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Experiments
•Comparison betweenLaplacian (Belkin and Niyogi, 2003),WholeSet in transduction

andWholeSet in induction on the MNIST Database.
Labeled 50 100 500 1000 5000

Total: 1000
Laplacian 29.3 19.6 11.5

WholeSettrans 25.4 17.3 9.5
WholeSetind 26.3 18.8 11.3
Total: 10000

Laplacian 25.5 10.7 6.2 5.7 4.2
WholeSettrans 25.1 11.3 5.3 5.2 3.5

WholeSetind 25.1 11.3 5.7 5.1 4.2

•Comparison (induction) between

–WholeSet: uses all unlabeled data (no approximation)
–RSubsubOnly: uses only a random subset of the unlabeled data (no approximation)
–RSubnoRR: uses a random subset of the unlabeled data to approximate for all data
–SSubnoRR: uses a selected subset of the unlabeled data to approximate for all data

% labeled LETTERS MNIST COVTYPE

1%
WholeSet 56.0± 0.4 35.8± 1.0 47.3± 1.1

RSubsubOnly 59.8± 0.3 29.6± 0.4 44.8± 0.4
RSubnoRR 57.4± 0.4 27.7± 0.6 75.7± 2.5
SSubnoRR 55.8± 0.3 24.4± 0.3 45.0± 0.4

5%
WholeSet 27.1± 0.4 12.8± 0.2 37.1± 0.2

RSubsubOnly 32.1± 0.2 14.9± 0.1 35.4± 0.2
RSubnoRR 29.1± 0.2 12.6± 0.1 70.6± 3.2
SSubnoRR 28.5± 0.2 12.3± 0.1 35.8± 0.2

10%
WholeSet 18.8± 0.3 9.5± 0.1 34.7± 0.1

RSubsubOnly 22.5± 0.1 11.4± 0.1 32.4± 0.1
RSubnoRR 20.3± 0.1 9.7± 0.1 64.7± 3.6
SSubnoRR 19.8± 0.1 9.5± 0.1 33.4± 0.1

•Comparison betweenRSubnoRR andSSubnoRR: 10% of the data is labeled, and we
use10% of unlabeled data as a subset for approximation (5% for ADULT).

USPS IMAGE ISOLET SATIMAGE NURSERY PENDIGITS ADULT SPAMBASE

RSubnoRR 9.8 17.0 24.8 13.9 18.6 19.6 19.3 30.5
SSubnoRR 8.6 16.1 22.9 13.8 18.4 17.1 18.6 28.3

•CONCLUSION

– fast induction with little loss w.r.t. transduction
– fast training when choosing a subset of unlabeled data to approximate the cost
– smart subset selection> random selection
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Efficient Approximation for Training
•Equation (2) suggests we can choose a subsetS of m ¿ n samples

and forcef (xi) for xi /∈ S to be expressed as a linear combination of
thef (xj) with xj ∈ S as in (2).

•Minimizing (1) then reduces to solving a linear system with onlym

unknowns. However, to obtain this linear system, we still need to
performO(m(n−m)2) operations.

•To further improve the performance, we can choose to ig-
nore in the total costC the discarded points cross-terms
1
2

∑
xi,xj /∈S K(xi, xj)D(f (xi), f (xj)), the most expensive to compute.

Thenwe only needO(m2(n − m)) time andO(m2) memory, versus
O(n3) andO(n2) for the original algorithm.

•Smart selection of the subsetS gives better results than random selec-
tion: we propose to greedily buildS by iteratively choosing the point
farther fromS, i.e. xi that minimizes

∑
j∈S K(xi, xj). Additionally, a

preliminary (fast) training is performed using onlyS in order to add
more points near the decision surface.
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Induction: Extending to New Points
•ConsiderD, D′ andR quadratic: minimizing (1) with respect to the
f (xi) reduces to solving a linear system of sizen.

•Given a new test pointx, re-training will in general costO(n3) time.

•Minimizing (1) with f (xi) (i ≤ n) fixed (with D Euclidean and
R(f ) = 0) ⇒ Parzen windows regressor (induction inO(n) time)

f (x) =

∑n
j=1 K(x, xj)f (xj)∑n

j=1 K(x, xj)
(2)
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Left: a classifier trained only with the5 labeled samples (in circles) completely over-
looks the underlying structure of the data.
Right: classification learned from (1) on training data (∗ and+), and tested with (2)
(points in squares). Classification error on10000 test points is1.76%.
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An Optimization Framework for
Semi-Supervised Learning

Several previously proposed methods can be cast into a trans-
duction framework, where we learn a functionf (x) giving a
continuouslabel on each point, such that:
(i) f is smooth (two neighbor samples are given similar labels)
(ii) f is coherent with already known labels
i.e. f minimizes

CK,D,D′,λ(f ) =
1

2

∑

xi,xj∈U∪L

K(xi, xj)D(f (xi), f (xj))

+ λ
∑

xi∈L

D′(f (xi), yi) + R(f ) (1)

with
- U the unlabeled set
- L the labeled set
- xi the input part of thei-th example
- yi its target label
- K(·, ·) a similarity function (e.g. a Gaussian kernel)
- D(·, ·) and D′(·, ·) dissimilarity functions (typically, the
Euclidean distance)
- R(f ) an optional additional regularization term.

See e.g. (Zhu, Ghahramani and Lafferty, 2003; Zhou et al.,
2004; Belkin, Matveeva and Niyogi, 2004).
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Summary
• In the semi-supervised setting, we combine labeled and un-

labeled data.

•With current non-parametric approaches, it is often unclear
how to find labels for previously unseen examples without
retraining the whole model (which typically requiresO(n3)

time, wheren is the number of training points).

•We propose and justify a method to cheaply (O(n) time)
perform function induction in this context.

•This approach leads toefficient approximationsof the orig-
inal training algorithm, by writing all predictions in terms of
a small subset ofm ¿ n samples (⇒ O

(
n2

m2

)
faster)
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