0.084,0.109] [0.059,0.085] [0.086,0.109]

rA [0.021,0.034] [0.027,0.040] [-0.003,0.008] [-0.001,0.008]
rB [0.022,0.034] [0.028,0.043] [-0.003,0.008] [-0.001,0.009]
rA−B [0.154,0.203] [0.071,0.095] [0.163,0.202] [0.087,0.114]

Table 2: Description of four simulations for the simple linear regression problem. In each of
the four simulations, 1000 independent samples of size n where generated with µX , a, b, σ2

X

and σ2
Y |X as shown in the table. 95% confidence intervals for n1µ, ρ(n1, n2) = σ2(n1,n2)

σ1(n1) and
r = Corr[(µ̂(m) − µ̂c

(m))
2, (µ̂(m′) − µ̂c

(m′))
2] defined after (11) are provided. The subscripts A,

B and A−B indicates whether we are working with LA, LB or LA−B. An asterisk besides µ
indicates that powers of tests for that µ are displayed in a figure.
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with two classes. We thus have Z = (X,Y ) with Prob(Y = 1) = Prob(Y = 0) = 1
2 ,

X|Y = 0 ∼ N(µ0,Σ0) and X|Y = 1 ∼ N(µ1,Σ1). The learning algorithms are

(A) Regression tree
We train a least square regression tree 10 (Breiman et al., 1984) of Y against X
and the decision function is FA(ZS)(X) = I[NZS (X) > 0.5] where NZS(X) is the
leaf value corresponding to X of the tree obtained when training on ZS . Thus
LA(j, i) = I[FA(ZSj )(Xi) 6= Yi] is equal to 1 whenever this algorithm misclassifies
example i when the training set is ZSj ; otherwise it is 0.

(B) Ordinary least squares linear regression
We perform the regression of Y against X and the decision function is FB(ZS)(X) =
I[β̂′ZSX > 1

2 ] where β̂S is the ordinary least squares regression coefficient estimates11

obtained by training on the set ZS . Thus LB(j, i) = I[FB(ZSj )(Xi) 6= Yi] is equal
to 1 whenever this algorithm misclassifies example i when the training set is ZSj ;
otherwise it is 0.

On top of inference about the generalization errors n1µA and n1µB associated with
those two algorithms, we also consider inference about n1µA−B = n1µA − n1µB =
E[LA−B(j, i)] where LA−B(j, i) = LA(j, i) − LB(j, i).

Table 3 describes the four simulations we performed for the Gaussian populations clas-
sification problem. Again, we considered two simulations with n = 200 and two sim-
ulations with n = 2000. We also chose the parameters µ0, µ1, Σ0 and Σ1 in such a
way that in Simulations 2 and 4, the two algorithms generalize equally well; in Simula-
tions 1 and 3, the linear regression generalizes better than the regression tree. The table
also provides some summary confidence intervals for quantities of interest, namely n1µ,
ρ(n1, n2) = σ2(n1,n2)

σ1(n1,n2) and r.

3. Classification of letters
We consider the problem of estimating generalization errors in the Letter Recognition
classification problem (Blake, Keogh, & Merz, 1998). The learning algorithms are

(A) Classification tree
We train a classification tree (Breiman et al., 1984) 12 to obtain its decision function
FA(ZS)(X). Here the classification loss function LA(j, i) = I[FA(ZSj )(Xi) 6= Yi] is
equal to 1 whenever this algorithm misclassifies example i when the training set is
ZSj ; otherwise it is 0.

10The function tree in Splus 4.5 for Windows with default options and no pruning was used to train the
regression tree.

11β̂ZS includes an intercept and correspondingly 1 was included in the input vector X.
12We used the function tree in Splus version 4.5 for Windows. The default arguments were used and no

pruning was performed. The function predict with option type=“class” was used to retrieve the decision
function of the tree.
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Simulation 1 Simulation 2 Simulation 3 Simulation 4
n 200 200 2000 2000
µ0 (0,0) (0,0) (0,0) (0,0)
µ1 (1,1) (1,1) (1,1) (1,1)
Σ0 I2 I2 I2 I2

Σ1
1
2I2

1
6I2

1
2I2 0.173I2

n/2µA ∗ [0.249,0.253] [0.146,0.149] [0.247,0.248] [0.142,0.143]
n/2µB [0.204,0.208] [0.146,0.148] [0.200,0.201] [0.142,0.143]
n/2µA−B ∗ [0.044,0.046] [-0.001,0.002] [0.0467,0.0475] [−1× 10−4, 8× 10−4]

9n/10µA ∗ [0.247,0.252] [0.142,0.147] [0.235,0.237] [0.132,0.133]
9n/10µB [0.201,0.205] [0.142,0.145] [0.199,0.200] [0.142,0.143]
9n/10µA−B ∗ [0.044,0.049] [-0.001,0.003] [0.036,0.037] [-0.011,-0.009]

ρA(n
2 , n

2 ) [0.345,0.392] [0.392,0.438] [0.354,0.400] [0.380,0.423]
ρB(n

2 , n
2 ) [0.418,0.469] [0.369,0.417] [0.462,0.508] [0.388,0.432]

ρA−B(n
2 , n

2 ) [0.128,0.154] [0.174,0.205] [0.120,0.146] [0.179,0.211]
ρA(n

2 , n
10) [0.189,0.223] [0.224,0.260] [0.190,0.225] [0.207,0.242]

ρB(n
2 , n

10) [0.150,0.182] [0.135,0.163] [0.141,0.170] [0.129,0.156]
ρA−B(n

2 , n
10) [0.100,0.124] [0.130,0.157] [0.087,0.106] [0.112,0.138]

ρA(9n
10 , n

10) [0.137,0.166] [0.156,0.187] [0.113,0.137] [0.126,0.153]
ρB(9n

10 , n
10) [0.089,0.112] [0.077,0.097] [0.080,0.102] [0.081,0.100]

ρA−B(9n
10 , n

10) [0.077,0.096] [0.090,0.111] [0.049,0.065] [0.078,0.100]
rA [0.007,0.018] [0.025,0.039] [-0.005,0.003] [-0.003,0.006]
rB [0.006,0.017] [0.023,0.037] [-0.003,0.007] [-0.003,0.006]
rA−B [0.010,0.021] [0.007,0.017] [-0.003,0.006] [-0.001,0.009]

Table 3: Description of four simulations for the classification of two Gaussian populations.
In each of the four simulations, 1000 independent samples of size n where generated with µ0,
µ1, Σ0, Σ1 as shown in the table. 95% confidence intervals for n1µ, ρ(n1, n2) = σ2(n1,n2)

