
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Theano: new features and speed improvements

Anonymous Author(s)
Affiliation
Address
email

Abstract

Theano is a linear algebra compiler that optimizes a user’s symbolically-specified
mathematical computations to produce efficient low-level implementations. In
this paper, we present new features and efficiency improvements to Theano, and
benchmarks demonstrating Theano’s performance relative to Torch7, a recently
introduced machine learning library, and to RNNLM, a C++ library targeted at
recurrent neural networks.

1 Introduction

Theano was introduced to the machine learning community by Bergstra et al. (2010) as a CPU and
GPU mathematical compiler, demonstrating how it can be used to symbolically define mathematical
functions, automatically derive gradient expressions, and compile these expressions into executable
functions that outperform implementations using other existing tools. Bergstra et al. (2011) then
demonstrated how Theano could be used to implement Deep Learning models.

In Section 2, we will briefly expose the main goals and features of Theano. Section 3 will present
some of the new features available and measures taken to speed up Theano’s implementations. Sec-
tion 4 compares Theano’s performance with that of Torch7 (Collobert et al., 2011) on neural network
benchmarks, and RNNLM (Mikolov et al., 2011) on recurrent neural network benchmarks.

2 Main features of Theano

Here we briefly summarize Theano’s main features and advantages for machine learning tasks.
Bergstra et al. (2010) and Bergstra et al. (2011), as well as Theano’s website1 have more in-depth
descriptions and examples.

2.1 Symbolic Mathematical Expressions

Theano includes powerful tools for manipulating and optimizing graphs representing symbolic
mathematical expressions. In particular, Theano’s optimization constructs can eliminate duplicate
or unnecessary computations (e.g., replacing x−x by 0, obviating the need to compute x in the first
place), increase numerical stability (e.g., by substituting stable implementations of log(1 +x) when
x is tiny, or log(sigmoid(x))), or increase speed (e.g., by using loop fusion to apply a sequence of
scalar operations to all elements of an array in a single pass over the data).

This graph representation also enables symbolic differentiation of mathematical expressions, which
allows users to quickly prototype complex machine learning models fit by gradient descent without
manually deriving the gradient, decreasing the amount of code necessary and eliminating several
sources of practitioner error. Theano now supports forward-mode differentiation via the R-operator

1http://deeplearning.net/software/theano/

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

(see Section 3.2) as well as regular gradient backpropagation. Theano is even able to derive symbolic
gradients through loops specified via the Scan operator (see Section 3.1).

2.2 Fast to write and to execute

Theano’s dependency on NumPy and SciPy (Jones et al., 01 ) makes it easy to add an implementation
for a mathematical operation, leveraging the effort of their developers, and it is always possible to
add a more optimized version that will then be transparently substituted where applicable. For
instance, Theano defines operations on sparse matrices using SciPy’s sparse matrix types to hold
values. Some of these operations simply call SciPy’s functions, other are reimplemented in C++,
using BLAS routines for speed.

2.3 Parallelism on the GPU

Theano uses CUDA to define a class of n-dimensional (dense) arrays located in GPU memory
with Python bindings. Theano also includes CUDA code generators for fast implementations of
mathematical operations. Most of these operations are currently limited to dense arrays of single-
precision floating-point numbers.

2.4 Stability and community support

Theano’s development team has increased its commitment to code quality and correctness as Theano
usage begins to spread across university and industry laboratories: a full test suite runs every night,
with a shorter version running for every pull request, and the project makes regular stable releases.
There is also a growing community of users who ask and answer questions every day on the project’s
mailing lists.

3 New features in Theano

This section presents features of Theano that have been recently developed or improved. Some of
these are entirely novel and extend the scenarios in which Theano can be used (notably, Scan and
the R operator); others aim at improving performance, notably reducing the time not spent in actual
computation (such as Python interpreter overhead), and improving parallelism on CPU and GPU.

3.1 Scan: Symbolic Loop in Theano

Theano offers the ability to define symbolic loops through use of the Scan Op, a feature useful
for working with recurrent models such as recurrent neural networks, or for implementing more
complex optimization algorithms such as linear conjugate gradient.

Scan surmounts the practical difficulties surrounding other approaches to loop-based computation
with Theano. Using Theano’s symbolically-defined implementations within a Python loop prevents
symbolic differentiation through the iterative process, and prevents certain graph optimizations from
being applied. Completely unrolling the loop into a symbolic chain often leads to an unmanageably
large graph and does not allow for “while”-style loops with a variable number of iterations.

The Scan operator is designed to address all of these issues by abstracting the entire loop into a
single node in the graph, a node that communicates with a second symbolic graph representing
computations inside the loop. Without going into copious detail, we present a list of the advantages
of our strategy and refer to section 4.3 where we empirically demonstrate some of these advantages.
Tutorials available from the Theano website offer a detailed description of the required syntax as
well as example code.

1. Scan allows for efficient computation of gradients and implicit “vector-Jacobian” prod-
ucts. The specific algorithm used is backpropagation through time Rumelhart et al. (1986),
which optimizes for speed but not memory consumption.

2. Scan allows for efficient evaluation of the R-operator (see Pearlmutter (1994)), required for
computing quantities such as the Gauss-Newton approximation of Hessian-vector products.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

3. The number of iterations performed by Scan can itself be expressed as a symbolic variable
(for example, the length of some input sequence) or a symbolically specified condition, in
which case Scan behaves as a “do while” statement. If the number of steps is fixed and
equal to 1, the Scan node is “unrolled” into the outer graph for better performance.

4. Any loop implemented with Scan can be transparently transferred to a GPU (if the compu-
tation at each iteration can itself be performed on the GPU).

5. The body of Scan (which involves computing indices of where to pick input slices and
where to put the output of each iteration) is implemented with Cython to minimize the
overhead introduced by necessary bookkeeping between each iteration step.

6. Whenever possible, Scan detects the amount of memory necessary to carry out an opera-
tion: it examines intermediate results and makes an informed decision as to whether such
results are needed in subsequent iterations in order to partially optimize memory reuse.
This decision is taken at compilation time.

7. Loops represented as different Scan instances are merged (given that certain necessary con-
ditions are respected, e.g., both loops perform the same number of steps). This aids not only
in reducing the overhead introduced by each instance of Scan, but also helps optimize the
computation performed at each iteration of both loops, e.g. certain intermediate quantities
may be useful to the body of each individual loop, and will be computed only once in the
merged instance.

8. Finally, whenever a computation inside the loop body could be performed outside the loop,
Scan moves said computation in the main graph. For example element-wise operations
are moved outside, where, given that they are done by a single call to an Elementwise
operations, one can reduce overhead. Another example is dot products between a vector
and a matrix, which can be transformed outside of the loop into a single matrix-matrix
multiplication. Such optimizations can lead to significant speed improvement and in certain
cases to the elimination of the Scan node completely.

All of these features make it easier for a user to implement a variety of recurrent neural networks
architectures, and to easily change the equations of the model without having to derive gradients by
hand or worry about manually optimizing the implementation.

3.2 R-operator for Hessian-Free optimization

Recent results (Martens and Sutskever, 2011) proposed a specific pipeline for efficiently implement-
ing truncated Newton-like second-order methods such as Hessian-Free optimization. The pipeline
relies on the “R-operator”, introduced by Pearlmutter (1994), which is a mathematical operator that
given a function f(θ), f : RM → RN , the current parameter configuration θt ∈ RM and a vec-

tor γ ∈ RM , efficiently computes the “Jacobian-vector” product
(
∂f
∂θ

∣∣∣
θ=θt

)
γ, where

(
∂f
∂θ

∣∣∣
θ=θt

)
is the Jacobian of the function evaluated at θt. For the sake of completeness, we would mention
that the “R-operator” evaluates the directional derivative of f(θ), and is known in the automatic
differentiation community as the forward mode.

This operation can be seen analogous to the backward mode or backpropagation, which computes

the “vector-Jacobian” product ηT
(
∂f
∂θ

∣∣∣
θ=θt

)
, where ηT ∈ RN is some row vector.

Theano offers efficient computation of both operators by employing the chain rule on the compu-
tational graph, where each operational node knows how to compute the product of its Jacobian and
some vector in an efficient way.

