
Using a Financial Training Criterion Rather than a

Prediction Criterion

Yoshua Bengio

bengioy�iro�umontreal�ca

Dept� IRO

Universit�e de Montr�eal

Montr�eal� Qc� H�C �J�

CANADA

To appear in the International Journal of Neural Systems� special issue on
noisy time series

Abstract

The application of this work is to decision taking with �nancial time�series� using learn�
ing algorithms� The traditional approach is to train a model using a prediction criterion�
such as minimizing the squared error between predictions and actual values of a dependent
variable� or maximizing the likelihood of a conditional model of the dependent variable�
We �nd here with noisy time�series that better results can be obtained when the model
is directly trained in order to maximize the �nancial criterion of interest� here gains and
losses �including those due to transactions� incurred during trading� Experiments were
performed on portfolio selection with �� Canadian stocks�

� Introduction

Most applications of learning algorithms to �nancial time�series are based on predicting the
value �either discrete or continuous� of output �dependent� variables given input �independent�
variables� For example� the parameters of a multi�layer neural network are tuned in order to
minimize a squared error loss� However� in many of these applications� the ultimate goal is not
to make good predictions� but rather to use these often noisy predictions in order to take some

decisions� In fact� the performance of these systems is usually measured in terms of �nancial
pro�tability and risk criteria� after some heuristic decision taking rule has been applied to the
trained model�s outputs�

Because of the limited amount of training data� and because �nancial time�series are often
very noisy� we argue here that better results can be obtained by choosing the model parameters

�

in order to directly maximize the �nancial criterion of interest� What we mean by training

criterion in this paper is a scalar function of the training data and the model parameters� This
scalar function is minimized �or maximized� with an optimization algorithm �such as gradient
descent� by varying the parameters� In section �� we present theoretical arguments justifying this
direct optimization approach� In section 	� we present a particular cost function for optimizing
the pro�ts of a portfolio� while taking into account losses due to transaction costs� It should be
noted that including transactions in the cost function makes it non�linear �and not quadratic�
with respect to the trading decisions� When the decisions are taken in a way that depends on the
current asset allocation �to minimize transactions�� all the decisions during a trading sequence
become dependent of each other� In section
 we present a particular decision taking� i�e��
trading� strategy� and a di�erentiable version of it� which can be used in the direct optimization
of the model parameters with respect to the �nancial criteria� In section �� we describe a series
of experiments which compare the direct optimization approach with the prediction approach�

� Optimizing the Correct Criterion

It has already been shown how arti�cial neural networks can be trained with various training
criteria to perform a statistically meaningful task� for example� with the mean squared error
criterion in order to estimate the expected value of output variables given input variables� or with
cross�entropy or maximum likelihood� in order to build a model of the conditional distribution
of discrete output variables� given input variables
Whi��� RL����

However� in many applications of learning algorithms� the ultimate objective is not to build a
model of the distribution or of the expected value of the output variables� but rather to use the
trained system in order to take the best decisions� according to some criterion� The Bayesian
approach is two�step� �rst� estimate a conditional model of the output distribution� given the
input variables� second� assuming this is the correct model� take the optimal decisions� i�e� those
which minimize a cost function�

For example� in classi�cation problems� when the �nal objective is to minimize the number
of classi�cation errors� one picks the output class with the largest a�posteriori probability� given
the input� and assuming the model is correct� However� this incorrect assumption may be
hurtful� especially when the training data is not abundant �or non�stationary� for time�series��
and noisy� In particular� it has been proven
HK��� for classi�cation tasks that this strategy is
less optimal than one based on training the model with respect to the decision surfaces� which
may be determined by a discriminant function associated to each class �e�g�� one output of a
neural network for each class�� The objective of training should be that the decision that is
taken �e�g�� picking the class whose corresponding discriminant function is the largest� has more
chance of being the correct decision� without assuming a particular probabilistic interpretation
for the discriminant functions �model outputs�� Since the number of classi�cation errors is a
discrete function of the parameters� several training schemes have been proposed that are closer
to that objective than a prediction or likelihood criterion� see for example the work on the
Classi�cation Figure of Merit
HW���� as well as the work on training neural networks through
a post�processor based on dynamic programming for speech recognition
DBG��� �in which the

