Using a Financial Training Criterion Rather than a
Prediction Criterion

Yoshua Bengio
bengioy@iro.umontreal.ca
Dept. IRO
Université de Montréal
Montréal, Qc, H3C 3J7
CANADA

To appear in the International Journal of Neural Systems, special issue on
noisy time series

Abstract

The application of this work is to decision taking with financial time-series, using learn-
ing algorithms. The traditional approach is to train a model using a prediction criterion,
such as minimizing the squared error between predictions and actual values of a dependent
variable, or maximizing the likelihood of a conditional model of the dependent variable.
We find here with noisy time-series that better results can be obtained when the model
is directly trained in order to maximize the financial criterion of interest, here gains and
losses (including those due to transactions) incurred during trading. Experiments were
performed on portfolio selection with 35 Canadian stocks.

1 Introduction

Most applications of learning algorithms to financial time-series are based on predicting the
value (either discrete or continuous) of output (dependent) variables given input (independent)
variables. For example, the parameters of a multi-layer neural network are tuned in order to
minimize a squared error loss. However, in many of these applications, the ultimate goal is not
to make good predictions, but rather to use these often noisy predictions in order to take some
decisions. In fact, the performance of these systems is usually measured in terms of financial
profitability and risk criteria, after some heuristic decision taking rule has been applied to the
trained model’s outputs.

Because of the limited amount of training data, and because financial time-series are often
very noisy, we argue here that better results can be obtained by choosing the model parameters

in order to directly mazimize the financial criterion of interest. What we mean by training
eriterion in this paper is a scalar function of the training data and the model parameters. This
scalar function is minimized (or maximized) with an optimization algorithm (such as gradient
descent) by varying the parameters. In section 2, we present theoretical arguments justifying this
direct optimization approach. In section 3, we present a particular cost function for optimizing
the profits of a portfolio, while taking into account losses due to transaction costs. It should be
noted that including transactions in the cost function makes it non-linear (and not quadratic)
with respect to the trading decisions. When the decisions are taken in a way that depends on the
current asset allocation (to minimize transactions), all the decisions during a trading sequence
become dependent of each other. In section 4 we present a particular decision taking, i.e.,
trading, strategy, and a differentiable version of it, which can be used in the direct optimization
of the model parameters with respect to the financial criteria. In section 5, we describe a series
of experiments which compare the direct optimization approach with the prediction approach.

2 Optimizing the Correct Criterion

It has already been shown how artificial neural networks can be trained with various training
criteria to perform a statistically meaningful task: for example, with the mean squared error
criterion in order to estimate the expected value of output variables given input variables, or with
cross-entropy or maximum likelihood, in order to build a model of the conditional distribution
of discrete output variables, given input variables [Whi89, RL91].

However, in many applications of learning algorithms, the ultimate objective is not to build a
model of the distribution or of the expected value of the output variables, but rather to use the
trained system in order to take the best decisions, according to some criterion. The Bayesian
approach is two-step: first, estimate a conditional model of the output distribution, given the
input variables, second, assuming this is the correct model, take the optimal decisions, i.e, those
which minimize a cost function.

For example, in classification problems, when the final objective is to minimize the number
of classification errors, one picks the output class with the largest a-posteriori probability, given
the input, and assuming the model is correct. However, this incorrect assumption may be
hurtful, especially when the training data is not abundant (or non-stationary, for time-series),
and noisy. In particular, it has been proven [HK92] for classification tasks that this strategy is
less optimal than one based on training the model with respect to the decision surfaces, which
may be determined by a discriminant function associated to each class (e.g., one output of a
neural network for each class). The objective of training should be that the decision that is
taken (e.g., picking the class whose corresponding discriminant function is the largest) has more
chance of being the correct decision, without assuming a particular probabilistic interpretation
for the discriminant functions (model outputs). Since the number of classification errors is a
discrete function of the parameters, several training schemes have been proposed that are closer
to that objective than a prediction or likelihood criterion: see for example the work on the
Classification Figure of Merit [HW90], as well as the work on training neural networks through
a post-processor based on dynamic programming for speech recognition [DBGI1] (in which the

2

objective is to correctly recognize and segment sequences of phonemes, rather than individual
phonemes).