Because the output of any such operation is a symbolic graph, the computations get further optimized
at compilation time. This provides flexibility in writing down the computations that represent a
model, without worrying about details that would lead to faster gradients, or faster “Jacobian-vector”
products. For example, let us consider a complicated model, a recurrent network and the task of
computing the Gauss-Newton approximation of the Hessian times some vector (which lies at the
heart of the Hessian-Free algorithm). A naive implementation would imply at least three passes
through the loop, once for evaluating the function, the second one to backpropagate the gradient

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

(reverse-mode) and the third time to compute the “Jacobian-vector” dot product involved in the
equation ∂f

∂θ

(
∂f
∂θ

T
)
γ. A more careful implementation however reveals that two passes should

be sufficient (see Martens and Sutskever (2011)). By simply calling TT.Lop(f, θ, TT.Rop(f, θ, γ)),
Theano is able to figure out the relationship between the different loops, resulting in only two passes.

3.3 Lazy Evaluation, CVM

When a compiled Theano function is called, a runtime engine orchestrates which operations should
be performed on which data, calling the appropriate functions in the right order. This was previ-
ously implemented as a Python loop, calling either native Python functions or C functions made
available through a Python module interface, in a pre-determined order (i.e., a forward traversal of
the computational graph, from inputs to outputs). The main drawback of this approach is that it was
impossible to implement lazy evaluation in the computational graph.

For instance, the “if-then-else” construct would always compute the result of both “then” and “else”
branches, as well as the condition, before updating its output value. A new runtime, dubbed the
“VM” (for “Virtual Machine”, because it drives the execution of small code units), enables lazy
evaluation of such operations, meaning that we evaluate only branches that are actually necessary
for correct computation of the output.

A C implementation of the VM was also added (dubbed the “CVM”). Beyond the performance
advantage inherent in running the loop itself in C, the CVM also avoids the performance penalty of
returning control to the Python interpreter after each operation: if a C implementation of a given
operation is available, the CVM will execute it directly without the overhead of a Python function
call. The performance gain is particularly significant for graphs that perform many operations on
relatively small operands. In particular, if all operations used in a compiled Theano function have
C implementations, the entirety of the CVM’s execution will be performed at C speed, returning
control to the Python interpreter only after all outputs have been computed. The CVM is now the
default runtime.

3.4 More operations implemented in C

To derive fuller benefit from the existence of the CVM, we have added new C implementations of
existing operations (even when Python implementations were almost as efficient) in order to avoid
context switches. For instance, matrix-vector dot products on CPU had previously resulted in a call
to a SciPy function that wraps the GEMV routine from BLAS. We have since added a wrapper in C
that calls the GEMV routine directly.

3.5 Better support for sparse matrices

In addition to dense tensors, Theano supports sparse matrices based on SciPy’s implementations of
compressed sparse row (CSR) and compressed sparse column (CSC) formats. Support for efficient
sparse operations, in particular operations needed to compute derivatives of sparse operations, has
been greatly improved. The online documentation2 lists currently supported operations.

Theano supports two kinds of gradient computation through sparse matrices. “Regular” differen-
tiation does not suppose that the sparsity structure of a matrix at a given time is preserved, and
thus a sparse variable may have a dense gradient. “Structured” differentiation considers the sparsity
structure of a matrix as permanent, and the gradient with respect to that matrix will have the same
sparsity structure.

3.6 Parallelism on CPU

In the past, not much effort had been put into allowing Theano to leverage multi-core CPU architec-
tures for parallel execution; development effort was instead focused on GPU implementations and
new automatic optimizations. Multi-core parallelism was therefore only available to operations that
called into a parallel BLAS implementation.

2http://deeplearning.net/software/theano/library/sparse/

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Collobert et al. (2011) showed that using OpenMP to parallelize the C implementation of CPU
operations can bring substantial speed improvements with relatively little development effort. We
recently added support for OpenMP-enabled operations in Theano, and used this support to paral-
lelize 2-dimensional convolution. Adding parallel implementations for other operations will proceed
more rapidly with this infrastructure in place.

3.7 Asynchronous function calls on GPU

When executing CUDA kernels on the GPU, the function call that starts it does not wait for the
execution of the kernel to complete. Instead, it will merely schedule the kernel to be executed at
some point in the future, allowing the main program to perform other tasks, including scheduling
other GPU kernels. When the result of the GPU computation is needed, the program can wait for
the end of the kernel to execute, and return its result.

Before release 0.6, Theano always waited for the result of the kernel computation as soon as it was
launched, effectively preventing the execution of other operations on the CPU during this time. This
approach eases profiling and debugging because at any given time, it is clear which GPU kernel
is currently being executed, and error messages are retrieved as soon as possible; however, such
an approach prohibits the concurrent use of CPU-based computation, passing up an opportunity
for further speed gains. The new default behaviour of Theano is not to wait on the result of GPU
computation until it is strictly needed. It is also possible to revert to the previous behaviour, which
is useful for profiling execution time of the different GPU kernels.