σ1(n1) and
r = Corr[(µ̂(m) − µ̂c

(m))
2, (µ̂(m′) − µ̂c

(m′))
2] defined after (11) are provided. The subscripts A,

B and A−B indicates whether we are working with LA, LB or LA−B. An asterisk besides µ
indicates that powers of tests for that µ are displayed in a figure.
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(B) First nearest neighbor
We apply the first nearest neighbor rule with a distorted distance metric to pull
down the performance of this algorithm to the level of the classification tree (as
in (Dietterich, 1998)). Specifically, the distance between two vectors of inputs X(1)

and X(2) is

d(X(1),X(2)) =
3∑

k=1

w2−k
∑
i∈Ck

(X(1)
i −X

(2)
i )2

where C1 = {1, 3, 9, 16}, C2 = {2, 4, 6, 7, 8, 10, 12, 14, 15} and C3 = {5, 11, 13} de-
note the sets of components that are weighted by w, 1 and w−1 respectively. Table 4
shows the values of w considered. We have LB(j, i) equal to 1 whenever this algo-
rithm misclassifies example i when the training set is ZSj ; otherwise it is 0.

In addition to inference about the generalization errors n1µA and n1µB associated with
those two algorithms, we also consider inference about n1µA−B = n1µA − n1µB =
E[LA−B(j, i)] where LA−B(j, i) = LA(j, i) − LB(j, i). We sample, without replacement,
300 examples from the 20000 examples available in the Letter Recognition data base.
Repeating this 1000 times, we obtain 1000 sets of data of the form {Z1, . . . , Z300}. The
table also provides some summary confidence intervals for quantities of interest, namely
n1µ, ρ(n1, n2) = σ2(n1,n2)

σ1(n1,n2) and r.

Before we comment on Tables 2, 3 and 4, let us describe how confidence intervals shown in
those tables were obtained. First, let us point out that confidence intervals for generalization
errors in those tables have nothing to do with the confidence intervals that we may compute
from the statistics shown in Section 4. Indeed, the latter can be computed on a single data
set Zn

1 , while the confidence intervals in the tables use 1000 data sets Zn
1 as we now explain.

For a given data set, we may compute n2
n1

µ̂25, which has expectation n1µ. Recall, from (5) in
Section 1, that n2

n1
µ̂25 = 1

25

∑25
j=1 µ̂j is the average of 25 crude estimates of the generalization

error. Also recall from Section 2 that those crude estimates have the moment structure
displayed in Lemma 1 with β = n1µ and π = ρ(n1, n2) = σ2(n1,n2)

σ1(n1,n2) . Call ~µ = (µ̂1, . . . , µ̂25)′ the
vector of those crude estimates. Since we generate 1000 independent data sets, we have 1000
independent instances of such vectors. As may be seen in the Appendix A.3, appropriate use of
the theory of estimating functions (White, 1982) then yields approximate confidence intervals
for n1µ and ρ(n1, n2). Confidence intervals for r = Corr[(µ̂(m) − µ̂c

(m))
2, (µ̂(m′) − µ̂c

(m′))
2],

defined in Section 3, are obtained in the same manner we get confidence intervals for ρ(n1, n2).
Namely, we have 1000 independent instances of the vector ((µ̂(1)− µ̂c

(1))
2, . . . , (µ̂(20)− µ̂c

(20))
2)′

where the µ̂(m)’s and µ̂c
(m) are n/10

2n/5µ̂15’s as we advocate the use of J = 15 later in this section.
We see that n1µ may substantially differ for different n1. This is most evident in Table 4

where confidence intervals for 150µ differ from confidence intervals for 270µ in a noticeable
manner. We see that our very naive approximation ρ0(n1, n2) = n2

n1+n2
is not as bad as one

could expect. Often the confidence intervals for the actual ρ(n1, n2) contains ρ0(n1, n2) 13.

13As mentioned before, the corrected pseudo-bootstrap and the corrected resampled t-test are typically used
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Simulation 1 Simulation 2 Simulation 3
n 300 300 300
w 1 5 10
n/2µB ∗ [0.539,0.542] [0.593,0.596] [0.632,0.635]
n/2µA−B ∗ [0.150,0.152] [0.096,0.099] [0.057,0.060]

9n/10µB [0.434,0.439] [0.496,0.501] [0.544,0.548]
9n/10µA−B ∗ [0.148,0.153] [0.086,0.091] [0.039,0.044]

ρB(n2 , n2 ) [0.310,0.355] [0.334,0.376] [0.349,0.393]
ρA−B(n2 , n2 ) [0.134,0.160] [0.152,0.180] [0.160,0.191]
ρB(n2 , n10 ) [0.167,0.198] [0.182,0.214] [0.197,0.232]
ρA−B(n2 , n10 ) [0.122,0.148] [0.129,0.155] [0.130,0.156]
ρB(9n

10 , n10 ) [0.105,0.129] [0.106,0.131] [0.115,0.140]
ρA−B(9n

10 , n10 ) [0.085,0.105] [0.085,0.105] [0.084,0.104]
rB [-0.006,0.001] [-0.004,0.004] [-0.004,0.005]
rA−B [-0.004,0.004] [-0.004,0.004] [-0.003,0.005]

Simulation 4 Simulation 5 Simulation 6
n 300 300 300
w 17.25 25 2048
n/2µB ∗ [0.666,0.669] [0.690,0.693] [0.779,0.782]
n/2µA−B ∗ [0.023,0.026] [-0.001,0.002] [-0.089,-0.087]

9n/10µB [0.586,0.591] [0.616,0.620] [0.730,0.734]
9n/10µA−B ∗ [-0.003,0.001] [-0.033,-0.028] [-0.147,-0.142]

ρB(n2 , n2 ) [0.360,0.404] [0.368,0.413] [0.347,0.392]
ρA−B(n2 , n2 ) [0.167,0.198] [0.170,0.202] [0.178,0.211]
ρB(n2 , n10 ) [0.200,0.238] [0.201,0.238] [0.201,0.237]
ρA−B(n2 , n10 ) [0.130,0.156] [0.129,0.155] [0.133,0.162]
ρB(9n

10 , n10 ) [0.118,0.143] [0.125,0.151] [0.119,0.145]
ρA−B(9n

10 , n10 ) [0.085,0.106] [0.087,0.108] [0.094,0.116]
rB [-0.004,0.004] [-0.005,0.004] [0.002,0.012]
rA−B [-0.002,0.007] [-0.001,0.009] [-0.001,0.009]

Table 4: Description of six simulations for the letter recognition problem. In each of the six
simulations, 1000 independent samples of size n = 300 where generated and algorithms A and
B were used with B using the distorted metric factor w shown in the table. 95% confidence
intervals for n1µ, ρ(n1, n2) = σ2(n1,n2)