The latter work is also related to several proposals to build modular systems that are trained
cooperatively in order to optimize a common objective function (see [BG91] and [Ben96], Chap-
ter 5). Consider the following situation. We have a composition of two models My, and M,
with the output of M; feeding the input of M,. Module M; computes y(z,6,), with input x
and parameters 6;. Module My computes w(y(x,61),0,), with parameters 6. We have a prior
idea of what M; should do, with pairs of input and desired outputs (x,,d,), but the ultimate
measure of performance, C'(w), depends on the output w of M;. In the context of this paper, as
in Figure 1, M; represents a prediction model (for example of the future return of stocks), M,
represents a trading module (which decides on portfolio weights w, i.e., when and how much to
buy and sell), and C represents a financial criterion (such as the average return of the decision
policy).

We compare two ways to train these two modules: either train them separately or train them
jointly. When trained jointly, both §; and 65 are chosen to minimize C, for example by back-
propagating gradients through M, into M;. When trained separately, M is trained to minimize
some intermediate training criterion, such as the Mean Squared Error (MSE) C; between the
first module’s output, y(x,,6:1), and the desired output d, (here d, could represent the actual
future return of the stocks over some horizon for the p'® training example):

Cy(01) = Z(dp — y(zp, ‘91))2 (1)

p

Once M; is trained, the parameters of M, are then tuned (if it has any parameters) in order to
minimize C'. At the end of training, we can assume that local optima have been reached for C
(with respect to parameters 6;) and C' (with respect to parameters 6y, assuming M; fixed), but
that neither C; nor C' have reached their best possible value:

ac,
a0, "

aC

a0, 0 (2)

After this separate training, however, (' could still be improved by changing y, i.e., % # 0,
except in the trivially uninteresting case in which y does not influence w, or in the unlikely case
in which the value of 8; which minimizes C; also minimizes C when 65 is chosen to minimize '
(this is essentially the assumption made in the 2-step Bayes decision process).

Considering the influence of §; on C over all the examples p, through v,

ocC oC Oy(xp, 01)
- , 3
06, Zp: dy(y, 01) 00, 3)

so we have % # 0, except in the uninteresting case in which #; does not influence y. Because
of this inequality, one can improve the global criterion C by further modifying 6; along the
direction of the gradient %. Hence separate training is generally suboptimal, because in general

C

!

Financial
Criterion
w|
i
G
A M, : decision
module
Mean Squared

Error Criterion

M, : prediction
module

I

Figure 1: Task decomposition: a prediction module (M;) with input @ and output y, and a
decision module (M3) with output w. In the case of separate optimization, an intermediate
criterion (e.g., mean squared error) is used to train M; (with desired outputs d). In the case of
joint optimization of the decision module and the prediction module, gradients with respect to
the financial criterion are back-propagated through both modules (dotted lines).

each module cannot perform perfectly the desired transformations from the preconceived task
decomposition. For the same number of free parameters, joint training of M; and M; can reach
a better value of C.

Therefore, if one wants to optimize on a given training set the global financial criterion '
while having as few free parameters as possible in My, it is better to optimize M; with respect
to C rather than with respect to an intermediate goal (.

