
Quick Training of Probabilistic Neural Nets by Importance Sampling

Yoshua Bengio and Jean-Sébastien Senécal
Département d’Informatique et Recherche Opérationnelle

Centre de Recherche Mathématiques
Université de Montréal

Montréal, Québec, Canada, H3C 3J7

Abstract

Our previous work on statistical language
modeling introduced the use of probabilis-
tic feedforward neural networks to help deal-
ing with the curse of dimensionality. Train-
ing this model by maximum likelihood how-
ever requires for each example to perform as
many network passes as there are words in
the vocabulary. Inspired by the contrastive
divergence model, we propose and evaluate
sampling-based methods which require net-
work passes only for the observed “positive
example” and a few sampled negative exam-
ple words. A very significant speed-up is
obtained with an adaptive importance sam-
pling.

1 Introduction

In our previous work (Bengio, Ducharme and Vincent,
2002), we have shown that the probability of word se-
quences w1, w2, . . . wT can be efficiently represented by
various artificial neural network architectures, where
efficiently refers here to the statistical sense, meaning
that these models generalize well and have low per-
plexity (the perplexity is the exponential of the neg-
ative average log-likelihood). However they are com-
putationally much more expensive than n-grams, both
for training and for probability computation. The ba-
sic ideas were the following: a neural network repre-
sents P (wt|wt−1, . . . wt−n), using an intermediate dis-
tributed representation for each word in the vocabu-
lary (e.g. as a learned real feature vector in R30). The
probability function depends smoothly on the feature
vectors of the observed words, thus when one (or more)
word is replaced by another with a close feature vector,
the output probability does not change much. This is
obtained without clustering, rather by automatically
learning a notion of similarity between words, simply

through maximum likelihood training of the probabil-
ity function (by stochastic gradient descent on the log-
arithm of the perplexity). In principle, this type of
representation (which is distributed rather than local)
also opens the door to learning dependencies between
many high-dimensional discrete objects. For example,
the neural network can easily be extended beyond the
usual 2 words of contexts (up to 8 in our experiments),
without the ensuing overfitting typically observed with
n-grams.

1.1 Curse of Dimensionality, Distributed
Representation

The representation of “meaning” is said to be dis-
tributed because it is obtained through the simulta-
neous, continuous-valued, activation of many “units”
(the hidden feature vector neurons associated with
each of the input words). Instead, associating each
word with an integer (or a one-hot code) is a local
representation which does not induce any notion of
proximity between words.

Associating probabilities (or other numbers) with all
the possible combinations of words (or other high-
dimensional discrete objects) in one or more sentences
obviously blows up exponentially with the number of
words. This can be avoided with drastic conditional
independence assumptions, but these prevent us from
capturing some dependencies that we know to mat-
ter. This well-known problem plagues n-grams (Katz,
1987; Jelinek and Mercer, 1980), lexicalized stochas-
tic grammars (Charniak, 1999; Collins, 1999; Chelba
and Jelinek, 2000), and many other probabilistic mod-
els (e.g. graphical models with dense cycles, in gen-
eral, see (Jordan, 1998)), and it is well described, with
many examples and analyzes, in the book (Manning
and Schutze, 1999). The usual solution is to com-
bine the model with simpler models, e.g. by deleted
interpolation or by backing-off to the simpler models
according to some threshold rules. This prevents any
observation sequence from getting a tiny probability,
but this is a achieved at a high price, by distributing

probability mass over vast volumes of data space.

1.2 Distributed Representations for
High-Order Dependencies

The idea of using distributed representations has been
one of the early contributions of the connectionist re-
searchers of the 80’s (c.f. (Hinton, 1986)). The hidden
units of an artificial neural network encode information
in a very efficient way; as an example, n binary neu-
rons can represent 2n different objects. More impor-
tantly, these hidden units can capture the high-order
dependencies that matter most. Consider for example
m binary inputs to a neural network. There are 2m

possible combinations of these inputs, and a linear /
polynomial model would require O(2m) free parame-
ters to capture all of them. For binary inputs, a poly-
nomial estimator is therefore essentially equivalent to
a table of all variable values combinations. In general,
for a polynomial model to capture all dependencies
of order d (i.e., involving d-tuples of variables) would
require O(md) parameters. This is a particular case
of the curse of dimensionality. Things are obviously
much worse with natural language, in which the “in-
put variables” are not binary but high-dimensional ob-
jects (e.g. words chosen in a vocabulary of size 20,000).
Here the advantage of artificial neural networks is that
a small number H of hidden units can capture the H
most important high-order dependencies between the
inputs. The number of free parameters is only O(Hm),
yet dependencies of any order (between any number of
input variables) can be captured. The drawback is that
the estimation of the parameters is much more difficult
and requires more computation because the objective
function is not convex and can in fact be quite com-
plex. These ideas have been exploited to learn the
probability function of high-dimensional discrete data
in (Bengio and Bengio, 2000), where comparisons have
been made with polynomial learners and table-based
graphical models.