4 Benchmarks

Bergstra et al. (2010) showed that Theano was faster than many other tools available at the time,
including Torch5. The following year, Collobert et al. (2011) showed that Torch7 was faster than
Theano on the same benchmarks.

Here we briefly introduce Torch7 and evaluate performance of their latest versions on neural network
tasks, using the aforementioned benchmarks. Then, Section 4.3 will compare the performance of
Theano against another package, RNNLM, when training recurrent neural networks.

4.1 Torch7

Torch7 (Collobert et al., 2011) is advertised as a Matlab-like environment for machine learning. It
aims to ease development of numerical algorithms and to allow for their fast execution, while also
being easy to extend.

Table 1 provides a summary comparison of the features provided by Torch7 (including the ones
inherited from Lua) and Theano (including the ones coming from Python and NumPy/SciPy). This
section exposes the common features and differences between Torch7 and Theano.

4.1.1 Common features shared by Torch7 and Theano

Theano and Torch7 are two computing frameworks that were developed for the machine learning
community, to make it easier to quickly implement and test new mathematical models and algo-
rithms, without giving up the execution speed that a manually-optimized implementation would
provide. Both are the foundation of machine learning specific packages or projects, notably for
neural networks and unsupervised learning.

Like Theano, Torch7 is based on a scripting language (Lua), uses heavily-optimized scientific com-
putation libraries (for instance, BLAS and LAPACK for linear algebra computations), and internal
modules written in C/C++, for the sections where execution speed is critical. It also has the capabil-
ity of running parallel computation on multi-core CPUs (via OpenMP), and on GPUs via CUDA.

Both have access to a Matlab-like environment: Torch7 includes modules for tensor manipula-
tions and plotting, while Theano benefits from various external Python libraries to perform those
tasks (notably SciPy (Jones et al., 01 ), NumPy (Oliphant, 2007), matplotlib (Hunter, 2007),
IPython (Pérez and Granger, 2007)).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 1: Features comparison between Lua/Torch7 and Python/Theano. The first section shows
common or comparable features. Second and third part contains Theano’s and Torch7’s strengths.

Features Lua/Torch7 Python/Theano

Scripting language 4 4
Fast execution speed 4 4
Optimized BLAS, LAPACK 4 4
Plotting Environment 4 4 via matplotlib
GPU 4 float only 4 float only
Easy call to C functions 4 Natively with Lua 4 via Cythona, ctypes, etc.
OS Linux, MacOS X, FreeBSD Linux, MacOS X, Windows
Public development 4 on GitHubb 4 on GitHubc

Unit tests 4 4 Buildbotd, Travis-CIe

Used in published research 4 4
Used at companies NEC Google, Yahoo!, Card.io, startups

Sparse matrices 8 4
Symbolic differentiation Non-symbolic NN gradient 4
Differentiation over loop 8 4 Scan
R-operator 8 4 For most operations
Automatic graph optimization 8 4

Parallel functions 4 OpenMP widely used Only in BLAS and Conv2D
Embeddable in a C app. 4 8
Informative error messages 4 Not always

a
http://www.cython.org/

b
https://github.com/andresy/torch

c
https://github.com/Theano/Theano

d
https://groups.google.com/group/theano-buildbot

e
http://travis-ci.org/#!/Theano/Theano

4.1.2 Main differences

Some of Torch7’s strengths stem from Lua’s advantages over Python: lower interpreter overhead,
simpler integration with C code, easy embedding in a C application. In particular, since the overhead
of calling a function and executing C code are lower, higher performance will result in the case of
simple functions (that do not perform large amounts of computation) and functions that process only
a small quantity of data at a time.

Parallelism on multi-core CPUs is another important feature of Torch7, as it was designed to use
Open Multi-Processing (OpenMP) parallel directives, notably in the tensor and neural network mod-
ules. The potential for CPU parallelization (outside calls to BLAS) in Theano has only started to be
explored.

Theano’s distinguishing feature is its powerful engine for graph optimization and symbolic differ-
entiation, mentioned in Section 2.1. The downside is that users are faced with a more complex
workflow: first, define an abstract mathematical graph (without values), then optimize and compile
it into a callable function, and finally execute the function. This additional complexity also makes it
harder to interpret errors that may be raised during the compilation or execution phase.