3 A Training Criterion for Portfolio Management

In this paper, we consider the practical example of choosing a discrete sequence of portfolio
weights in order to maximize profits, while taking into account losses due to transactions. We
will simplify the representation of time by assuming a discrete series of events, at time indices
t=1,2,...,T. We assume that some decision strategy yields, at each time step ¢, the portfolio

4

weights w; = (w0, Wi, ..., Wey), for n 4+ 1 weights. In the experiments, we will apply this
model to managing n stocks as well as a cash asset (which may earn short-term interest). We
will assume that each transaction (buy or sell) of an amount v of asset ¢ costs ¢;|v|. This may
be used to take into account the effect of differences in liquidity of the different assets. In the
experiments, in the case of cash, the transaction cost is zero, whereas in the case of stocks, it
is 1%, i.e., the overall cost of buying and later selling back a stock is about 2% of its value. A
more realistic cost function should take into account the non-linear effects of the amount that
is sold or bought: transaction fees may be higher for small transactions, transactions may only
be allowed with a certain granularity, and slippage losses due to low relative liquidity may be
higher for large transactions.

The training criterion is a function of the whole sequence of portfolio weights. At each time
step t, we decompose the change in value of the assets in two categories: the return due to the
changes in prices (and revenues from dividends), R;, and the losses due to transactions, L;. The
overall return ratio is the product of R; and L; over all the time steps t =1,2,....T"

overall return ratio = H R.L, (4)

t

This is the ratio of the final wealth to the initial wealth. Instead of maximizing this quantity, in
this paper we maximize its logarithm (noting that the logarithm is a monotonic function):

CE> (log Ry + log Ly) (5)
1

The yearly percent return is then given by (¢“F/7 — 1) x 100%, where P is the number of time
steps per year (12, in the experiments), and 7' is the number of time steps (number of months, in
the experiments) over which the sum is taken. The return R; due to price changes and dividends
from time ¢ to time ¢ 4 1 is defined in terms of the portfolio weights w,; and the multiplicative
returns of each stock r;,

rmdéfvaluetﬂ7¢/Valuet7i, (6)

where value;; represents the value of asset ¢ at time ¢, assuming no transaction takes place: ry;
represents the relative change in value of asset 7 in the period ¢ to t + 1. Let a;; be the actual
worth of the " asset at time ¢ in the portfolio, and let a; be the combined value of all the assets
at time ¢. Since the portfolio is weighted with weights w;;, we have

Clt,z'défatwt,i (7)

and

@ =) Q=) any (8)
Because of the change in value of each one of the assets, their value becomes
def
a;i:rt iy (9)
Therefore the total worth becomes

! !
ay = Z Gy = Z Ttile; = Gt Z Tt Wi (10)

so the combined worth has increased by the ratio

defa;

R=— 11

e (1)
l.e.

R = Zwt,irt,i- (12)

After this change in asset value, the portfolio weights have changed as follows (since the different
assets have different returns):
' d_efa;‘,i Wy T,

= = 13
wz,t Cl/ Rt ()

t

At time t 4+ 1, we want to change the proportions of the assets to the new portfolio weights w;1,
i.e, the worth of asset 7 will go from ajwi; to ajwiy1,. We then have to incur for each asset a
transaction loss, which is assumed simply proportional to the amount of the transaction, with
a proportional cost ¢; for asset 1. These losses include both transaction fees and slippage. This
criterion could easily be generalized to take into account the fact that the slippage costs may vary
with time (depending on the volume of offer and demand) and may also depend non-linearly on
the actual amount of the transactions. After transaction losses, the worth at time ¢ + 1 becomes

o Q0 P
iy1 = at_E:CZMtwt-I—LZ apwy |

K3

= aé(l - Zci|wt+1,z’ - w§,¢|)- (14)

K3

The loss L; due to transactions at time ¢ is defined as the ratio

L 15
S (15)

Therefore
Li=1-=) clwy —wy_y . (16)

K3

To summarize, the overall profit criterion can be written as follows, in function of the portfolio
weights sequence:

C =" log(d rewe;) +
t 7

log(1 =Y eifwy; — wi_y) (17)

K3

where w’ is defined as in equation 13. Therefore we can write C' in terms of the return ratios
i, the decisions wy;, and the relative transactions costs ¢; as follows:

C =" log(>_ riawe) +
t 7

log(1 = 3 eifuwy; — 2l (13)

i > We—1,4Tt—1,4

TRADING TRADING TRADING
MODULE MODULE MODULE

%1 % Y1

Figure 2: Operation of a trading module, unfolded in time, with inputs y; (network output)
and w)_, (previous portfolio weights after change in value), and with outputs w; (next port-
folio weights). Ry is the return of the portfolio due to changes in value, L; is the loss due to
transactions, and ry; is the individual return of asset :.