σ1(n1) and r = Corr[(µ̂(m) − µ̂c
(m))

2, (µ̂(m′) − µ̂c
(m′))

2] defined
after (11) are provided. The subscripts A B and A−B indicates whether we are working with
LA, LB or LA−B. An asterisk besides µ indicates that powers of tests for that µ are displayed in
a figure. See Table 5 for the results obtained with algorithm A (the same for all 6 simulations).

n/2µA 9n/10µA ρA(n
2 , n

2 ) ρA(n
2 , n

10) ρA(9n
10 , n

10) rA

[0.691,0.694] [0.585,0.589] [0.223,0.259] [0.137,0.164] [0.099,0.123] [0.002,0.013]

Table 5: Confidence intervals for the statistics measured with algorithm A for all 6 simulations
with the letter recognition problem (see Table 4).
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When this is not the case, the approximation ρ0(n1, n2) usually appears to be reasonably
close to the actual value of the correlation ρ(n1, n2). Furthermore, when we compare two al-
gorithms, the approximation ρ0(n1, n2) is not smaller than the actual value of the correlation
ρA−B(n1, n2), which is good since that indicates that the inference based on the corrected
pseudo-bootstrap and on the corrected resampled t-test will not be liberal, as argued in Sec-
tion 4. We finally note that the correlation r appears to be fairly small, except when we
compare algorithms A and B in the simple linear regression problem. Thus, as we stated at
the end of Section 3, we should expect V ar[ n2

n′1
σ̂2

J ] to decrease like 1
M .

5.1 Sizes and powers of tests

One of the most important thing to investigate is the size (probability of rejecting the null
hypothesis when it is true) of the tests based on the statistics shown in Section 4 and compare
their powers (probability of rejecting the null hypothesis when it is false). The four panels of
Figure 1 show the estimated powers of the statistics for the hypothesis H0 : n/2µA = µ0 for
various values of µ0 in the regression problem. We estimate powers (probabilities of rejection)
by proportions of rejection observed in the simulation. We must underline that, despite
appearances, these are not “power curves” in the usual sense of the term (see Appendix A.0).
In a “power curve”, the hypothesized value of n/2µA is fixed and the actual value of n/2µA

varies. Here, it is the reverse that we see in a given panel: the actual value of n/2µA is
fixed while the hypothesized value of n/2µA (i.e. µ0) is varied. We may call this a pseudo-
power curve. We do this because constructing “power curves” would be too computationally
expensive. Nevertheless, pseudo-power curves shown in Figure 1 convey information similar
to conventional “power curves”. Indeed, we can find the size of a test by reading its pseudo-
power curve at the actual value of n/2µA (laying between the two vertical dotted lines). We
can also appreciate the progression of the power as the hypothesized value of n/2µA and the
actual value of n/2µA grow apart. We shall see in Figure 7 that those pseudo-power curves
are good surrogate to “power curves”.

Figures 2 through 6 are counterparts of Figure 1 for other problems and/or algorithms.
Power plots corresponding to tests about n/2µB in the regression problem and about n/2µB in
the classification of Gaussian populations problem are not shown since they convey the same
information as Figure 1. However, missing figures are available in (Nadeau & Bengio, 1999).

Note that in order to reduce the number of displayed line types in Figure 1 and its coun-
terparts appearing later, some curves share the same line type. So one must take note of the
following.

• In a given panel, you will see four solid curves. They correspond to either the resampled t-
test or the corrected resampled t-test with n2 = n

10 or n2 = n
2 . Curves with circled points

correspond to n2 = n
10 (40% thrown away); curves without circled points correspond to

n2 = n
2 . Telling apart the resampled t-test and the corrected resampled t-test is easy;

the two curves that are well above all others correspond to the resampled t-test.

in cases where training sets are 5 or 10 times larger than test sets. So we must only be concerned with ρ(n2 ,
n
10 )

and ρ( 9n
10
, n

10
).
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Figure 1: Powers of the tests about H0 : n
2
µA = µ0 at level α = 0.1 for varying µ0 for the

regression problem. Each panel corresponds to one of the simulations design described in
Table 2. The dotted vertical lines correspond to the 95% confidence interval for the actual
n
2
µA shown in Table 2, therefore that is where the actual size of the tests may be read. The

solid horizontal line displays the nominal size of the tests, i.e. 10%. Estimated probabilities
of rejection laying above the dotted horizontal line are significantly greater than 10% (at
significance level 5%). Where it matters J = 15, M = 10 and R = 15 were used.
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Figure 2: Powers of the tests about H0 : n
2
µA−B = µ0 at level α = 0.1 for varying µ0 for

the regression problem. Each panel corresponds to one of the simulations design described
in Table 2. The dotted vertical lines correspond to the 95% confidence interval for the actual
n
2
µA−B shown in Table 2, therefore that is where the actual size of the tests may be read. The

solid horizontal line displays the nominal size of the tests, i.e. 10%. Estimated probabilities
of rejection laying above the dotted horizontal line are significantly greater than 10% (at
significance level 5%). Where it matters J = 15, M = 10 and R = 15 were used.
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Figure 3: Powers of the tests about H0 : n
2
µA = µ0 at level α = 0.1 for varying µ0 for

the classification of Gaussian populations problem. Each panel corresponds to one of the
simulations design described in Table 3. The dotted vertical lines correspond to the 95%
confidence interval for the actual n

2
µA shown in Table 3, therefore that is where the actual

size of the tests may be read. The solid horizontal line displays the nominal size of the tests,
i.e. 10%. Estimated probabilities of rejection laying above the dotted horizontal line are
significantly greater than 10% (at significance level 5%). Where it matters J = 15, M = 10
and R = 15 were used.
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Figure 4: Powers of the tests about H0 : n
2
µA−B = µ0 at level α = 0.1 for varying µ0 for

the classification of Gaussian populations problem. Each panel corresponds to one of the
simulations design described in Table 3. The dotted vertical lines correspond to the 95%
confidence interval for the actual n

2
µA−B shown in Table 3, therefore that is where the actual

size of the tests may be read. The solid horizontal line displays the nominal size of the tests,
i.e. 10%. Estimated probabilities of rejection laying above the dotted horizontal line are
significantly greater than 10% (at significance level 5%). Where it matters J = 15, M = 10
and R = 15 were used.
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Figure 5: Powers of the tests about H0 : n
2
µB = µ0 at level α = 0.1 for varying µ0 for

the letter recognition problem. Each panel corresponds to one of the simulations design
described in Table 4. The dotted vertical lines correspond to the 95% confidence interval for
the actual n

2
µB shown in Table 4, therefore that is where the actual size of the tests may

be read. The solid horizontal line displays the nominal size of the tests, i.e. 10%. Estimated
probabilities of rejection laying above the dotted horizontal line are significantly greater than
10% (at significance level 5%). Where it matters J = 15, M = 10 and R = 15 were used.
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Figure 6: Powers of the tests about H0 : n
2
µA−B = µ0 at level α = 0.1 for varying µ0 for

the letter recognition problem. Each panel corresponds to one of the simulations design
described in Table 4. The dotted vertical lines correspond to the 95% confidence interval for
the actual n

2
µA−B shown in Table 4, therefore that is where the actual size of the tests may

be read. The solid horizontal line displays the nominal size of the tests, i.e. 10%. Estimated
probabilities of rejection laying above the dotted horizontal line are significantly greater than
10% (at significance level 5%). Where it matters J = 15, M = 10 and R = 15 were used.
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• The dotted curves depict the conservative Z test with either n2 = n
10 (when it is circled)

or n2 = n
2 (when it is not circled).

• You might have noticed that the pseudo-bootstrap and the corrected pseudo-bootstrap
do not appear in Figure 1 and all its counterparts (except Figure 3 and Figure 4).
We ignored them because, as we anticipated from political ratios shown in Table 1,
the pseudo-bootstrap test behaves like the resampled t-test and the corrected pseudo-
bootstrap test behaves like the corrected resampled t-test. If we don’t ignore the pseudo-
bootstrap, some figures become too crowded. We made an exception and plotted curves
corresponding to the pseudo-bootstrap in Figures 3 and 4. In those two figures, the
pseudo-bootstrap and corrected pseudo-bootstrap curves are depicted with solid curves
(just like the resampled t-test and corrected resampled t-test) and obey the same logic
that applies to resampled t-test and corrected resampled t-test curves. What you must
notice is that these figures look like the others except that where you would have seen
a single solid curve, you now see two solid curves that nearly overlap. That shows how
similar the resampled t-test and the pseudo-bootstrap are. This similitude is present
for all problems, no just for the inference about n

2
µA or n

2
µA−B in the classification

of Gaussian populations (Figures 3 and 4). We chose to show the pseudo-bootstrap
curves in Figures 3 and 4 because this is where the plots looked the least messy when
the pseudo-bootstrap curves were added.

Here’s what we can draw from those figures.

• The most striking feature of those figures is that the actual size of the resampled t-test
and the pseudo-bootstrap procedure are far away from the nominal size 10%. This is
what we expected in Section 4. The fact that those two statistics are more liberal when
n2 = n

2 than they are when n2 = n
10 (40% of the data thrown away) suggests that

ρ(n1, n2) is increasing in n2. This is in line with what one can see in Tables 2, 3 and 4,
and the simple approximation ρ0(n1, n2) = n2

n1+n2
.

• We see that the sizes of the corrected resampled t-test (and corrected pseudo-bootstrap)
are in line with what we could have forecasted from Tables 2, 3 and 4. Namely the test is
liberal when ρ(n1, n2) > ρ0(n1, n2), conservative when ρ(n1, n2) < ρ0(n1, n2), and pretty
much on target when ρ(n1, n2) does not differ significantly from ρ0(n1, n2). For instance,
on Figure 1 the sizes of the corrected resampled t-test are close to the nominal 10%. We
see in Table 2 that ρA(n1, n2) does not differ significantly from ρ0(n1, n2). Similarly, in
Figures 3 and 5, the corrected resampled t-test appears to be significantly liberal when
n2 = n

10 (40% of the data thrown away) 14. We see that ρA(n
2 , n

10) is significantly greater
than ρ0(n

2 , n
10) = 1

6 in Table 3, and ρB(n
2 , n

10) is significantly greater than ρ0(n
2 , n

10) = 1
6

14Actually in Figure 2 we do see that the corrected resampled t-test with n2 = n
10

is liberal in Simulations 2
and 4 despite the fact that ρA−B(n2 ,

n
10 ) do not differ significantly from 1

6 in Simulation 2 and ρA−B(n2 ,
n
10 )

is barely significantly smaller than 1
6 in Simulation 4. But, as mentioned in Appendix A.0, the political ratio

Var[µ̂]

E[σ̂2]
is not the only thing determining whether inference is liberal or conservative. What happens in this

particular case is that the distribution of n2
n1 µ̂15 is asymmetric; n2

n1 µ̂1 did not appear to suffer from this problem.
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in Table 4. However, in those same figures, we see that the corrected resampled t-test
that do not throw data away is conservative and, indeed, we can see that ρA(n

2 , n
2 ) is

significantly smaller than ρ0(n
2 , n

2 ) = 1
2 in Table 3, and ρB(n

2 , n
2 ) is significantly smaller

than ρ0(n
2 , n

2 ) = 1
2 in Table 4.

• The conservative Z with n2 = n
2 is too conservative. However, when n2 = n

10 (so
that n1

n2
= 5, more in line with normal usage), the conservative Z has more interesting

properties. It does not quite live up to its name since it is at times liberal, but barely so.
Its size is never very far from 10% (like 20% for instance), making it the best inference
procedure among those considered in terms of size.

• The t-test and Dietterich’s 5 × 2 cv are usually well behaved in term of size, but they
are sometimes fairly liberal as can be seen in some panels of Figures 2, 3, 4 and 5.

• When their sizes are comparable, the powers of the t-test, Dietterich’s 5× 2 cv, conser-
vative Z throwing out 40% of the data and corrected resampled t-test throwing out 40%
of the data are fairly similar. If we have to break the tie, it appears that the t-test is the
most powerful, Dietterich’s 5 × 2 cv is the least powerful procedure and the corrected
resampled t-test and the corrected conservative Z lay in between. The fact that the
conservative Z and the corrected resampled t-test perform well despite throwing 40% of
the data indicates that these methods are very powerful compared to Dietterich’s 5× 2
cv and the t-test. This may be seen in Figure 1 where the size of the corrected resam-
pled t-test with the full data is comparable to the size of other tests. The power of the
corrected resampled t-test is then markedly superior to the powers of other tests with
comparable size. In other figures, we see the power of the corrected resampled t-test
with full data and/or conservative Z with full data catch on (as we move away from the
null hypothesis) the powers of other methods that have larger size.

As promised earlier, we now illustrate that pseudo-power curves are good surro-
gates to actual real power curves. For the letter recognition problem, we have the op-
portunity to draw real power curves since we have simulated data under six different
schemes. Recall from Table 4 that we have simulated data with 150µB approxima-
tively equal to 0.541, 0.595, 0.634, 0.668, 0.692, 0.781 and 150µA−B approximatively equal to
0.151, 0.098, 0.059, 0.025, 0.001,−0.088 in Simulations 1 through 6 respectively. The circled
lines in Figure 7 depict real power curves. For instance, in the left panel, the power of
tests for H0 : 150µB = 0.692 has been obtained in all six simulations, enabling us to draw
the circled curves. The non-circled curves correspond to what we have been plotting so
far. Namely, in Simulation 5, we computed the powers of tests for H0 : 150µB = µ0 with
µ0 = 0.541, 0.595, 0.634, 0.668, 0.692, 0.781, enabling us to draw the non-circled curves. We

The comparison of algorithm A and B for the regression problem is the only place where this phenomenon was
substantial in our simulation. That is why curves (other than t-test and Dietterich’s 5× 2 cv that are based on
n2
n1 µ̂1) are asymmetric and bottom out before the actual value of n/2µA−B (laying between the vertical dotted
lines). We don’t observe this in other figures.
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Figure 7: Real power curves (circle lines) and pseudo-power curves (not circled) in the letter
recognition problem. In the left panel, we see “real” and “pseudo” power curves for the the
null hypothesis H0 : 150µB = 0.692. In the right panel, we see “real” and “pseudo” power
curves for the the null hypothesis H0 : 150µA−B = 0.001. See the end of Section 5.1 for more
details on their constructions. Here, the “corrected resampled t” and the “conservative Z”
statistics are those which do not throw away data.

see that circled and non-circled curves agree relatively well, leading us to believe that our
previous plots are good surrogates to real power curves.

5.2 The choice of J

In Section 5.1, the statistics involving n2
n1

µ̂J used J = 15. We look at how those statistics
behave with varying J ’s, in order to formulate a recommendation on the choice of J . We
are going to do so with n1 = 9n

10 and n2 = n
10 , which correspond to a more natural usage for

these statistics. Of the seven statistics displayed in Section 4 (see also Table 1), five involved
n2
n1

µ̂J . We ignore the pseudo-bootstrap and the corrected pseudo-bootstrap as political ratios
provided in Section 4 and empirical evidence in Section 5.1 suggest that these statistics are
virtually identical to the resampled t-test and the corrected resampled t-test (but require a lot
more computation). We therefore only consider the resampled t-test, the corrected resampled
t-test and the conservative Z here.

The investigation of the properties of those statistics will again revolve around their sizes
and powers. You will therefore see that figures in this section (Figures 8 to 12) are similar
to those of the Section 5.1. Note that figures corresponding to 9n/10µB are not shown as
they convey no additional information. However, missing figures are available in (Nadeau &
Bengio, 1999). In a given plot, we see the powers of the three statistics when J = 5, J = 10,
J = 15 and J = 25. Therefore a total of twelve curves are present in each plot.

Here’s what we can draw from those figures.

35



60 70 80 90 100 110 120 130

0.
2

0.
4

0.
6

0.
8

1.
0

SIMULATION  1

mu0

P
O

W
E

R

5

10

15

25

5

10

15
25

5

10
15
25

5

10
15
25

5

1015
25

corrected resampled t
conservative Z

resampled t

50 60 70 80 90

0.
2

0.
4

0.
6

0.
8

1.
0

SIMULATION  2

mu0
P

O
W

E
R

5

10

15

25

5

10
15

25

5
10
15
25

5

10

1525

5

10
15
25

corrected resampled t
conservative Z

resampled t

9.0 9.5 10.0 10.5 11.0

0.
2

0.
4

0.
6

0.
8

1.
0

SIMULATION  3

mu0

P
O

W
E

R

5

10

15

25

5
1015
25

5

1015
25

5

10
15
25

5

10
1525

corrected resampled t
conservative Z

resampled t

8.0 8.5 9.0 9.5 10.0

0.
2

0.
4

0.
6

0.
8

1.
0

SIMULATION  4

mu0

P
O

W
E

R

5

10

15

25

5

10
15

25

5

10
15

25

5

10
15
25

5

10
15

25

corrected resampled t
conservative Z

resampled t

Figure 8: Powers of the tests about H0 : 9n/10µA = µ0 at level α = 0.1 for varying µ0

and J for the regression problem. Each panel corresponds to one of the simulations design
described in Table 2. The dotted vertical lines correspond to the 95% confidence interval for
the actual 9n/10µA shown in Table 2, therefore that is where the actual size of the tests may
be read. The solid horizontal line displays the nominal size of the tests, i.e. 10%. Estimated
probabilities of rejection laying above the dotted horizontal line are significantly greater than
10% (at significance level 5%). For the conservative Z, M = 10 was used.
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Figure 9: Powers of the tests about H0 : 9n/10µA−B = µ0 at level α = 0.1 for varying µ0

and J for the regression problem. Each panel corresponds to one of the simulations design
described in Table 2. The dotted vertical lines correspond to the 95% confidence interval for
the actual 9n/10µA−B shown in Table 2, therefore that is where the actual size of the tests may
be read. The solid horizontal line displays the nominal size of the tests, i.e. 10%. Estimated
probabilities of rejection laying above the dotted horizontal line are significantly greater than
10% (at significance level 5%). For the conservative Z, M = 10 was used.
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Figure 10: Powers of the tests about H0 : 9n
10

µA = µ0 at level α = 0.1 for varying µ0 and
J for the classification of Gaussian populations problem. Each panel corresponds to one
of the simulations design described in Table 3. The dotted vertical lines correspond to the
95% confidence interval for the actual 9n

10
µA shown in Table 3, therefore that is where the

actual size of the tests may be read. The solid horizontal line displays the nominal size of the
tests, i.e. 10%. Estimated probabilities of rejection laying above the dotted horizontal line
are significantly greater than 10% (at significance level 5%). For the conservative Z, M = 10
was used.
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Figure 11: Powers of the tests about H0 : 9n
10

µA−B = µ0 at level α = 0.1 for varying µ0 and
J for the classification of Gaussian populations problem. Each panel corresponds to one
of the simulations design described in Table 3. The dotted vertical lines correspond to the
95% confidence interval for the actual 9n

10
µA−B shown in Table 3, therefore that is where the

actual size of the tests may be read. The solid horizontal line displays the nominal size of the
tests, i.e. 10%. Estimated probabilities of rejection laying above the dotted horizontal line
are significantly greater than 10% (at significance level 5%). For the conservative Z, M = 10
was used.
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Figure 12: Powers of the tests about H0 : 9n
10

µA−B = µ0 at level α = 0.1 for varying µ0 and J

for the letter recognition problem. Each panel corresponds to one of the simulations design
described in Table 4. The dotted vertical lines correspond to the 95% confidence interval for
the actual 9n

10
µA−B shown in Table 4, therefore that is where the actual size of the tests may

be read. The solid horizontal line displays the nominal size of the tests, i.e. 10%. Estimated
probabilities of rejection laying above the dotted horizontal line are significantly greater than
10% (at significance level 5%). For the conservative Z, M = 10 was used.
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• Again, the first thing that we see is that the resampled t-test is very liberal. However,
things were even worse in Section 5.1. That is due to the fact that ρ(9n

10 , n
10) is smaller

than ρ(n
2 , n

10) and ρ(n
2 , n

2 ). We also see that the statistic is more liberal when J is large,
as it should be according to the theoretical discussion of that statistic in Section 4.

• The conservative Z lives up to its name.

• Regarding the corrected resampled t-test, the plots again only confirm what we might
have guessed from Tables 2, 3 and 4. Namely the resampled t-test is conservative
when ρ(9n

10 , n
10) is significantly greater than ρ0(9n

10 , n
10) = 0.1, liberal when ρ(9n

10 , n
10) is

significantly smaller then 0.1, and has size very close to 0.1 otherwise. When it is liberal
or conservative, things tend to grow worse when J increases; see Figure 10 for the

liberal case. That makes sense since the political ratio V ar[µ̂]
E[σ̂2] =

1+J ρ
1−ρ

1+J
n2
n1

(see Table 1) is

monotonic in J (increasing when ρ > n2
n1+n2

; decreasing when ρ < n2
n1+n2

).

• Obviously (from equation (8) or Proposition 2), the greater J is, the greater the power
will be. Note that increasing J from 5 to 10 brings about half the improvement in the
power obtained by increasing J from 5 to 25. Similarly, increasing J from 10 to 15
brings about half the improvement in the power obtained by increasing J from 10 to 25.
With that in mind, we feel that one must take J to be at least equal to 10 as J = 5
leads to unsatisfactory power. Going beyond J = 15 gives little additional power and
is probably not worth the computational effort. We could tackle this question from a
theoretical point of view. We know from (8) that V ar[ n2

n1
µ̂J ] = σ1

(
ρ + 1−ρ

J

)
. Take

ρ = 0.1 for instance (that is ρ0(9n
10 , n

10)). Increasing J from 1 to 3 reduces the variance
by 60%. Increasing J from 3 to 9 further halves the variance. Increasing J from 9 to ∞
only halves the variance. We thus see that the benefit of increasing J quickly becomes
faint.

• Since the conservative Z is fairly conservative, it rarely has the same size as the corrected
resampled t-test, making power comparison somewhat difficult. But it appears that the
two methods have equivalent powers which makes sense since they are both based on
n2
n1

µ̂J . We can see this in Figures 11 and 12 where the two tests have about the same
size and similar power.

Based on the above observations, we believe that J = 15 is a good choice: it provides
good power with reasonable computational effort. If computational effort is not an issue, one
may take J > 15, but must not expect a great gain in power. Another reason in favor of not
taking J too large is that the size of the resampled t-test gets worse with increasing J when
that method is liberal or conservative.

Of course the choice of J is not totally independent of n1 and n2. Indeed, if one uses a
larger test set (and thus a smaller train set), then we might expect ρ to be larger and therefore
J = 10 might then be sufficiently large.

Although it is not related to the choice of J , we may comment on the choice of the inference
procedure as figures in this section are the most informative in that regard. If one wants an
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inference procedure that is not liberal, the obvious choice is the conservative Z. However, if
one prefers an inference procedure with size close to the nominal size α and is ready to accept
departures in the liberal side as well as in the conservative side, then the corrected resampled
t appears to be a good choice. However, as we shall see shortly, we can make the conservative
Z more or less conservative by playing with M . The advantage of the corrected resampled t
is that it requires little computing in comparison to the conservative Z.

Finally, we assessed to what extent the pseudo-power curves shown in Figures 8 through
12 are good surrogates to actual real power curves. The counterpart of Figure 7, not shown
here but available in (Nadeau & Bengio, 1999), shows again that the two types of curves agree
well.

5.3 The choice of M

When using the conservative Z, we have so far always used M = 10. We study the behavior
of this statistic for various values of M in order to formulate a recommendation on the choice
of M . Again we consider the case where n1 = 9n

10 and n2 = n
10 . The investigation will again

revolve around the size and power of the statistic. We see in Figure 13 (figures for other
problems and/or algorithms convey the same information and are therefore not shown but are
available in (Nadeau & Bengio, 1999)) that the conservative Z is more conservative when
M is large. We see that there is not a great difference in the behavior of the conservative
Z when M = 10 and when M = 20. For that reason, we recommend using M ≤ 10. The
difference between M = 10 and M = 5 is more noticeable, M = 5 leads to inference that
is less conservative, which is not a bad thing considering that with M = 10 it tends to be a
little bit too conservative. With M = 5, the conservative Z is sometimes liberal, but barely
so. Using M < 5 would probably go against the primary goal of the statistic, that is provide
inference that is not liberal. Thus 5 ≤M ≤ 10 appears to be a reasonable choice. Within this
range, pick M large if non-liberal inference is important; otherwise take M small if you want
the size of the test to be closer to the nominal size α (you then accept the risk of performing
inference that could be slightly liberal). Of course, computational effort is linear in M so that
taking M small has an additional appeal.

6 Conclusion

We have tackled the problem of estimating the variance of the cross-validation estimator of
the generalization error. In this paper, we paid special attention to the variability introduced
by the selection of a particular training set, whereas most empirical applications of machine
learning methods concentrate on estimating the variability of the estimate of generalization
error due to the finite test set.

A theoretical investigation of the variance to be estimated shed some valuable insight on
reasons why some estimators currently in use underestimate the variance. We showed that no
general unbiased estimator of the variance of the cross-validation estimator could be found.
This analysis allowed us to construct two variance estimates that take into account both the
variability due to the choice of the training sets and the choice of the test examples. One of the
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Figure 13: Powers of the conservative Z (with J = 15) about H0 : 9n/10µA−B = µ0 at level
α = 0.1 for varying µ0 and M for the regression problem. Each panel corresponds to one
of the simulations design described in Table 2. The dotted vertical lines correspond to the
95% confidence interval for the actual 9n/10µA−B shown in Table 2, therefore that is where
the actual size of the tests may be read. The solid horizontal line displays the nominal size
of the tests, i.e. 10%. Estimated probabilities of rejection laying above the dotted horizontal
line are significantly greater than 10% (at significance level 5%).
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proposed estimators looks like the 5×2 cv method (Dietterich, 1998) and is specifically designed
to overestimate the variance to yield conservative inference. The other may overestimate or
underestimate the real variance, but is typically not too far off the target.

We performed a simulation where the new techniques put forward were compared to test
statistics currently used in the machine learning community. We tackle both the inference
for a generalization error of an algorithm and the comparison of the generalization errors of
two algorithms. We considered two kinds of problems: classification and regression. Various
algorithms were considered: linear regression, regression trees, classification trees and the
nearest neighbor algorithm. Over this wide range of problems and algorithms, we found that
the new tests behave better in terms of size and have powers that are unmatched by any
known techniques (with comparable size).

The simulation also allowed us to recommend values for the parameters involved in the
proposed techniques, namely J around 15 and (for the conservative Z) M between 5 and 10.
If one wants an inference procedure that is not liberal, the natural choice is the conservative
Z. However, if one prefers an inference procedure with size close to the nominal size α and is
ready to accept small departures in the liberal side as well as in the conservative side, then
the corrected resampled t test appears to be a good choice. The advantage of the latter is
that it requires little computing in comparison to the conservative Z.

The paper revolved around a specific cross-validation estimator; one in which we split the
data sets of n examples into a training set (of size n1) and a testing set (of size n2 = n− n1),
and repeat this process J times in an independent manner. So, for instance, the testing sets
of two different splits may partially overlap. This contrasts with the most standard cross-
validation estimator for which the testing sets are mutually exclusive. Analyzing the variance
of this standard estimator and providing valid estimates of that variance would be valuable
future work.

References

Blake, C., Keogh, E., & Merz, C. (1998). UCI repository of machine learning databases..

Breiman, L. (1996). Heuristics of instability and stabilization in model selection. Annals of Statistics,
24 (6), 2350–2383.

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees.
Wadsworth International Group.

Burges, C. (1998). A tutorial on Support Vector Machines for pattern recognition. Data Mining and
Knowledge Discovery, 2 (2), 1–47.
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Appendix

A.0 Some statistical prerequisites

Suppose that we observe data D that is generated by some probability mechanism P (D).
Suppose that we are interested in some quantity µ = µ(P ) and that we have derived an
estimator µ̂ (based on D) of the quantity of interest µ. Although the estimator µ̂ may have
some nice properties such as being unbiased (i.e. E[µ̂] = µ), the value µ̂ alone is not sufficient
to say something interesting about µ. There are two questions that we might want to answer:
(i) what are the plausible values of µ?, (ii) is a given value µ0 plausible for µ? Question (i) is
answered with a confidence interval and question (ii) is resolved with a hypothesis test.

Quite often µ̂ will be approximatively distributed as N(µ,V ar[µ̂]). If that is the case, for
question (i) we consider the random interval I = [µ̂−z1−α/2

√
V ar[µ̂], µ̂+z1−α/2

√
V ar[µ̂]], with

z1−α/2 being the percentile 1 − α/2 of the normal N(0, 1) distribution, and called confidence
interval for µ at confidence level 1 − α. This random interval has the following property:
P (µ ∈ I) ≈ 1 − α. For question (ii), if we want to assess if a hypothesis H0 : µ = µ0 is
plausible, we use the following criterion: reject H0 if |µ̂−µ0| > z1−α/2

√
V ar[µ̂]. This is a test

at the significance level α as Prob(rejectH0|H0 is true) ≈ α.
However V ar[µ̂] is seldom known, it has to be estimated. If V̂ ar[µ̂] is a good estimator

of V ar[µ̂], the above confidence interval and hypothesis test can be carried out with V ar[µ̂]
replaced by V̂ ar[µ̂]. Namely, the test of the hypothesis H0 : µ = µ0 (of size 15 α ) has the
following form

reject H0 if |µ̂− µ0| > z1−α/2

√
V̂ ar[µ̂], (18)

while the confidence interval for µ (at confidence level 1− α) will look like

µ ∈
[
µ̂− z1−α/2

√
V̂ ar[µ̂], µ̂ + z1−α/2

√
V̂ ar[µ̂]

]
. (19)

When V̂ ar[µ̂] is used in lieu of V ar[µ̂] (as done above), some people might prefer to replace
z1−α/2 by the percentile 1 − α/2 of Student’s t distribution 16; that is mostly motivated by
the second result of Lemma 2.

But what if V̂ ar[µ̂] is not a good estimator of V ar[µ̂]? We say that a confidence interval
is liberal if it covers the quantity of interest with probability smaller than the required 1− α

(Prob(µ ∈ [µ̂ − z1−α/2

√
V̂ ar[µ̂], µ̂ + z1−α/2

√
V̂ ar[µ̂]]) < 1 − α); if the above probability is

greater than 1−α, it is said to be conservative. A test is liberal if it rejects the null hypothesis

15Size is a synonym of significance level.
16The Student’s distribution with k degrees of freedom refers to the law of Z√

Y/k
where Z ∼ N(0, 1) is

independent of Y ∼ χ2
k. Often, the Y random variable will take the form Y =

∑N

i=1
R2
i . This will have

(N − p) degrees of freedom where p is the number of linear constraints the Ri’s are subject to. For instance, if

Ri = Xi − X̄, then p = 1 as
∑N

i=1
Ri = 0.
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with probability greater than the required size α whenever the null hypothesis is actually true

(P (|µ̂ − µ0| > c
√

V̂ ar[µ̂]|µ = µ0) > α ); if the above probability is smaller than α, the test
is said to be conservative. To determine if an inference procedure is liberal or conservative,
we will ask ourself if V̂ ar[µ̂] tends to underestimate or overestimate V ar[µ̂]. Let us consider
these two cases carefully.

• If we have V ar[µ̂]

E[V̂ ar[µ̂]]
> 1, this means that V̂ ar[µ̂] tends to underestimate the actual

variance of µ̂ so that the confidence interval of the form (19) will tend to be shorter than
it needs to be to cover µ with probability (1−α). So the confidence interval would cover
the value µ with probability smaller than the required (1 − α), i.e. the interval would
be liberal. In terms of hypothesis testing, the criterion shown in (18) will be met too
often since V̂ ar[µ̂] tends to be smaller than it should. In other words, the probability
of rejecting H0 when H0 is actually true will exceed the prescribed α. We then say that
the (actual) size of the test is greater than the nominal (or desired) size α.

• Naturally, the reverse happens if V ar[µ̂]

E[V̂ ar[µ̂]]
< 1. So in this case, the confidence interval

will tend to be larger than needed and thus will cover µ with probability greater than
the required (1− α), and the test of hypothesis based on the criterion (18) will tend to
reject the null hypothesis with probability smaller than α (the nominal level of the test)
whenever the null hypothesis is true.