4.2 Benchmarking on Deep Learning Tasks

4.2.1 BLAS and OpenMP Setup

As the multi-layer perceptron (MLP) examples in the benchmarks rely on function calls to a BLAS
library, we needed to make sure the same BLAS library was used for both Torch7 and Theano, in
order to ensure a fair comparison. We benchmarked the GEMM routine (matrix-matrix dot product,
scaling and accumulation), with matrix sizes large enough that any overhead becomes negligible, for
a number of OpenMP threads limited to 1 and 4, confirming that both tools are linked to the same
BLAS library, and that controlling the number of OpenMP threads works as expected.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

0

10000

20000

30000

40000

50000
batch 1

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

e
x
a
m

p
le

s/
se

co
n
d

batch 10

CPU OpenMP GPU
0

50000
100000
150000
200000
250000
300000
350000
400000

batch 60

(a) Logistic regression

0
2000
4000
6000
8000

10000
12000
14000

batch 1

0

5000

10000

15000

20000

25000

e
x
a
m

p
le

s/
se

co
n
d

batch 10

CPU OpenMP GPU
0

20000
40000
60000
80000

100000
120000

batch 60

(b) Neural network, 1 hidden layer with 500 units

0
200
400
600
800

1000
1200
1400
1600

batch 1

0
500

1000
1500
2000
2500
3000
3500
4000

e
x
a
m

p
le

s/
se

co
n
d

batch 10

CPU OpenMP GPU
0

5000

10000

15000

20000
batch 60

(c) Deep neural network, 3 hidden layers with 1000
units each

Figure 1: Benchmarks of Torch7 (red, left) vs. Theano (blue, right), for training neural networks.
The bars represent examples per second, higher is better. From left to right: paler red represent
Torch7 results obtained with Lua, darker red represent LuaJIT, different shades of blue represent
different sets of additional speed optimizations to Theano. For each architecture (a), (b), and (c),
top figures represent stochastic gradient descent, middle and bottom ones use mini-batches of sizes
(resp.) 10 and 60. The group of bars on the left shows performance on CPU with one thread only, the
middle group shows the parallelized version with OpenMP, using 4 CPU threads, and the right-most
show performance on GPU.

4.2.2 How to boost Theano’s performance

In Figure 1, the left-most blue bar (lightest shade of blue) in each of the bar groups shows the
performance of a Theano function with the default configuration. That default configuration includes
the use of the CVM (section 3.3), and asynchronous execution of GPU ops (section 3.7). This section
shows ways to further speed up the execution, while trading off other features.

Disabling garbage collection We can save time on memory allocation by disabling garbage col-
lection of intermediate results. This can be done by using the linker cvm_nogc. In this case, the
results of intermediate computation inside a Theano function will not be deallocated, so during the
next call to the same function, this memory will be reused, and new memory will not have to be
allocated. This increases memory usage, but speeds up execution of the Theano function.

In Figure 1, the second-to-left blue bar shows the impact of disabling garbage collection. It is most
important on the GPU, because the garbage-collection mechanism forces a synchronization of the
GPU threads, largely negating the benefits of asynchronous kernel execution.

Removing overhead of data conversion When a Theano function is called and the data type of
the provided input is different from the expected one, a silent conversion is automatically done (if

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

no precision would be lost). For instance, a list of integers will be converted into a vector of floats,
but floats will not be converted into integers (an error will be raised).

This is a useful feature, but checking and converting the input data each time the function is called
can be detrimental to performance. It is now possible to disable these checks and conversions,
which gives better performance when the input data is actually of the correct type. If the input data
would actually need to be converted, then some exceptions due to unexpected data types will be
raised during the execution. To disable these checks, simply set the trust_input attribute of a
compiled Theano function to True. The third blue bar on Figure 1 shows the speed up gained with
this optimization, including the cvm_nogc optimization.

Executing several iterations at once When a Theano function does not have any explicit input (all
the necessary values are stored in shared variables, for instance), we can save even more overhead by
calling its fn member: f.fn(). It is also possible to call the same function multiple consecutive
times, by calling f.fn(n_calls=N), saving more time. This allows to bypass the Python loop,
but it will only return the results of the last iteration. This restriction means that it cannot be used
everywhere, but it is still useful in some cases, for instance training a learning algorithm by iterating
over a data set, where the important thing is the updates to the parameters, not the function’s output.
The performance of this last way of calling a Theano function is shown in the right-most, dark blue
bar.