At each time step, a trading module computes wy, from w;_; and from the predictor output
yt, as illustrated (unfolded in time) in Figure 2. To backpropagate gradients with respect to the

cost function through the trader from the above equation, one computes %, when given 885,.
5t t
The trading module can then compute 83, from aa—gt, and this process is iterated backwards in

t—1
oC

time. At each time step, the trading module also computes g—; from Z-.

To conclude this section, it should be noted that the introduction of transaction losses in
the training criterion makes it non-linear in the decisions (whereas the profit term is linear in
the decisions). Note that it is not even differentiable everywhere (but it is differentiable almost
everywhere, which is enough for gradient descent optimization). Furthermore, when the decision
at time ¢ is taken in function of the previous decision (to avoid unnecessary transactions), all the
decisions are coupled together, i.e., the cost function can’t be separated as a sum of independent
terms associated to the network output at each time step. For this reason, an algorithm such as
back-propagation through time has to be used to compute the gradients of the cost function.

4 The Trading Modules

We could directly train a module producing in output the portfolio weights wy;, but in this paper
we use some financial a-priori knowledge in order to modularize this task in two subtasks:

1. with a “prediction” module (e.g., My in figure 1), compute a “desirability” value y;; for
each asset on the basis of the current inputs,

2. with a trading module, allocate capital among the given set of assets (i.e., compute the
weights w;;), on the basis of y; and wv’f—l,i (this is done with the decision module M, in

figure 1).

In this section, we will describe two such trading modules, both based on the same a-priori
knowledge. The first one is not differentiable and it has hand-tuned parameters, whereas the
second one is differentiable and it has parameters learned by gradient ascent on the financial
criterion C'. The a-priori knowledge we have used in designing this trader can be summarized
as follows:

o We mostly want to have in our portfolio those assets that are desirable according to the
predictor (high ;).

e More risky assets (e.g., stocks) should have a higher expected return than less risky assets
(e.g., cash) to be worth keeping in the portfolio.

e The outputs of the predictor are very noisy and unreliable.

e We want our portfolio to be as diversified as possible, i.e., it is better to have two assets
of similar expected returns than to invest all our capital in one that is slightly better.

e We want to minimize the amount of the transactions.

At each time step, the trading module takes as input the vectors y; (predictor output) and wj_,
(previous weights, after change in value due to multiplicative returns r;_1). It then produces the
portfolio weight vector w;, as shown in Figure 2. Here we are assuming that the assets 0...n—1
are stocks, and asset n represents cash (earning short-term interests). The portfolio weights w; ;
are non-negative and sum to 1.

4.1 A Hard Decisions Trader

Our first experiments were done with a neural network trained to minimize the squared error
between the predicted and actual asset returns. Based on advice from financial specialists, we
designed the following trading algorithm, which takes hard decisions, according to the a-priori
principles above. The algorithm described in figure 3 is executed at each time step ¢.

Statement 1 in figure 3 is to minimize transactions. Statement 2 assigns a discrete quality
(good, neutral, or bad) to each stock in function of how the predicted return compares to the
average predicted return and to the return of cash. Statement 3 computes the current total
weight of bad stocks that are currently owned, and should therefore be sold. Statement 4 uses
that money to buy the good stocks (if any), distributing the available money uniformly among
the stocks (or if no stock is good increase the proportion of cash in the portfolio).