�

objective is to correctly recognize and segment sequences of phonemes� rather than individual
phonemes��

The latter work is also related to several proposals to build modular systems that are trained
cooperatively in order to optimize a common objective function �see
BG��� and
Ben���� Chap�
ter ��� Consider the following situation� We have a composition of two models M�� and M��
with the output of M� feeding the input of M�� Module M� computes y�x� ���� with input x
and parameters ��� Module M� computes w�y�x� ���� ���� with parameters ��� We have a prior
idea of what M� should do� with pairs of input and desired outputs �xp� dp�� but the ultimate
measure of performance� C�w�� depends on the output w of M�� In the context of this paper� as
in Figure �� M� represents a prediction model �for example of the future return of stocks�� M�

represents a trading module �which decides on portfolio weights w� i�e�� when and how much to
buy and sell�� and C represents a �nancial criterion �such as the average return of the decision
policy��

We compare two ways to train these two modules� either train them separately or train them
jointly� When trained jointly� both �� and �� are chosen to minimize C� for example by back�
propagating gradients through M� into M�� When trained separately� M� is trained to minimize
some intermediate training criterion� such as the Mean Squared Error �MSE� C� between the
�rst module�s output� y�xp� ���� and the desired output dp �here dp could represent the actual
future return of the stocks over some horizon for the pth training example��

C����� �
X

p

�dp � y�xp� ����
� ���

Once M� is trained� the parameters of M� are then tuned �if it has any parameters� in order to
minimize C� At the end of training� we can assume that local optima have been reached for C�

�with respect to parameters ��� and C �with respect to parameters ��� assuming M� �xed�� but
that neither C� nor C have reached their best possible value�

�C�

���
� �

�C

���
� � ���

After this separate training� however� C could still be improved by changing y� i�e�� �C
�y

�� ��
except in the trivially uninteresting case in which y does not in�uence w� or in the unlikely case
in which the value of �� which minimizes C� also minimizes C when �� is chosen to minimize C
�this is essentially the assumption made in the ��step Bayes decision process��

Considering the in�uence of �� on C over all the examples p� through y�

�C

���
�
X

p

�C

�y�xp� ���

�y�xp� ���

���
� �	�

so we have �C
���

�� �� except in the uninteresting case in which �� does not in�uence y� Because
of this inequality� one can improve the global criterion C by further modifying �� along the
direction of the gradient �C

���
� Hence separate training is generally suboptimal� because in general

	

2

1

d

1C

y

x

Financial
Criterion

C

Error Criterion

Mean Squared

M : decision
 module

M : prediction
 module

w

Figure �� Task decomposition� a prediction module �M�� with input x and output y� and a
decision module �M�� with output w� In the case of separate optimization� an intermediate
criterion �e�g�� mean squared error� is used to train M� �with desired outputs d�� In the case of
joint optimization of the decision module and the prediction module� gradients with respect to
the �nancial criterion are back�propagated through both modules �dotted lines��

each module cannot perform perfectly the desired transformations from the preconceived task
decomposition� For the same number of free parameters� joint training of M� and M� can reach
a better value of C�

Therefore� if one wants to optimize on a given training set the global �nancial criterion C
while having as few free parameters as possible in M�� it is better to optimize M� with respect
to C rather than with respect to an intermediate goal C��

� A Training Criterion for Portfolio Management

In this paper� we consider the practical example of choosing a discrete sequence of portfolio
weights in order to maximize pro�ts� while taking into account losses due to transactions� We
will simplify the representation of time by assuming a discrete series of events� at time indices
t � �� �� � � � � T � We assume that some decision strategy yields� at each time step t� the portfolio

weights wt � �wt��� wt��� � � � � wt�n�� for n � � weights� In the experiments� we will apply this
model to managing n stocks as well as a cash asset �which may earn short�term interest�� We
will assume that each transaction �buy or sell� of an amount v of asset i costs cijvj� This may
be used to take into account the e�ect of di�erences in liquidity of the di�erent assets� In the
experiments� in the case of cash� the transaction cost is zero� whereas in the case of stocks� it
is ��� i�e�� the overall cost of buying and later selling back a stock is about �� of its value� A
more realistic cost function should take into account the non�linear e�ects of the amount that
is sold or bought� transaction fees may be higher for small transactions� transactions may only
be allowed with a certain granularity� and slippage losses due to low relative liquidity may be
higher for large transactions�

The training criterion is a function of the whole sequence of portfolio weights� At each time
step t� we decompose the change in value of the assets in two categories� the return due to the
changes in prices �and revenues from dividends�� Rt� and the losses due to transactions� Lt� The
overall return ratio is the product of Rt and Lt over all the time steps t � �� �� � � � � T �

overall return ratio �
Y

t

RtLt �
�

This is the ratio of the �nal wealth to the initial wealth� Instead of maximizing this quantity� in
this paper we maximize its logarithm �noting that the logarithm is a monotonic function��

C
def
�
X

t

�logRt � logLt� ���

The yearly percent return is then given by �eCP�T � �� � ����� where P is the number of time
steps per year ���� in the experiments�� and T is the number of time steps �number of months� in
the experiments� over which the sum is taken� The return Rt due to price changes and dividends
from time t to time t� � is de�ned in terms of the portfolio weights wt�i and the multiplicative
returns of each stock rt�i�

rt�i
def
�valuet���i�valuet�i� ���

where valuet�i represents the value of asset i at time t� assuming no transaction takes place� rt�i
represents the relative change in value of asset i in the period t to t � �� Let at�i be the actual
worth of the ith asset at time t in the portfolio� and let at be the combined value of all the assets
at time t� Since the portfolio is weighted with weights wt�i� we have

at�i
def
�atwt�i ���

and
at �

X

i

at�i �
X

i

atwt�i ���

Because of the change in value of each one of the assets� their value becomes

a�t�i
def
�rt�iat�i� ���

Therefore the total worth becomes

a�t �
X

i

a�t�i �
X

i

rt�iat�i � at
X

i

rt�iwt�i ����

�

so the combined worth has increased by the ratio

Rt
def
�
a�t
at

����

i�e��
Rt �

X

i

wt�irt�i� ����

After this change in asset value� the portfolio weights have changed as follows �since the di�erent
assets have di�erent returns��

w�

i�t
def
�
a�t�i
a�t

�
wt�irt�i
Rt

� ��	�

At time t��� we want to change the proportions of the assets to the new portfolio weights wt���
i�e� the worth of asset i will go from a�tw

�

t�i to a�twt���i� We then have to incur for each asset a
transaction loss� which is assumed simply proportional to the amount of the transaction� with
a proportional cost ci for asset i� These losses include both transaction fees and slippage� This
criterion could easily be generalized to take into account the fact that the slippage costs may vary
with time �depending on the volume of o�er and demand� and may also depend non�linearly on
the actual amount of the transactions� After transaction losses� the worth at time t�� becomes

at�� � a�t �
X

i

cija
�

twt���i � a�tw
�

t�ij

� a�t���
X

i

cijwt���i � w�

t�ij�� ��
�

The loss Lt due to transactions at time t is de�ned as the ratio

Lt
def
�

at
a�t��

� ����

Therefore
Lt � ��

X

i

cijwt�i � w�

t���ij� ����

To summarize� the overall pro�t criterion can be written as follows� in function of the portfolio
weights sequence�

C �
X

t

log�
X

i

rt�iwt�i� �

log���
X

i

cijwt�i � w�

t���ij� ����

where w� is de�ned as in equation �	� Therefore we can write C in terms of the return ratios
rt�i� the decisions wt�i� and the relative transactions costs ci as follows�

C �
X

t

log�
X

i

rt�iwt�i� �

log���
X

i

cijwt�i �
wt���irt���iP
iwt���irt���i

j� ����

�

w’t

y

w

r
R L

w’