We shall call V ar[µ̂]

E[V̂ ar[µ̂]]
the political ratio since it indicates that inference should be liberal when

it is greater than 1, conservative when it is less than 1. Of course, the political ratio is not the
only thing determining whether an inference procedure is liberal or conservative. For instance,
if V ar[µ̂]

E[V̂ ar[µ̂]]
= 1, the inference may still be liberal or conservative if the wrong number of degrees

of freedom is used, or if the distribution of µ̂ is not approximately Gaussian.
In hypothesis testing, whether or not the size of the test is close to the nominal size α is not

the only concern. We also want to know how the test behaves when the null hypothesis is false.
Ideally, we would want the criterion (18) to often lead to rejection when the hypothesis is false
and seldom lead to rejection of H0 when H0 is actually true. We define the power function (or
curve) as π(µ) = Prob(reject H0 : µ = µ0 | µ). This is the probability of rejection when we
hold the hypothesised value µ0 constant and we let the true value of the quantity of interest
µ vary. We thus want the size of the test Prob(reject H0 : µ = µ0 | H0 is true) = π(µ0) to be
close to the nominal size α and we want π(µ) to be large when µ 6= µ0.

A.1 Proof of Lemma 2

Let W = (W1, . . . ,WK ,WK+1)
iid∼ N(0, δ − γ) and ε ∼ N(β, γ) be (K + 2) independent

Gaussian variates and let Uk = Wk + ε, ∀k. One may easily show that (U1, . . . , UK+1) follow
the multivariate Gaussian distribution with the mean and covariance structure considered in
Lemma 1. Let W̄ = K−1∑K

k=1 Wk. Observe that

• S2
U = 1

K−1

∑K
k=1(Uk − Ū)2 = 1

K−1

∑K
k=1(Wk − W̄ )2 = S2

W ,

• W̄ and S2
W are independent with (K−1)S2

W
δ−γ ∼ χ2

K−1 (well known result),
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• S2
W , W̄ , ε and Wk+1 are four independent random variables.

It then follows that

√
1− π

UK+1 − β√
S2

U

=

√
δ − γ

δ

UK+1 − β√
S2

U

=

WK+1+ε−β√
δ−γ+γ√

1
K−1

(K−1)S2
W

δ−γ

=
N(0, 1)√

χ2
K−1

K−1

∼ tK−1,

√
1− π

1 + (K − 1)π

√
K(Ū − β)√

S2
U

=
√

δ − γ√
δ−γ
K + γ

Ū − β√
S2

U

=

W̄+ε−β√
δ−γ
K

+γ√
1

K−1
(K−1)S2

W
δ−γ

=
N(0, 1)√

χ2
K−1

K−1

∼ tK−1.

Recall that the tr law is the distribution of X√
Y/r

where X ∼ N(0, 1) is independent of Y ∼ χ2
r.

A.2 Proof of Proposition 2

In order to show that σ2 is non-increasing in n2, it is sufficient to show that, for fixed n1

and arbitrary n2 > 1, we have σ2(n1, n2) ≤ σ2(n1, n2 − 1).
We show later (we keep the fun part for the end) that

n2
n1

µ̂∞ =
1
n

n∑
k=1

n2−1
n1

µ̂(−k)
∞ , (20)

where n2
n1

µ̂∞ is as introduced after (8) and reproduced below, and n2−1
n1

µ̂
(−k)
∞ is the result

of calculating n2−1
n1

µ̂∞ on Zn
1 with Zk removed (leaving a data set of n − 1 = n1 + n2 − 1

examples). Obviously, the n2−1
n1

µ̂
(−k)
∞ ’s are identically distributed so that 17

σ2(n1, n2) = V ar[ n2
n1

µ̂∞] ≤ V ar[n2−1
n1

µ̂(−1)
∞ ] = σ2(n1, n2 − 1).

To complete the proof, we only need to show that identity (20) is true.
Let C(S, n1) denote the set of all possible subsets of n1 distinct elements from S, where

S is itself a set of distinct positive integers (of course n1 must not be greater than |S|, the
cardinality of S). For instance, the cardinality of C(S, n1) is |C(S, n1)| =

(|S|
n1

)
, i.e. the number

of ways to choose n1 distinct elements from S.
We have

n2
n1

µ̂∞ =
1( n
n1

) ∑
s∈C({1,...,n},n1)

1
n2

∑
i∈{1,...,n}\s

L(Zs;Zi)

=
1( n
n1

) ∑
s∈C({1,...,n},n1)

1
n2(n2 − 1)

∑
k∈{1,...,n}\s

∑
i∈({1,...,n}\s)\{k}

L(Zs;Zi)

17Let U1, . . . , Un be variates with equal variance and let Ū = 1
n

∑n

i=1
Ui, then we have V ar[Ū ] ≤ V ar[U1].
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=
n1!n2!
n!n2

n∑
k=1

∑
s∈C({1,...,n}\{k},n1)

1
n2 − 1

∑
i∈({1,...,n}\{k})\s

L(Zs;Zi)

=
1
n

n∑
k=1

1(n−1
n1

) ∑
s∈C({1,...,n}\{k},n1)

1
n2 − 1

∑
i∈({1,...,n}\{k})\s

L(Zs;Zi)

=
1
n

n∑
k=1

n2−1
n1

µ̂(−k)
∞ .

Note that to get from the first to second line in the above development, we used the following
identity for the arithmetic mean (of x1, . . . xI say) : 1

I

∑I
i=1 xi = 1

I(I−1)

∑I
k=1

∑
i6=k xi.

A.3 Inference when vectors have moments as in Lemma 1

Suppose that we have n independent and identically distributed random vectors
T1, . . . , Ti, . . . , Tn where Ti = (Ti,1, . . . , Ti,K)′. Suppose that Ti,1, . . . , Ti,K has the moment
structure displayed in Lemma 1. Let T̄i = 1

K

∑K
k=1 Ti,k. Let θ = (β, δ, π) be the vector of

parameters involved in Lemma 1. Consider the following unbiased estimating function

g(θ) =
n∑

i=1

gi(θ) =
n∑

i=1

 T̄i − β∑K
k=1[(Ti,k − β)2 − δ]

(T̄i − β)2 − δ
(
π + 1−π

K

)
 .

Let B(θ) =
∑n

i=1 gi(θ)gi(θ)′ and

A(θ) = −E

[
∂g(θ)
∂θ′

]
= n

 1 0 0
0 K 0
0 (π + 1−π

K ) K−1
K δ

 .

Let θ̂ be such that g(θ̂) = 03, then, according to (White, 1982),[
θ̂j ± Z1−α/2

√
V̂ [θ̂j ]

]
,

with V̂ [θ̂j ] =
[
A(θ̂)−1B(θ̂)(A(θ̂)−1)′

]
j,j

, is a confidence interval at approximate confidence

level (1− α). For instance, in the case of β, this yields

β = θ1 ∈

T̄. ± Z1−α/2

√√√√ 1
n

1
n

n∑
i=1

(T̄i − T̄.)2

 ,

where T̄. = 1
n

∑n
i=1 T̄i is the mean of all the T̄i’s.
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