The parameters cg, ¢1, ¢2, by, by, and by are thresholds that determine whether a stock should

be considered good, neutral, or bad. They should depend on the scale of y and on the relative
risk of stocks versus cash. The parameter 0 < 7 < 1 controls the “boldness” of the trader. A

1. By default, initialize w;; < w;; for all 2 = 0...n.
2. Assign a quality, ; (equal to good, neutral, or bad) to each stock (1 =0...n —1):

(a) Compute the average desirability y; + %Z?:_Ol Y-
(b) Let rank.; be the rank of y;, in the set {y:0,...,Ytn-1}-
(¢) If yri > coyr and yi; > c1ys, and ranke; > ¢y
Then
quality, ; < good,
Else,
If y,; <boy: or yi; < byy,, or ranke; < by
Then, quality, ; + bad,
Else, quality, ; < neutral.

3. Compute the total weight of bad stocks that should be sold:

(a) Initialize ky < 0
(b) Fori=0...n—1
o If quality,; = bad and w;_; ; > 0 (i.e., already owned), Then

(SELL a fraction of the amount owned)
kt — kt —|— Tw;_u
Wy < wylf—l,z' - Twylf—u

4. If k; > 0 Then (either distribute that money among good stocks, or keep it in cash):

(a) Let s; < number of good stocks not owned.
(b) If s; >0
Then
— (also use some cash to buy good stocks)
ke «— Kk + Tw;_lm
Wy — wg_lm(l —7)
— For all good stocks not owned, BUY: w;; « ki/s:.
Else (i.e., no good stocks were not already owned)
— Let s} <~ number of good stocks,
—Ifsi >0
Then For all the good stocks, BUY: wy; < wi_; ; + k/s]
Else (put the money in cash) w;,, < wy_y , + ke

Figure 3: Algorithm for the “hard” trading module. See text for more explanations.

small value prevents it from making too many transactions (a value of zero yields a buy-and-hold
policy).

In the experiments, those parameters were chosen using basic judgment and a few trial and
error experiments on the first training period. However, it is difficult to numerically optimize
these parameters because of the discrete nature of the decisions taken. Furthermore, the pre-
dictor module might not give out numbers that are optimal for the trader module. This has
motivated the following differentiable trading module.

4.2 A Soft Decisions Trader

This trading module has the same inputs and outputs as the hard decision trader, as in Figure 2,
and executes algorithm described in 4 at each time step .

Statement 1 of figure 4 defines two quantities (“goodness” and “badness”), to compare each
asset with the other assets, indicating respectively a willingness to buy and a willingness to sell.
“Goodness” compares the network output for a stock with the largest of the average network
output over stocks and the promised cash return. “Badness” compares the network output for
a stock with the smallest of the average network output over stocks and the promised cash
return. Statement 2 computes the amount to sell based on the weighted sum of “badness”
indices. Statement 3a then computes a quantity §; that compares the sum of the goodness
and badness indices. Statement 3b uses that quantity to compute the change in cash (using a
different formula depending on wether d; is positive or negative). Statement 3c uses that change
in cash to compute the amount available for buying more stocks (or the amount of stocks that
should be sold). Statement 4 computes the new proportions for each stock, by allocating the
amount available to buy new stocks according to the relative goodness of each stock. In the first
term of statement 4a the proportions are reduced proportionaly to the badness index, and in
the second term they are increased proportionally to the goodness index. Again, a parameter
7 controls the risks taken by the trading module (here when 7 is very negative, the buy-and-

hold strategy will result, whereas when it is large, more transactions will occur). Note that
1

l+exp—z’

between 0 and 1. There are 9 parameters, 0, = { ¢, ¢1, bo, b1, ag, a1, so, $1, T }, five of which

sigmoid(x) = The sigmoid(7) rather than 7 was used to constrain that number to be
have a similar interpretation as in the hard trader. However, since we can compute the gradient
of the training criterion with respect to these parameters, their value can be learned from the
data. From the above algorithmic definition of the function w;(w)_;, y:, 03) one can easily write

down the equations for 2. —9¢ and 2¢ when given the gradients =2¢~. using the chain rule.
q 96,7 Qwy 5
»J

Aye) dwl_,

B
)

5 Experiments

We have performed experiments in order to study the difference between training only a predic-
tion module with the Mean Squared Error (MSE) and training both the prediction and decision
modules to maximize the financial criterion defined in section 3 (equation 18).