TRADING
MODULE

y

w

r
R L

t

t
t

t

t

w’t-1

TRADING
MODULE

y

w

r
R L

w’

TRADING
MODULE

t-2 t

t-1 t+1

t-1 t+1

t-1
t-1

t-1

w’ w’t+1

t+1
t+1

t+1

C

t-1

Figure �� Operation of a trading module� unfolded in time� with inputs yt �network output�
and w�

t�� �previous portfolio weights after change in value�� and with outputs wt �next port�
folio weights�� Rt is the return of the portfolio due to changes in value� Lt is the loss due to
transactions� and rt�i is the individual return of asset i�

At each time step� a trading module computes wt� from w�

t�� and from the predictor output
yt� as illustrated �unfolded in time� in Figure �� To backpropagate gradients with respect to the
cost function through the trader from the above equation� one computes �C

�wt�i
� when given �C

�w�

t
�

The trading module can then compute �C
�w�

t��

from �C
�wt

� and this process is iterated backwards in

time� At each time step� the trading module also computes �C
�yt

from �C
�wt

�

To conclude this section� it should be noted that the introduction of transaction losses in
the training criterion makes it non�linear in the decisions �whereas the pro�t term is linear in
the decisions�� Note that it is not even di�erentiable everywhere �but it is di�erentiable almost
everywhere� which is enough for gradient descent optimization�� Furthermore� when the decision
at time t is taken in function of the previous decision �to avoid unnecessary transactions�� all the
decisions are coupled together� i�e�� the cost function can�t be separated as a sum of independent
terms associated to the network output at each time step� For this reason� an algorithm such as
back�propagation through time has to be used to compute the gradients of the cost function�

� The Trading Modules

We could directly train a module producing in output the portfolio weights wt�i� but in this paper
we use some �nancial a�priori knowledge in order to modularize this task in two subtasks�

�� with a �prediction� module �e�g�� M� in �gure ��� compute a �desirability� value yt�i for
each asset on the basis of the current inputs�

�

�� with a trading module� allocate capital among the given set of assets �i�e�� compute the
weights wt�i�� on the basis of yt and w�

t���i �this is done with the decision module M� in
�gure ���

In this section� we will describe two such trading modules� both based on the same a�priori
knowledge� The �rst one is not di�erentiable and it has hand�tuned parameters� whereas the
second one is di�erentiable and it has parameters learned by gradient ascent on the �nancial
criterion C� The a�priori knowledge we have used in designing this trader can be summarized
as follows�

� We mostly want to have in our portfolio those assets that are desirable according to the
predictor �high yt�i��

� More risky assets �e�g�� stocks� should have a higher expected return than less risky assets
�e�g�� cash� to be worth keeping in the portfolio�

� The outputs of the predictor are very noisy and unreliable�

� We want our portfolio to be as diversi�ed as possible� i�e�� it is better to have two assets
of similar expected returns than to invest all our capital in one that is slightly better�

� We want to minimize the amount of the transactions�

At each time step� the trading module takes as input the vectors yt �predictor output� and w�

t��

�previous weights� after change in value due to multiplicative returns rt���� It then produces the
portfolio weight vector wt� as shown in Figure �� Here we are assuming that the assets � � � � n��
are stocks� and asset n represents cash �earning short�term interests�� The portfolio weights wt�i

are non�negative and sum to ��

��� A Hard Decisions Trader

Our �rst experiments were done with a neural network trained to minimize the squared error
between the predicted and actual asset returns� Based on advice from �nancial specialists� we
designed the following trading algorithm� which takes hard decisions� according to the a�priori
principles above� The algorithm described in �gure 	 is executed at each time step t�

Statement � in �gure 	 is to minimize transactions� Statement � assigns a discrete quality
�good� neutral� or bad� to each stock in function of how the predicted return compares to the
average predicted return and to the return of cash� Statement 	 computes the current total
weight of bad stocks that are currently owned� and should therefore be sold� Statement
 uses
that money to buy the good stocks �if any�� distributing the available money uniformly among
the stocks �or if no stock is good increase the proportion of cash in the portfolio��

The parameters c�� c�� c�� b�� b�� and b� are thresholds that determine whether a stock should
be considered good� neutral� or bad� They should depend on the scale of y and on the relative
risk of stocks versus cash� The parameter � � � � � controls the �boldness� of the trader� A

�

�� By default� initialize wt�i � w�

t�i for all i � � � � � n�

�� Assign a qualityt�i �equal to good� neutral� or bad� to each stock �i � � � � � n � ���

�a� Compute the average desirability �yt �
�

n

Pn��
i�� yt�i�

�b� Let rankt�i be the rank of yt�i in the set fyt��� � � � � yt�n��g�

�c� If yt�i � c� �yt and yt�i � c�yt�n and rankt�i � c�
Then

qualityt�i � good�
Else�

If yt�i � b� �yt or yt�i � b�yt�n or rankt�i � b�
Then� qualityt�i � bad�
Else� qualityt�i � neutral�

	� Compute the total weight of bad stocks that should be sold�

�a� Initialize kt � �

�b� For i � � � � � n� �

� If qualityt�i � bad and w�

t���i � � �i�e�� already owned�� Then

�SELL a fraction of the amount owned�
kt � kt � �w�

t���i

wt�i � w�

t���i � �w�

t���i

� If kt � � Then �either distribute that money among good stocks� or keep it in cash��

�a� Let st � number of good stocks not owned�

�b� If st � �

Then

� �also use some cash to buy good stocks�
kt � kt � �w�

t���n

wt�n � w�

t���n�� � � �

� For all good stocks not owned� BUY� wt�i � kt�st�

Else �i�e�� no good stocks were not already owned�

� Let s�t � number of good stocks�

� If s�t � �

Then For all the good stocks� BUY� wt�i � w�

t���i � kt�s
�

t

Else �put the money in cash� wt�n � w�

t���n � kt�

Figure 	� Algorithm for the �hard� trading module� See text for more explanations�

�

small value prevents it from making too many transactions �a value of zero yields a buy�and�hold
policy��

In the experiments� those parameters were chosen using basic judgment and a few trial and
error experiments on the �rst training period� However� it is di�cult to numerically optimize
these parameters because of the discrete nature of the decisions taken� Furthermore� the pre�
dictor module might not give out numbers that are optimal for the trader module� This has
motivated the following di�erentiable trading module�

��� A Soft Decisions Trader

This trading module has the same inputs and outputs as the hard decision trader� as in Figure ��
and executes algorithm described in
 at each time step t�

Statement � of �gure
 de�nes two quantities ��goodness� and �badness��� to compare each
asset with the other assets� indicating respectively a willingness to buy and a willingness to sell�
�Goodness� compares the network output for a stock with the largest of the average network
output over stocks and the promised cash return� �Badness� compares the network output for
a stock with the smallest of the average network output over stocks and the promised cash
return� Statement � computes the amount to sell based on the weighted sum of �badness�
indices� Statement 	a then computes a quantity �t that compares the sum of the goodness
and badness indices� Statement 	b uses that quantity to compute the change in cash �using a
di�erent formula depending on wether �t is positive or negative�� Statement 	c uses that change
in cash to compute the amount available for buying more stocks �or the amount of stocks that
should be sold�� Statement
 computes the new proportions for each stock� by allocating the
amount available to buy new stocks according to the relative goodness of each stock� In the �rst
term of statement
a the proportions are reduced proportionaly to the badness index� and in
the second term they are increased proportionally to the goodness index� Again� a parameter
� controls the risks taken by the trading module �here when � is very negative� the buy�and�
hold strategy will result� whereas when it is large� more transactions will occur�� Note that
sigmoid�x� � �

��exp�x
� The sigmoid�� � rather than � was used to constrain that number to be

between � and �� There are � parameters� �� � f c�� c�� b�� b�� a�� a�� s�� s�� � g� �ve of which
have a similar interpretation as in the hard trader� However� since we can compute the gradient
of the training criterion with respect to these parameters� their value can be learned from the
data� From the above algorithmic de�nition of the function wt�w�

t��� yt� ��� one can easily write
down the equations for �C

�yt�i
� �C
�w�

t���i

and �C
���

� when given the gradients �C
�wt�j

� using the chain rule�

� Experiments

We have performed experiments in order to study the di�erence between training only a predic�
tion module with the Mean Squared Error �MSE� and training both the prediction and decision
modules to maximize the �nancial criterion de�ned in section 	 �equation ����

��

�� �Assign a goodness value gt�i and a badness value bt�i between � and � for each stock�

� �Compute the average desirability� �yt �
�

n

Pn��
i�� yt�i�

� �goodness� gt�i � sigmoid�s��yt�i �max�c� �yt� c�yt�n���

� �badness� bt�i � sigmoid�s��min�b� �yt� b�yt�n�� yt�i��

�� �Compute the amount to �sell�� to be o�set later by an amount to �buy��
kt �

Pn��
i�� sigmoid�� �bt�iw�

t��� i

	� �Compute the change in cash�

�a� �t � tanh�a� � a�
Pn��

i�� �bt�i � gt�i��

�b� If �t � � �more bad than good� increase cash�

Then wt�n � w�

t���n � �tkt

Else �more good than bad� reduce cash�

wt�n ��w�

t���n�t

�c� So the amount available to buy is�
at � kt � �wt�n � w�

t���n�

� �Compute amount to �buy�� o�set by previous �sell�� and compute the new weights wt�i

on the stocks�

�a� st �
Pn��

i�� gt�i �a normalization factor�

�b� wt�i � w�

t���i�� � sigmoide�� �bt�i� �
gt�i
st
at

Figure
� Algorithm for the �soft� �di�erentiable� trading module� See text for more explana�
tions�

��

��� Experimental Setup

The task is one of managing a portfolio of 	� Canadian stocks� as well as allocate funds between
those stocks and a cash asset �n � 	� in the above sections� the number of assets is n �
� � 	��� The 	� companies are major companies of the Toronto Stock Exchange �most of
them in the TSE	� Index�� The data is monthly and spans �� years� from December ���
 to
February ���� ���	 months�� We have selected � input features �xt is ��dimensional�� � of which
represent macro�economic variables which are known to in�uence the business cycle� and 	 of
which are micro�economic variables representing the pro�tability of the company and previous
price changes of the stock�

We used ordinary fully connected multi�layered neural networks with a single hidden layer�
trained by gradient descent� The same network was used for all 	� stocks� with a single output yt�i
at each month t for stock i� Preliminary experiments with the network architecture suggested
that using approximately 	 hidden units yielded better results than using no hidden layer or
many more hidden units� Better results might be obtained by considering di�erent sectors of
the market �di�erent types of companies� separately� but for the experiments reported here� we
used a single neural network for all the stocks� When using a di�erent model for each stock
and sharing some of the parameters� signi�cantly better results were obtained �using the same
training strategy� on that data
GB���� The parameters of the network are therefore shared
across time and across the 	� stocks� The 	�th output �for desirability of cash� was obtained
from the current short�term interest rates �which are also used for the multiplicative return of
cash� rt�n��

To take into account the non�stationarity of the �nancial and economic time�series� and es�
timate performance over a variety of economic situations� multiple training experiments were
performed on di�erent training windows� each time testing on the following �� months� For
each experiment� the data is divided into three sets� one for training� one for validation �early
stopping�� and one for testing �estimating generalization performance�� The latter two sets each
span �� months� Four training� validation� and test periods were considered� by increments of
�� months�

�� Training from �rst 		 months� validation with next �� months� test with following ��
months�

�� Training from �rst �� months� validation with next �� months� test with following ��
months�

	� Training from �rst �� months� validation with next �� months� test with following ��
months�

� Training from �rst �� months� validation with next �� months� test with following ��
months�

Training lasted between �� and ��� iterations of the training set� with early stopping based
on the performance on the validation set� The overall return was computed for the whole test
period �of
 consecutive sets of �� months � �� months � � years� March �� � February ����

��

0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34
−10

−5

0

5

10

15
Excess Return vs MSE on Training Data

Mean Squared Error

%
 E

xc
es

s
R

et
ur

n

0.205 0.21 0.215 0.22 0.225 0.23
−10

−8

−6

−4

−2

0

2

4

6

8

10
Excess Return vs MSE on Test Data

Mean Squared Error

%
 E

xc
es

s
R

et
ur

n

�a� �b�

Figure �� Scatter plots of MSE versus excess return of network� trained to minimize the MSE�
�a� on training set� �b� on test set�

When comparing the two training algorithms �prediction criterion versus �nancial criterion��
�� experiments were performed with di�erent initial weights� and the average and standard
deviation of the �nancial criterion are reported�

A buy�and�hold benchmark was used to compare the results with a conservative policy� For
this benchmark� the initial portfolio is distributed equally among all the stocks �and no cash��
Then there are no transactions� The returns for the benchmark are computed in the same way
as for the neural network �except that there are no transactions�� The excess return is de�ned
as the di�erence between the overall return obtained by a network and that of the buy�and�hold
benchmark�

��� Results

In the �rst series of experiments� the neural network was trained with a mean squared error
criterion in order to predict the return of each stock over a horizon of three months� We used the
�hard decision trader� described in section
�� in order to measure the �nancial pro�tability of
the system� We quickly realized that although the mean squared error was gradually improving
during training� the pro�ts made sometimes increased� sometimes decreased� This actually
suggested that we were not optimizing the �right� criterion�

This problem can be visualized in Figures � and �� The scatter plots were obtained by tak�
ing the values of excess return and mean squared error over �� experiments with ��� training
epochs �i�e� with ���� points�� both on a training and a test set� Although there is a tendency
for returns to be larger for smaller MSE� many di�erent values of return can be obtained for the
same MSE� This constitutes an additional �and undesirable� source of variance in the general�
ization performance� Instead� when training the neural network with the �nancial criterion� the
corresponding scatter plots of excess return against training criterion would put all the points
on a single exponential curve� since the excess return is simply the value of the training criterion

�	

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

6

8

10

12

14
Excess Return on Training Set vs Training Iterations

Training Epochs

%
 E

xc
es

s
R

et
ur

n

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

3

4

5
Excess Return on Test Set vs Training Iterations

Training Epochs

%
 E

xc
es

s
R

et
ur

n

�a� �b�

Figure �� Evolution of excess return during training for network trained directly to maximize
return �full line� and network trained to minimize MSE �dashed line�� �a� on training set� �b�
on test set�

normalized to obtain yearly returns �by dividing the log�returns by the number of years in the
sequence� and taking the exponential�� and from which the average return of the benchmark is
substracted�

For the second series of experiments� we created the �soft� version of the trader described
in section
��� and trained the parameters of the trader as well as the neural network in order
to maximize the �nancial criterion de�ned in section 	 �which is equivalent to maximizing the
overall excess return�� A series of �� training experiments �with di�erent initial parameters� were
performed �each with four training� validation and test periods� to compare the two approaches�
Table � summarizes the results� During the whole ��year test period �March �� � February
���� the benchmark yielded returns of ����� whereas the network trained with the prediction
criterion and the one trained with the �nancial criterion yielded in average returns of ���� and
�
��� respectively �i�e� ���� and ��
� in excess of the benchmark� respectively�� The direct
optimization approach� which uses a specialized criterion specialized for the �nancial task� clearly
yields better performance on this task� both on the training and test data�

Following a suggestion of a reviewer� the experiments were replicated using arti�cially gener�
ated returns� and similar results were observed� The arti�cially generated returns were obtained
from an arti�cial neural network with �� hidden units �i�e�� more than the 	 units used in the
prediction module�� and with additive noise on the return� Again we observed that decreases
in mean squared error of the predictor were not very correlated with increases in excess return�
When training with respect to the �nancial criterion instead� the average excess return on the
test period increased from
��� to ����� As in the experiments with real data� the �nancial
performance on the training data was even more signi�cantly superior when using the �nancial
criterion �corroborating the hypothesis that as far as the �nancial criterion is concerned� the
direct optimization approach o�ers more capacity than the indirect optimization approach��

�

Table �� Comparative results� network trained with Mean Squared Error to predict future
return vs network trained with �nancial criterion �to directly maximize return�� The averages
and standard deviations are over �� experiments� The test set represents � years� �	����������

Average Excess �Standard Average Excess �Standard
Return on Deviation� Return on Deviation�

Training Sets Test Sets
Net Trained
with MSE ���� ���
�� ���� ������
Criterion
Net Trained
with Financial ����� ������ ���� ������
Criterion

� Conclusion

We consider decision�taking problems on �nancial time�series with learning algorithms� Theo�
retical arguments suggest that directly optimizing the �nancial criterion of interest should yield
better performance� according to that same criterion� than optimizing an intermediate predic�
tion criterion such as the often used mean squared error� However� this requires de�ning a
di�erentiable decision module� and we have introduced a �soft� trading module for this purpose�
Another theoretical advantage of such a decision module is that its parameters may be optimized
numerically from the training data�

The inadequacy of the mean squared error criterion was suggested to us by the poor correlation
between its value and the value of the �nancial criterion� both on training and test data�

Furthermore� we have shown with a portfolio management experiment on 	� Canadian stocks
with �� years of data that the more direct approach of optimizing the �nancial criterion of
interest performs better than the indirect prediction approach�

In general� for other applications� one should carefully look at the ultimate goals of the system�
Sometimes� as in our example� one can design a di�erentiable cost and decision policy� and obtain
better results by optimizing the parameters with respect to an objective that is closer to the
ultimate goal of the trained system�

����	 Acknowledgements

The author would like to thank S� Gauthier and F� Gingras for their prior work on data prepro�
cessing� E� Couture and J� Ghosn� for their useful comments� as well as� the NSERC� FCAR�
IRIS Canadian funding agencies for support� We would also like to thank Andr�e Chabot from
Boulton�Tremblay Inc� for the economic data series used in these experiments�

��

References

Ben��� Y� Bengio� Neural Networks for Speech and Sequence Recognition� International
Thompson Computer Press� London� UK� �����

BG��� L� Bottou and P� Gallinari� A framework for the cooperation of learning algorithms�
In R� P� Lippman� R� Moody� and D� S� Touretzky� editors� Advances in Neural Infor�

mation Processing Systems �� pages �������� Denver� CO� �����

DBG��� X� Driancourt� L� Bottou� and P� Gallinari� Learning vector quantization� multi�layer
perceptron and dynamic programming� Comparison and cooperation� In International

Joint Conference on Neural Networks� volume �� pages �������� �����

GB��� Joumana Ghosn and Yoshua Bengio� Multi�task learning for stock selection� In Ad�

vances in Neural Information Processing Systems �� volume �� Cambridge� MA� �����
MIT Press�

HK��� J� B� Hampshire and B� V� K� Vijaya Kumar� Shooting craps in search of an optimal
strategy for training connectionist pattern classi�ers� In J� Moody� S� Hanson� and
R� Lippmann� editors� Advances in Neural Information Processing Systems� volume
�
pages �������	�� Denver� CO� ����� Morgan Kaufmann�

HW��� John B� Hampshire and Alexander H� Waibel� A novel objective function for improved
phoneme recognition using time�delay neural networks� IEEE Transactions of Neural

Networks� ������������� June �����

RL��� Michael D� Richard and Richard P� Lippmann� Neural network classi�ers estimate
Bayesian a�posteriori probabilities� Neural Computation� 	�
���
�	� �����

Whi��� H� White� Learning in arti�cial neural networks� A statistical perspective� Neural

Computation� ��
��
���
�
� �����

��

