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Abstract—We consider an industrial strength application of
recommendation systems for video-game matchmaking in which
off-policy policy evaluation is important but where standard
approaches can hardly be applied. The objective of the policy
is to sequentially form teams of players from those waiting to
be matched, in such a way as to produce well-balanced matches.
Unfortunately, the available training data comes from a policy
that is not known perfectly and that is not stochastic, making
it impossible to use methods based on importance weights. Fur-
thermore, we observe that when the estimated reward function
and the policy are obtained by training from the same off-policy
dataset, the policy evaluation using the estimated reward function
is biased. We present a simple calibration procedure that is
similar to stacked regression and that removes most of the bias,
in the experiments we performed. Data collected during beta tests
of Ghost Recon Online, a first person shooter from Ubisoft, were
used for the experiments.

I. INTRODUCTION

Video games have been a fertile area of research for
machine learning and artificial intelligence in the past decade.
Applications range from automated content generation [1], be-
havior modelling [2] to game playing [3]. Of particular interest
here are ranking and matchmaking algorithms, stemming from
chess rating systems, and motivated by studies reporting that
an adequate challenge is an important component of player
satisfaction and enjoyment [4], [5]. Starting with [6] and [7],
these systems were designed to rank professional chess players
according to their history of tournament performance, mod-
elling pairwise comparisons between players, inspired by [8].
Further research on the subject led to modelling uncertainty
about the player skills, first introduced by [9], and spawning
a variety of Bayesian rating systems, the most famous being
Microsoft’s own TrueSkill [10]. Going further, [11] and [12]
presented feature-based approaches, computing player features
based on their behavior (and not only the win/lose results of
matches) and using them to model inter-player interactions.

Most of these systems are focused on estimating player
skill and predicting game outcomes accurately. Here we will
address the problem at a slightly higher level, defining match-
making as the process of assembling and pairing available
users into groups in order to maximize some measure of quality
should they play together. The design of such a system is a
necessary step for the development of an online multiplayer
game, which has become a popular and lucrative paradigm for
video games. Since changes in the matchmaking system can
potentially impact user experience negatively, careful attention
must be given to the evaluation and comparison of matchmak-
ing algorithms. Faced with this policy evaluation challenge in

the context of an industrial collaboration, we sought to evaluate
methods using reinforcement learning [13] and contextual
bandits [14] techniques. However, due to practical issues, they
could not be applied on the real task: we propose here an
evaluation framework for matchmaking policies, which we
show to perform as well as these techniques, would it have
been possible to use them in practice.

In the next section we will review and formalize the
problem of online matchmaking for video games, describing
popular algorithms and presenting an alternative approach to
learning to predict game outcomes based on Deep Learn-
ing [15], [16]. Section III will address offline evaluation of
these systems through reinforcement learning methods called
off-policy policy evaluation procedures [13], and explain why
it is hard to apply them to our task. Section IV will present
the matchmaking simulator used in our experiments in order
to evaluate the different off-policy policy evaluation methods.
Section V discusses a specific bias induced in direct methods
to evaluate a policy and proposes a method to alleviate this
bias, called Stacked Calibration. Section VI presents results
obtained with a methodology that we propose to validate
off-policy policy evaluation methods, based on a two-stage
simulation, i.e., with a model trained on real data being used
to generate data and evaluate ground truth inside the simulator.

II. VIDEO GAME MATCHMAKING BY DEEP LEARNING

A. Matchmaking in Online Video Games

As an online game grows in popularity, so will the number
of players and the amount of data collected concerning their
performance. With commercially successful games sometimes
involving millions of players online, it has become important
for game developers to implement good matchmaking to
provide an adequate level of challenge, and to create leagues
and leaderboards, which is an important component of player
satisfaction [1]. Many of these methods are based on the
Bradley-Terry model for pairwise comparison [17], [18]. Given
a pool of active players, the goal of these approaches is to
estimate a value for each player that conceptually represents
the player’s level or skill. These skill factors are estimated
by modelling the probability of game outcomes between
competing players as a function of their skill, and fitting this
model through the historical data of wins and losses.

The chess rating system ELO does so by modelling player
skills as a Gaussian or logistic distribution from which their
game performance is sampled. Performance is measured by a
single random scalar, and skill is its expected value. By com-
puting the probability that one player’s performance exceeds
that of another, ELO provides an estimated score, or outcome



of a match. When new matches are played out, the true and
estimated scores are used to update the skill estimate. Several
drawbacks of the model such as tracking the uncertainty about
players’ skills led to the creation of other, more sophisticated,
systems which dealt with this uncertainty. Perhaps the most
famous recent model proposed is Microsoft’s TrueSkill [10],
described as a Bayesian skill rating system, that models belief
about players’ skill, that explicitly models draws and that
can also be used with multiple teams of players. The full
description of these models is outside of the scope of this
paper, and can be retrieved from [7] and [10]. Although chess
ratings have initially mostly been used to rank professional
players, many video games make extensive use of rating
systems for matching players together in online play. Under the
assumption that a balanced match has an increased probability
of being a draw, the match quality criterion defined by [10]
is, in essence, the probability of such an outcome. The goal
is thus to launch matches for which the system believes the
probability of draw is high.

There has been some interest in matching players to
optimize criteria different from draw probability or similarity
of skill values, some based on reducing undesired social be-
havior [12] or matching players to fulfill certain roles through
player modelling [19]. In most video games, we observe other
outcomes besides the winning team (such as game-defined
scores, which can be used in TrueSkill to rank individual
players): such outcomes may provide a more objective view of
balance. By using a real-valued target based on these outcomes,
instead of a binary value (the identity of the winning team),
we can obtain more information about the actual balance of
each match.

B. Deep Learning Approach to Matchmaking

1) Evaluating the Balance of a Match: We have collected
data from Ghost Recon Online, an online team-based first
person shooting (FPS) game developed by Ubisoft. In this
game, players form two teams to compete with each other
to achieve a certain goal. The enjoyment of players is affected
not only by the design of the game but also by the way the
teams are formed. It is important to form teams such that the
overall game is balanced — the two teams should have more
or less an equal chance to win, or in other words, the combined
performance of players from the two teams should be similar.
TrueSkill and many other skill-based systems estimate each
player’s skill by only taking into account the binary result
of previous games, and each team’s skill by summing the
skills of the team members. However, it is natural to assume
that the match balance in FPS games strongly depends on the
interaction between players — how they cooperate as a team.
We take advantage of data that could be used to take these
interactions and complementarities into account. Furthermore,
instead of relying only on the binary win/lose outcome of
each game, we use a more fine-grained measurement that is
appropriate for FPS games: the relative number of kills made
by each team. We apply machine learning methods to estimate
this estimator of balance by taking into account the players’
performance and their interactions during games played in
the past. Note however that the following procedures and
experiments can be easily adapted to any other measurement
of balance.

Following the approach described in [11], we use the fol-
lowing three steps to form a feature vector summarizing both
players and their team performance in a match. First, various
statistics of the players’ performance were collected during
gameplays, such as the number of kills/deaths, wins/losses,
firing accuracy, time under cover and other relevant game-
dependent measures. These normalized statistics are used to
form player profiles. Secondly, for each of the two teams in
a match, player profiles are then aggregated to form what we
call a team profile by concatenating the sum, mean, variance,
minimum and maximum across each individual component of
the player profile in that team. Finally, two team profiles are
concatenated together to form the final feature vector of a
match, denoted by x. We define the measure of balance as

y = 1−
∣∣∣∣log(killsAkillsB

)∣∣∣∣
where killsA (resp. killsB) denotes the total number of kills
from players in team A (resp. team B). The logarithm is
used to reduce the effect of outliers, and the absolute value
makes this quantity symmetric with respect to both teams. It is
subtracted from 1 simply so that balance is perfect when equal
to one, and to make finding the most balanced match a reward
maximization problem. Balance evaluation models f(x) are
trained to minimize the mean square error cost between the
model’s prediction f(x) and the observed target y

E(x,y)∼D[(y − f(x))2] (1)

where x and y are drawn from the unknown distribution
D. In practice, the generalization error defined in Eq. 1 is
inaccessible due to the unknown D. So instead, given a
collection of N historical matches (xi, yi) where i = 1 . . . N ,
the following empirical cost (mean squared error) is minimized
instead:

1
N

N∑
i=1

(yi − f(xi))2. (2)

2) Deep Learning and Maxout: The learning algorithm
we have found to work best on this task is a deep neural
network. Deep Learning [20] has become a field in itself
in the machine learning community, with regular workshops
at the leading conferences such as NIPS and ICML, and a
new conference dedicated to it, ICLR1, sometimes under the
header of Representation Learning or Feature Learning. The
rapid increase in scientific activity on representation learning
has been accompanied and nourished by a remarkable string
of empirical successes both in academia and in industry,
e.g., in speech recognition [21], [22], [23], [24], [25], music
information retrieval [26], [27], object recognition [28], [29],
[30] and natural language processing [31], [32]. See [15] for
a recent review.

Our model is very similar to Maxout networks [16], re-
cently introduced to train deep neural networks in the context
of object recognition, but is adjusted to the regression task
at hand and applied to matchmaking. It is compared with
a standard Multilayer Artificial Neural Network (MLP) that
has one or more hidden layers (with hyperbolic tangent non-
linearity), each fully connected to the layer below.
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Maxout networks use a different type of hidden layer where
the hidden units are formed by taking the maximum of k filter
outputs (each filter outputs the dot product of a filter weight
vector with the input vector into the layer). Since this is a
regression problem, the output layer is an affine transformation
with a single linear output unit:

f(x) = w′φ(x) + b (3)

where φ(x) is the output of the top hidden layer which
nonlinearly depends on the neural net input x, w the output
weight vector and b is a bias term. Our model can discover and
exploit a strong nonlinear dependency between x and target y.

The training of Maxout networks uses the standard back-
propagation equipped with a recently proposed trick called
Dropout [33]. The basic idea of Dropout is that hidden units
outputs are randomly masked (set to 0) with probability 1/2
during training (and multiplied by 1/2 at test time). As argued
by [16], it is possible to train a deep Maxout network
without overfitting due to the model averaging effect brought
by Dropout. Meanwhile, by making sure that exactly one filter
is being used and receiving gradient for each non-masked
hidden unit, it appears that optimizing Maxout networks (even
deeper ones) can be done more easily than with rectifier,
hyperbolic tangent or sigmoid activation functions. Although
Maxout activation functions can easily lead to overfitting,
combining them with Dropout provides a form of symmetry
breaking and bagging regularization that generally provides
substantially better performance than standard MLPs.

To compare, we also consider other standard machine
learning models for the regression task. The simplest model
is the Elastic Net [34]. It assumes that the interaction between
the inputs and outputs are linear. This assumption is usually
too strong to hold in practice. To relax this strong assumption,
we consider regression trees [35], which assume that the
interaction is piece-wise linear, thus overall nonlinear. This
assumption works well when the input space can be separated
by cells inside which the outputs are similar. However, it
suffers when the true interaction is a highly variable but
locally smooth function in a high dimensional space. In order
to improve over an individual tree, many types of ensemble
models have been tried, such as Random Forests [36] and
Gradient Boosted Trees [37]. The tree-based ensemble models
work well in that they use the composition of multiple weaker
learners to reduce the variance of predictions. All these meth-
ods are publicly available in scikit-learn2.

C. Comparative Results

Our dataset consists of 436323 matches played by 159142
players. For each match, we compute a feature vector of
dimension 620, the first half of which represents team A’s
attributes and the second half team B’s attributes, as discussed
in section II-B. The entire dataset is chronologically split in
three sets: 70% as the training set, 15% as the validation set
and 15% as the test set. We train the standard MLP and Maxout
network on the training set and perform early stopping by
checking the cost in Eq. 2 on the validation set. When there
is no significant drop (0.0001) for three consecutive training
passes through the training set, training is stopped. For Elastic

2http://scikit-learn.org

Net, training optimization is stopped when the change in cost
does not exceed 0.0001. For tree-based models, training is
stopped when the maximal tree depth is reached. The best
model is selected based on the validation cost. We report the
average cost on the test set as a measurement of models’
performance in generalization.

In order to compare with different types of models, we have
performed intensive hyper-parameter search for each type. We
summarize the most important hyper-parameters of each model
family and give the best values found. For the Elastic Net, α
controls the strength of both L1 and L2 regularizations and
β balances the relative importance between them. We have
found that α = 1.16× 10−6 and β = 1.42× 10−6 work best.
For the Random Forest and Gradient Boosted Trees, the most
important hyper-parameters are the number of base learners
and their depth. The best model we have found for the Random
Forest uses 146 base learners each of which has a depth of 16.
The best Gradient Boosted Tree has 388 base learners each
of which has a depth of 12. For standard MLPs and Maxout
networks, there are typically many more hyper-parameters that
are important such as the learning rates, the number of hidden
layers and number of units per hidden layer. The best Maxout
network we have found is with k = 2 filters per units and 2
hidden layers with 1929 hidden units for the first and 621 units
for the second. The best standard MLP we found had three
hidden layers with 742, 911, and 964 hidden units respectively.

Figure 1 shows the mean squared error (MSE) of each
model as a measurement of their performance. As a baseline,
the constant predictor using the average of y in the training set
performs the worst, with the highest MSE. MLP performs the
same as Random Forest. Maxout performs the best and has
the lowest MSE. Table II-C shows the resulting p-values of
the paired t-tests. It shows the significance of the differences
between all models’ MSE. The standard p = 0.05 is adopted
to indicate the statistical significance. The bold font indicates
that the difference of MSE between two models is statistically
significant. In fact, all MSEs are significantly different from
each other, except between Random Forest and MLP.
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Fig. 1. Performance of different types of models in predicting the balance of
a match (based on the kill ratio). constant for the mean predictor as a baseline,
elastic for Elastic Net, MLP for a standard MLP, randforest for Random
Forest, gdbt for Gradient Boosted Trees, Maxout for Maxout networks. Maxout
outperforms all the other models. See also Table II-C for the significance tests.

III. OFF-POLICY POLICY EVALUATION

There is a class of problems in reinforcement learning
named contextual bandits, also called bandits with side in-



TABLE I. P-VALUES OF PAIRED T-TEST ON MSE BETWEEN MODELS.
These show if the difference in performance between any pair of models is
statistically significant (in bold), i.e. p-value < 0.05, or not. All differences
are significant except between RandForest and MLP, which are statistically

indistinguishable. Maxout is found superior to each of the other models in a
statistically significant way. See Fig. 1 for the labels of each of the methods

used in the table below.

MAXOUT GDBT RANDFOREST MLP ELASTIC

MAXOUT 0.001 � 10−3 � 10−3 � 10−3

GDBT 0.001 � 10−3 � 10−3 � 10−3

RANDFOREST � 10−3 � 10−3 0.532 � 10−3

MLP � 10−3 � 10−3 0.532 � 10−3

ELASTIC � 10−3 � 10−3 � 10−3 � 10−3

formation, that provide a framework for learning models and
evaluating algorithms on partially labeled data [38], [14]. Such
data is generated in the following fashion: given a context
X , a vectorial representation of the state we are currently in,
we sample an action m from a policy π(X) that defines a
multinomial distribution over K available actions. Afterwards,
action m is effectively taken, and a reward y is observed,
sampled from the real-world distribution of p(y|m,X). The
core of the problem is that π(X) has a crucial impact on
the data being collected: we will never observe the rewards
associated with actions that were not taken (unless the exact
same context occurs twice). This formulation lends itself well
to the analysis and optimization of web ad campaigns [39],
and is one of most popular frameworks for the task. Just
like we will never know if a user would have clicked or
not on an ad that was never shown, we will never know the
outcome of a match until the players actually play it out. In
our case, the decision of which players to match is taken by
the matchmaking algorithm, which can thus be considered as
a policy.

Here, m will denote a match, and X the set of available
matches for selection, along with the associated player profiles.
For a given context X (available matches), a matchmaking
policy will choose one match to be launched. If ym ∼
p(ym|m,X) is the objective measure of balance given by the
outcome of match m, the policy value is defined as:

V π = E
X∼D,m∼π(X)

[ym|m,X] (4)

where D is the distribution of contexts, containing both
the available matches and the corresponding player profiles,
m ∼ π(X) is the match (selected according to policy π),
and p(ym|m,X) is the underlying conditional distribution of
rewards given a match and the associated player profiles.
Assuming that higher values of the measure of balance are
better, finding the optimal policy is formulated as estimating
argmaxπ V π.

The problem of learning on data collected by a (potentially
unknown) policy is known as off-policy learning; the problem
of evaluating a policy on data collected using a different policy
is known as off-policy policy evaluation. Both have been well-
studied for Markov decision processes [13], but are also
applied in web applications such as advertising and predicting
browsing behavior.

We argue that video game matchmaking suffers from
these two problems, in the case where we want to replace
a policy that is currently in effect and has been used to

generate historical data. Suppose we fit (as in Section II)
a regression model f(m,X) ≈ E[ym|m,X] by minimizing
the squared error between targets ym and predicted values
f(m,X) over Strain, a subset of the dataset S comprised of
triplets (X,m, ym), generated by the policy b (called behavior
policy). One might be tempted to use this approximation to
estimate the value of a different policy π, through:

V̂ π =
1

|Stest|
∑

X∈Stest,m∼π(X)

f(m,X), (5)

where Stest is the testing subset of S, non-overlapping with
Strain. However, since f(m,X) was trained to approximate
the rewards associated with actions chosen by the behavior
instead of π, this estimator (called “Direct Method”) tends to
suffer from strong bias, as reported by [40]. An example of this
bias would be a model trained on a dataset generated by a very
good or a very poor behavior policy, in which case the model’s
average prediction would be, respectively, very large or very
small. Naturally, the optimal way of evaluating a policy is to
run it live and observe the average reward. This is problematic
in practice for risk management concerns, since running a bad
policy would negatively impact user experience, and harm the
popularity of the game. Because of this, many methods were
studied and developed to address this problem.

A popular class of algorithms for offline off-policy pol-
icy evaluation are based on importance sampling techniques.
Simply put, we can estimate Ed[x] empirically using values
sampled under a distribution different than d , i.e. xi ∼ d′,
with

x̂ =
1
n

n∑
i=1

xi
d(xi)
d′(xi)

(6)

where x̂ is an unbiased estimator of Ed[x], if d and d′ are
known exactly, i.e.,

E[x̂] = Ed[x]. (7)

Note however that importance weighted estimators, even if
they are unbiased, may still have a large variance. This can be
a significant issue when there are values of x for which d′(x)
is near 0 while d(x) 6= 0.

In terms of matchmaking, this means that if we know
the distributions over actions given the context, pb(m|X) for
the behavior policy b from which data was sampled, and
pπ(m|X) for the target policy to evaluate π, then we could
use importance weights to estimate V π:

V π ≈ V̂ π =
1
|S|

∑
(X,m,ym)∈S

ym
pπ(m|X)
pb(m|X)

(8)

for data collected under policy b. Several approaches are based
on importance weights to evaluate the value of a policy, and
have been shown to work well in practice when importance
weights are known or properly estimated.

However, to use these methods, one must know the distri-
bution pb(m|X) of the behavior policy, or at least have a good
approximation of it. This is hard in the case of matchmaking
since the actual action space is enormous because of the
combinatorial explosion of possible teams. The only way
to actually store available actions and their probability is
to have a sampling mechanism which limits the number of



possible matches to evaluate. Although the core model for the
matchmaking system of a game can be known, the candidate
matches at each context are not necessarily stored, as is the
case in the data we were given access to. This makes the
estimation of behavior action probabilites impossible, because
we do not know which actions were actually available at the
time of creation of each match. Not only that, but the behavior
policy may actually be deterministic (as in our data), in which
case we cannot direcly apply importance weighting, because
the variance of the estimator does not exist and the importance
sampling estimator becomes meaningless.

This motivates the exploration of techniques such as the
Stacked Calibration methods proposed here, which can be
applied even when the behavior policy is deterministic, i.e.,
where methods based on importance weights cannot be used.

In addition, we opt for a simulation-based approach to
policy evaluation. Although susceptible to bias, we benefit
from the fact that the core matchmaking system is already in
place, and this allows us to more properly model the dynamics
of matchmaking.

IV. MATCHMAKING RECOMMENDATION SIMULATOR

For reasons mentioned in the previous section, a simulator
was built to evaluate different policy models. The simulator
can be viewed as a type of single-server waiting queue.
Each player arriving in the queue (also known as “lobby”)
is assigned attributes by randomly selecting them from the
set of real player profiles. This is to simulate the distribution
of player attributes. Since scoring each and every possible
player configuration (i.e., a match) is impossible with more
than a few dozen players, we randomly sample configurations
of players, which will serve as match candidates. The set of
randomly sampled matches corresponds to the context X from
the previous section. The match candidates are scored by the
policy model, and the highest-scoring match is selected. The
corresponding players leave the queue, and new players can
be added.

A practical concern of matchmaking systems is that every
player must be matched within a certain time constraint,
to avoid letting a player wait too much time before being
matched. To this end, players who wait more than a certain
threshold delay are forced into the next candidate match.

In our experiments, we used 100000 different attribute pro-
files to sample from. These are real user profiles corresponding
to the profiles in the test set defined in section II-C. The initial
waiting queue size is 200, and players arrive at a constant rate;
although this is not completely reflective of reality, it is a good
approximation on a short time scale for most periods of time.
A total of 50 random matches were sampled at each iteration,
from which the highest scoring is selected according to the
policy model. The time constraint imposed is 20 iterations:
after 20 iterations without being assigned in a match, a player
is forced into the next match. In a real setting, the time
constraint would be influenced by the arrival rate of players.
With a simulator, we can run a policy, sample matches and
generate the corresponding dataset.

V. STACKED CALIBRATION

There remains an issue if we are to evaluate a model policy
using the simulator. Using the same expected balance score
both to select matches and to estimate matchmaking quality
results in a “collusion bias”. For each context, the policy
must choose a match. Suppose the policy is deterministic,
and chooses the match with highest expected value, given the
policy model. The true most balanced match has an expected
value that cannot exceed that of the match chosen by the policy.
Therefore the chosen match is almost always worse than it
appears based on the target policy π. Indeed, if

m∗ = argmax
m∈X

fGT (m)

m̂ = argmax
m∈X

fDM (m)

it follows that, for any given choice of matches,

fDM (m∗) ≤ fDM (m̂),

where fDM is our trained estimator3 and fGT the true expected
value (which we call “ground truth”). Although fDM estimates
the ground truth, the expected balance score of the match se-
lected by the predictor during simulation (or during the live use
of the predictor in the field) might still differ from it, because
of the inherent limitations of various learning algorithms. This
bias comes about because the same model is used both for
estimating value and for selecting an action. This problem
is analogous to the optimistic bias one observes when using
training error to estimate generalization error of a learning
algorithm: the learner tends to give lower errors on the training
examples because these were used to select parameters. Here
we have a policy that selects actions according to a predictor,
and because these actions were the selected ones, they tend to
receive a higher estimated value than their true value.

This motivates the proposed estimator, which we call
Stacked Calibration. The procedure is simple. We let most of
the parameters of the value predictor be estimated on a training
set, but we estimate a calibration transformation on top of the
behavior of the predictor on a validation set. We conjecture that
this helps the predictor not only generalize better in general
but also reduce the collusion bias. This procedure is a variant
of the principle of stacking [41]), by which the outputs of
one or more models are computed on examples not used to
train them, and these outputs then enter as part of the input in
examples to train a second level of models (and this can be
repeated at multiple levels).

The specific procedures we used in the experiments are
the following. Given the training, validation and test splits of
a dataset S, we first train a value estimator fDM = f on the
training set, and use the validation set to estimate

f̃(m,X) ≈ E[ym|f(m,X)],

f̃ being the calibrated version of f , by minimizing∑
(X,m,ym)∈Svalid

(ym − f̃(m,X))2.

We have have tried two variants of calibration. The first is
a simple linear least squares model, which we denote LDM,

3DM stands for Direct Method [40].



and the corresponding calibrated function. The second is a non-
parametric etimator and a slight variant of radial basis function
network (RBF), where

f̃(m,X) = β + f(m,X) +
∑
i

wie
− (f(m,X)−µi)

2

σ2 . (9)

Here µi are the radial basis function centers and wi the
associated weights, σ2 is a scaling hyperparameter and β is
a bias term. In our experiments we used 100 centers, sampled
uniformly from f(m,X)’s predictions on the validation set, as
to easily cover the one-dimensional input space. The µi’s were
kept fixed and σ set to 1, so that the calibration parameters
could be analytically estimated to minimize squared error over
the validation set. In experiments we will denote the linear
version as fLDM , and the RBF version as fRBFDM

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

To assess the performance of the Stacked Calibration
method we need access to the real expected value of the
balance score of a match, which we will call the ground
truth. The ground truth represents the underlying conditional
distribution of a match’s outcome given its players. Without
it, we cannot conclude that calibration works without live
testing, in which case we are back to square one. To access the
ground truth’s expected value, we use a two-stage simulation
methodology, in which a ground truth model fGT is first
trained from real data and then used to generate data and assess
different learning and policy evaluation procedures. The details
of this two-stage procedure are shown in Algorithm 1, allowing
us to verify that the proposed stacked calibration procedure
indeed improves policy value estimates.

Algorithm 1 Experimental procedure for two-stage simulation.
1: Train model fGT on the real data. This model will be the

ground truth.
2: Use the simulator under a specified policy b (behavior

policy).
3: For the simulated matches, sample the outcome using
fGT . These sampled matches and outcomes constitute the
artificial dataset Sb, generated by policy b.

4: Train model fDM on the training subset of Sb, and use
the simulator with fDM as policy.

5: Using the validation subset of Sb, apply the calibration
procedures described in section V to obtain fLDM and
fRBFDM .

6: Evaluate the simulated matches using fDM , the policy
model, and calibrated models fLDM and fRBFDM .

7: Use fGT to evaluate the true value of all these matches
(and hence the estimated value of the policy), and compare
this true policy value with the values estimated by the
different off-policy policy evaluation methods compared
here.

This methodology allows us to verify which policy evalu-
ation method works best, since fGT is known. In practice, the
true underlying conditional distribution p(ym|m,X) is highly
complex and difficult to capture completely with statistical
models (assuming the task is complex enough), and the best

models tend to be overregularized. To prevent models trained
on artificial data generated from an overregularized ground
truth to estimate the ground truth model too well, in which case
directly estimating the matches with the policy model would
be satisfactory, we used as ground truth a highly overfitted
gradient boosted tree. In addition, Gaussian noise with standard
deviation equal to 10% of the ground truth’s standard deviation
on the artificial data was added: the result is a difficult to
capture (because it has a rich structure that is not too smoothed
out by regularization), noisy signal, as we would expect to
see in real data. The behavior policy we used was a random,
uniform policy. The same simulator parameters were used for
policy evaluation and data generation.

In order to provide comparison with already existing meth-
ods, we saved the action probabilities of the behavior and the
associated sampled matches during simulation. This gives us
what we need to compare the standard importance sampling
method (IS) and doubly robust estimation [40], which is a
method which uses both IS and the reward estimated by the
fDM . The doubly robust estimator (DR) is defined by:

ˆV πDR =
1
|S|

∑
(X,m,ym)∈S

[fDM (m,X)

+(ym − fDM (m,X))
pπ(m|X)
pb(m|X)

]
,

(10)

where S in the above equation represents a validation set not
used to estimate fDM . Given the uniform policy behavior,
weights pb(m|X) are known exactly, which allows us to
apply this method. In the case where the evaluated policy is
deterministic, pπ(m,X) becomes the indicator function for the
behavior action being the same as the policy action. For a
complete review of doubly robust policy evaluation, see [40].

B. Comparative Results

The artificial data was split in 3 sets: 50000 matches as the
training set and 25000 matches each for the validation and test
sets. We trained a variety of models on the artificial data: linear
regressions with L2 weight decay (ridge regression), gradient
boosted decision trees, random forests, k-nearest neighbours
regression and linear kernel support vector machines. The
point of this diversity in learning algorithms is not necessarily
to actually compare these different learning algorithms, but
to make sure the evaluation works across a broad range of
models. We applied Algorithm 1, performing random sampling
of the hyperparameters to obtain various models (as variants
of the same learning algorithm type), and we report mean
squared error across all the models for each different evaluation
method. DM signifies that the same function is used for match
selection and evaluation. LDM denotes the linear calibration
and RBFDM denotes the radial basis function network version,
both described in section V, evaluating the matches chosen by
the (uncalibrated) policy. IS stands for importance sampling,
and DR for the doubly robust method (both described in
section III).

Figure 2 shows, as expected, that the uncalibrated direct
method is the worst performing one. The other four are
considerably better, with RBFDM leading the chart. To ensure
that these differences were significant, we computed a paired



t-test comparing each pair of evaluation procedures, with the
null hypothesis being that the expected mean squared errors
are the same. The p-values for these tests are reported in table
III, with p-values smaller than 0.05 in bold (where the null
hypothesis is rejected, i.e. indicating a statistically significant
difference).

To further verify the policy value estimation, we computed
Spearman’s rank correlation coefficient between each model’s
estimated policy value and the ground truth, for each evaluation
method (Table II). Again, DM is the worst performing method
while not relying on the access to the behavior policy action
probabilities. The important thing to note is that RBFDM can
select the best model almost as well as DR, showing that model
selection is on par with this method. As reference, the test
errors of the models give a correlation coefficient of 0.91 with
the ground truth value; we can estimate policy value accurately
and select the (near) optimal one.

In analyzing these results, keep in mind that the objective
was to verify if the stacked calibration methods could approach
the performance of methods such as the doubly robust (DR)
estimator, while not requiring a known and stochastic behavior
model. The results are clearly positive in this respect.
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Fig. 2. Precision of value approximation for different evaluation methods:
DM for the direct uncalibrated method, IS for important sampling, LDM for
linear calibration, DR for doubly robust, RBFDM for rbf calibration. RBFDM
outperforms all the other methods. See also Table III for the significance tests.

TABLE II. SPEARMAN RANK CORRELATION BETWEEN EVALUATION
METHODS AND GROUND TRUTH.

RBFDM DR LDM IS DM

correlation coefficient 0.9011 0.9366 0.8328 0.611 0.2575
p-value 1.03e-37 6.9e-47 3.6e-27 1.1e-11 0.0093

TABLE III. P VALUES OF PAIRED-T TEST OF SQUARED ERROR
BETWEEN EVALUATION METHODS

GT RBFDM DR LDM IS DM

GT � 10−4 � 10−4 � 10−4 � 10−4 � 10−4

RBFDM � 10−4 0.0163 � 10−4 � 10−4 � 10−4

DR � 10−4 0.0163 0.0473 0.0011 � 10−4

LDM � 10−4 � 10−4 0.0473 0.1593 � 10−4

IS � 10−4 � 10−4 0.0011 0.1593 � 10−4

DM � 10−4 � 10−4 � 10−4 � 10−4 � 10−4

VII. CONCLUSIONS

In this paper we have reviewed and compared matchmak-
ing procedures. We have shown that modelling player-player

interactions through deep architectures is helpful in predicting
the outcome of a match, as these interactions are in reality
complex and difficult to model with shallower models.

We then reviewed off-policy policy evaluation techniques,
and pointed out some practical difficulties encountered in the
context of evaluating matchmaking methods in an industrial
setting where the behavior policy is unknown or not stochastic.
We then proposed a technique called Stacked Calibration to
improve off-policy evaluation and tested its effect through a
two-stage simulator methodology.

Through these simulations, we verified that Stacked Cal-
ibration performs as well as or better than standard offline
methods such as the doubly robust estimator, which are not
applicable in our industrial setting. We showed that it is a
reliable way of evaluating policy value. The whole approach
is applicable to any setting where importance weights are not
applicable and where simulation is preferred to (or in addition
to) A/B testing because A/B testing is expensive, worrisome
for product managers concerned with the negative effects of a
poor policy, and limited in the number of policies that can be
evaluated (only so many different policies can be A/B tested
in a given amount of time).
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