10

1. (Assign a goodness value ¢;,; and a badness value b;; between 0 and 1 for each stock)

n—

e (Compute the average desirability) y, < = 720 vy
e (goodness) ¢:; + sigmoid(so(y:; — max(coye, C1Yin)))
o (badness) b;; < sigmoid(si(min(boys, b1Yt,n) — Yi.i))

2. (Compute the amount to “sell”, to be offset later by an amount to “buy”)
ky « S sigmoid(7)by sw!_

3. (Compute the change in cash)

(a) & + tanh(ap + a1 2" (bri — i)
(b) If 6; > 0 (more bad than good, increase cash)
Then w;, + wi_; , + &k
Else (more good than bad, reduce cash)
Wy, —wg_Ln(St

(¢) So the amount available to buy is:
ap = by — (Wi — Wiy)

4. (Compute amount to “buy”, offset by previous “sell”, and compute the new weights w;
on the stocks)

(a) s; ¢« 2" g:: (a normalization factor)

(b) wy; ¢ wi_; ;(1 — sigmoide(T)b; ;) + Itig,

St

Figure 4: Algorithm for the “soft” (differentiable) trading module. See text for more explana-
tions.

11

5.1 Experimental Setup

The task is one of managing a portfolio of 35 Canadian stocks, as well as allocate funds between
those stocks and a cash asset (n = 35 in the above sections, the number of assets is n +
1 = 36). The 35 companies are major companies of the Toronto Stock Exchange (most of
them in the TSE35 Index). The data is monthly and spans 10 years, from December 1984 to
February 1995 (123 months). We have selected 5 input features (z; is 5-dimensional), 2 of which
represent macro-economic variables which are known to influence the business cycle, and 3 of
which are micro-economic variables representing the profitability of the company and previous
price changes of the stock.

We used ordinary fully connected multi-layered neural networks with a single hidden layer,
trained by gradient descent. The same network was used for all 35 stocks, with a single output v ;
at each month ¢ for stock . Preliminary experiments with the network architecture suggested
that using approximately 3 hidden units yielded better results than using no hidden layer or
many more hidden units. Better results might be obtained by considering different sectors of
the market (different types of companies) separately, but for the experiments reported here, we
used a single neural network for all the stocks. When using a different model for each stock
and sharing some of the parameters, significantly better results were obtained (using the same
training strategy) on that data [GB97]. The parameters of the network are therefore shared
across time and across the 35 stocks. The 36th output (for desirability of cash) was obtained
from the current short-term interest rates (which are also used for the multiplicative return of
cash, r¢,).

To take into account the non-stationarity of the financial and economic time-series, and es-
timate performance over a variety of economic situations, multiple training experiments were
performed on different training windows, each time testing on the following 18 months. For
each experiment, the data is divided into three sets: one for training, one for validation (early
stopping), and one for testing (estimating generalization performance). The latter two sets each
span 18 months. Four training, validation, and test periods were considered, by increments of
18 months:

1. Training from first 33 months, validation with next 18 months, test with following 18
months.

2. Training from first 51 months, validation with next 18 months, test with following 18
months.

3. Training from first 69 months, validation with next 18 months, test with following 18
months.

4. Training from first 87 months, validation with next 18 months, test with following 18
months.

Training lasted between 10 and 200 iterations of the training set, with early stopping based
on the performance on the validation set. The overall return was computed for the whole test
period (of 4 consecutive sets of 18 months = 72 months = 6 years: March 89 - February 95).

12

Excess Return vs MSE on Test Data

Excess Return vs MSE on Training Data

15 3; " 8r f@@
o

% Excess Return
% Excess Return
o

_ ~10
0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.205 0.21 0.215 0.22 0.225 0.23
Mean Squared Error Mean Squared Error

(a) (b)

Figure 5: Scatter plots of MSE versus excess return of network, trained to minimize the MSE,
(a) on training set, (b) on test set.

When comparing the two training algorithms (prediction criterion versus financial criterion),
10 experiments were performed with different initial weights, and the average and standard
deviation of the financial criterion are reported.

A buy-and-hold benchmark was used to compare the results with a conservative policy. For
this benchmark, the initial portfolio is distributed equally among all the stocks (and no cash).
Then there are no transactions. The returns for the benchmark are computed in the same way
as for the neural network (except that there are no transactions). The excess return is defined
as the difference between the overall return obtained by a network and that of the buy-and-hold
benchmark.

5.2 Results

In the first series of experiments, the neural network was trained with a mean squared error
criterion in order to predict the return of each stock over a horizon of three months. We used the
“hard decision trader” described in section 4.1 in order to measure the financial profitability of
the system. We quickly realized that although the mean squared error was gradually improving
during training, the profits made sometimes increased, sometimes decreased. This actually
suggested that we were not optimizing the “right” criterion.

This problem can be visualized in Figures 5 and 6. The scatter plots were obtained by tak-
ing the values of excess return and mean squared error over 10 experiments with 200 training
epochs (i.e, with 2000 points), both on a training and a test set. Although there is a tendency
for returns to be larger for smaller MSE, many different values of return can be obtained for the
same MSE. This constitutes an additional (and undesirable) source of variance in the general-
ization performance. Instead, when training the neural network with the financial criterion, the
corresponding scatter plots of excess return against training criterion would put all the points
on a single exponential curve, since the excess return is simply the value of the training criterion

13

Excess Return on Training Set vs Training Iterations Excess Return on Test Set vs Training Iterations

% Excess Return
% Excess Return

. _
0 10 20 30 40 50 60 70 80 9 100 0 10 20 30 40 50 60 70 80 9 100
Training Epochs # Training Epochs

(a) (b)

Figure 6: Evolution of excess return during training for network trained directly to maximize
return (full line) and network trained to minimize MSE (dashed line), (a) on training set, (b)
on test set.

normalized to obtain yearly returns (by dividing the log-returns by the number of years in the
sequence, and taking the exponential), and from which the average return of the benchmark is
substracted.

For the second series of experiments, we created the “soft” version of the trader described
in section 4.2, and trained the parameters of the trader as well as the neural network in order
to maximize the financial criterion defined in section 3 (which is equivalent to maximizing the
overall excess return). A series of 10 training experiments (with different initial parameters) were
performed (each with four training, validation and test periods) to compare the two approaches.
Table 1 summarizes the results. During the whole 6-year test period (March 89 - February
95), the benchmark yielded returns of 6.8%, whereas the network trained with the prediction
criterion and the one trained with the financial criterion yielded in average returns of 9.7% and
14.2% respectively (i.e, 2.9% and 7.4% in excess of the benchmark, respectively). The direct
optimization approach, which uses a specialized criterion specialized for the financial task, clearly
yields better performance on this task, both on the training and test data.

Following a suggestion of a reviewer, the experiments were replicated using artificially gener-
ated returns, and similar results were observed. The artificially generated returns were obtained
from an artificial neural network with 10 hidden units (i.e., more than the 3 units used in the
prediction module), and with additive noise on the return. Again we observed that decreases
in mean squared error of the predictor were not very correlated with increases in excess return.
When training with respect to the financial criterion instead, the average excess return on the
test period increased from 4.6% to 6.9%. As in the experiments with real data, the financial
performance on the training data was even more significantly superior when using the financial
criterion (corroborating the hypothesis that as far as the financial criterion is concerned, the
direct optimization approach offers more capacity than the indirect optimization approach).