4.2.3 Results

Figure 1 shows speed results (in example per second, higher is better) on three neural network
learning tasks, which consists in 10-class classification of a 784-dimensional input. Figure 1a shows
simple logistic regression, Figure 1b shows a neural network with one layer of 500 hidden units, and
Figure 1c shows a deep neural network, with 3 layers of 1000 hidden units each. Torch7 was tested
with the standard Lua interpreter (pale red bars), and LuaJIT3, a Lua just-in-time compiler (darker
red bars); Theano was tested with different optimizations (shades of blue), described in section 4.2.2.

When not using mini-batches, on CPU, Theano beats Torch7 on the models with at least one hidden
layer, and even benefits from BLAS parallel implementation. On the logistic regression benchmark,
Torch7 has the advantage, due to the small amount of computation being done in each call (executing
several iterations at once help, but not enough to beat LuaJIT). Torch7 also has an edge over Theano
on the GPU, when the batch size is one.

When using mini-batches, whether of size 10 or 60, Theano is faster than Torch7 on all three archi-
tectures, or has an equivalent speed. The difference vanishes for the most computationally-intensive
tasks, as the language and framework overhead becomes negligible.

4.3 Benchmarking on Recurrent Neural Networks

In Figure 2, we present a benchmark of a simple recurrent network, on Theano and RNNLM4, a
C++ implementation of recurrent networks for language modeling. They were done with a batch
size of 1, which is customary with recurrent neural networks.

While RNNLM is faster than Theano on smaller models, Theano quickly catches up for bigger sizes,
showing that Theano is an interesting option for training recurrent neural networks in a realistic
scenario. This is mostly due to overhead in Theano, which is a drawback of the flexibility provided
for recurrent models.

5 Conclusion

We presented recent additions to Theano, and showed how they make it a more powerful tool for
machine learning software development, and allow it to be faster than competing software in most
cases, on different benchmarks.

3http://luajit.org/
4http://www.fit.vutbr.cz/˜imikolov/rnnlm/

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 2: Benchmarks of RNNLM vs. Theano on recurrent neural networks. Reported numbers are
sequence elements per second (bigger is better). The number of input units and output units is the
same as the number of input units.

These benchmarks aim at exposing relative strengths of existing software, so that users can choose
what suits their needs best. We also hope such benchmarks will help improving the available tools,
which can only have a positive effect for the research community.

References
Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D.,

and Bengio, Y. (2010). Theano: a CPU and GPU math expression compiler. In Proceedings of the Python
for Scientific Computing Conference (SciPy). Oral Presentation.

Bergstra, J., Bastien, F., Breuleux, O., Lamblin, P., Pascanu, R., Delalleau, O., Desjardins, G., Warde-Farley,
D., Goodfellow, I., Bergeron, A., and Bengio, Y. (2011). Theano: Deep learning on gpus with python. In
Big Learn workshop, NIPS’11.

Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011). Torch7: A matlab-like environment for machine
learning. In BigLearn, NIPS Workshop.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science and Engineering, 9(3),
90–95.

Jones, E., Oliphant, T., Peterson, P., et al. (2001–). SciPy: Open source scientific tools for Python.

Martens, J. and Sutskever, I. (2011). Learning recurrent neural networks with hessian-free optimization. In
L. Getoor and T. Scheffer, editors, Proceedings of the 28th International Conference on Machine Learning
(ICML-11), ICML ’11, pages 1033–1040, New York, NY, USA. ACM.

Mikolov, T., Deoras, A., Kombrink, S., Burget, L., and Cernocky, J. (2011). Empirical evaluation and com-
bination of advanced language modeling techniques. In Proc. 12th annual conference of the international
speech communication association (INTERSPEECH 2011).

Oliphant, T. E. (2007). Python for scientific computing. Computing in Science and Engineering, 9, 10–20.

Pearlmutter, B. A. (1994). Fast exact multiplication by the hessian. Neural Computation, 6, 147–160.

Pérez, F. and Granger, B. E. (2007). IPython: A system for interactive scientific computing. Computing in
Science and Engineering, 9(3), 21–29.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal representations by error propa-
gation. volume 1, chapter 8, pages 318–362. MIT Press, Cambridge.

9