14

Table 1: Comparative results: network trained with Mean Squared Error to predict future
return vs network trained with financial criterion (to directly maximize return). The averages
and standard deviations are over 10 experiments. The test set represents 6 years, 03/89-02/95.

Average Excess (Standard | Average Excess (Standard
Return on Deviation) Return on Deviation)
Training Sets Test Sets

Net Trained
with MSE 8.9% (2.4%) 2.9% (1.2%)
Criterion
Net Trained
with Financial 19.9% (2.6%) 7.4% (1.6%)
Criterion

6 Conclusion

We consider decision-taking problems on financial time-series with learning algorithms. Theo-
retical arguments suggest that directly optimizing the financial criterion of interest should yield
better performance, according to that same criterion, than optimizing an intermediate predic-
tion criterion such as the often used mean squared error. However, this requires defining a
differentiable decision module, and we have introduced a “soft” trading module for this purpose.
Another theoretical advantage of such a decision module is that its parameters may be optimized
numerically from the training data.

The inadequacy of the mean squared error criterion was suggested to us by the poor correlation
between its value and the value of the financial criterion, both on training and test data.

Furthermore, we have shown with a portfolio management experiment on 35 Canadian stocks
with 10 years of data that the more direct approach of optimizing the financial criterion of
interest performs better than the indirect prediction approach.

In general, for other applications, one should carefully look at the ultimate goals of the system.
Sometimes, as in our example, one can design a differentiable cost and decision policy, and obtain
better results by optimizing the parameters with respect to an objective that is closer to the
ultimate goal of the trained system.

6.0.1 Acknowledgements

The author would like to thank S. Gauthier and F. Gingras for their prior work on data prepro-
cessing, E. Couture and J. Ghosn, for their useful comments, as well as, the NSERC, FCAR,
IRIS Canadian funding agencies for support. We would also like to thank André Chabot from
Boulton-Tremblay Inc. for the economic data series used in these experiments.

15

References

[Ben96]

[BGO1]

[DBGI1]

[GBYT]

[HK92]

[HW0]

[RLO1]

[Whis9]

Y. Bengio. Neural Networks for Speech and Sequence Recognition. International
Thompson Computer Press, London, UK, 1996.

L. Bottou and P. Gallinari. A framework for the cooperation of learning algorithms.
In R. P. Lippman, R. Moody, and D. S. Touretzky, editors, Advances in Neural Infor-
mation Processing Systems 3, pages 781-788, Denver, CO, 1991.

X. Driancourt, L. Bottou, and P. Gallinari. Learning vector quantization, multi-layer
perceptron and dynamic programming: Comparison and cooperation. In International
Joint Conference on Neural Networks, volume 2, pages 815-819, 1991.

Joumana Ghosn and Yoshua Bengio. Multi-task learning for stock selection. In Ad-
vances in Neural Information Processing Systems 9, volume 9, Cambridge, MA, 1997.

MIT Press.

J. B. Hampshire and B. V. K. Vijaya Kumar. Shooting craps in search of an optimal
strategy for training connectionist pattern classifiers. In J. Moody, S. Hanson, and

R. Lippmann, editors, Advances in Neural Information Processing Systems, volume 4,
pages 1125-1132, Denver, CO, 1992. Morgan Kaufmann.

John B. Hampshire and Alexander H. Waibel. A novel objective function for improved
phoneme recognition using time-delay neural networks. IEEFE Transactions of Neural

Networks, 1(2):216-228, June 1990.

Michael D. Richard and Richard P. Lippmann. Neural network classifiers estimate
Bayesian a-posteriori probabilities. Neural Computation, 3:461-483, 1991.

H. White. Learning in artificial neural networks: A statistical perspective. Neural
Computation, 1(4):425-464, 1989.

16