In terms of representation, distributed models (e.g.
neural networks, distributed representation graphical
models (Saul and Jordan, 1996), or Maximum En-
tropy models (Berger, Della Pietra and Della Pietra,
1996)) can be exponentially more efficient than “local-
ist” models, allowing to consider many higher-order
dependencies. However, they are more difficult to op-
timize, because analytic or quickly converging algo-
rithms like EM are not applicable, and they may in-
volve expensive computations, like the computation of
the partition function in Maximum Entropy models.

1.3 Neural Architecture for Representing
High-Dimensional Distributions

The neural network already described in (Bengio,
Ducharme and Vincent, 2002) has the basic architec-

ture shown in Figure 1.

Many variants are possible, but we formalize one
in particular below. The output of the neural net-
work depends on the next word wt and the previ-
ous words ht = (wt−1, wt−2, . . . , wt−n) as follows.
In the features layer, one maps each word wt−i in
(wt, wt−1, wt−2, . . . , wt−n) to a lower-dimensional con-
tinuous subspace zi:

zi = Cwt−i
, i ∈ {0, 1, . . . , n},

z = (z0, z1, . . . , zn) (1)

where Cj is the j-th column of the word features ma-
trix of free parameters. The resulting vector z (the
concatenation of the projections zi) is the input vec-
tor for the next layer, the hidden layer:

a = tanh(d + Wz) (2)

where d is a vector of free parameters (hidden units
biases), W is a matrix of free parameters (hidden layer
weights) and a is a vector of hidden units activations.
Finally the output is a scalar energy function

E(wt, ht) = bwt
+ Vwt

· a (3)

where b is a vector of free parameters (called biases),
and U (direct input to output layer weights) and V
(hidden to output layer weights) are matrices of free
parameters with one column Ui or Vi per word.

To obtain conditional probabilities, we normalize the
exponentiated energies:

P (wt|ht) =
e−E(wt,ht)∑
w′ e−E(w′,ht)

.

The above neural architecture can be viewed as a spe-
cial case of energy-based probability models of the form

P (Y = y) =
e−E(y)∑
y′ e

−E(y′)
(4)

or, for conditional probabilities

P (Y = y|X = x) =
e−E(y,x)∑
y′ e

−E(y′,x)

where E(·) is a parametrized functions which is low
for plausible configurations of y (or (y, x)), and high
for improbable ones. In our case, x = ht is the past
context (previous words) and y = wt is the next word.

The difficulty with these energy models is in learn-
ing the parameters of the energy function, without
an explicit computation of the partition function (nor-
malizing denominator, denoted Z below). In general,

C(i)

C

C

i

C(wt−2) C(wt−1)

wt−1wt−2wt−n i ∈ {1 · · · |V |}

E(i, wt−1, . . . , wt−n)

P (wt = i | context) = e−E(i,wt−1,...,wt−n)/
∑

j e−E(j,wt−1,...,wt−n)

= softmax(−E(., wt−1, . . . , wt−n))

C(wt−n)

a-layer

z-layer

Figure 1: Architecture of the neural language model. The first layer has is linear, with local connections and
temporally shared parameters (the matrix C whose columns are word features).

the partition function is extremely expensive to com-
pute (because it may involve an exponential number
of terms). However, in the case of the above language
model, when the model is used to compute the condi-
tional probability of the next word, the computation
of the partition function is feasible (only grows linearly
with the vocabulary size) but is still quite expensive.

Hinton has proposed the contrastive divergence (Hin-
ton, 2002) approach to approximate the gradient of
the log-likelihood with respect to these parameters,
in the unsupervised case, to make learning computa-
tionally feasible. Contrastive Divergence is based on
a sampling approximation of the log-likelihood gradi-
ent, ∂ log P (Y =y)

∂θ . More generally, the gradient can be
decomposed in two parts: positive reinforcement for
Y = y (the observed value) and negative reinforce-
ment for every y′, weighted by P (Y = y′), as follows
(by differentiating equation 4):

∂ log P (y)
∂θ

= −∂E(y)
∂θ

+
∑
y′

P (y′)
∂E(y′)

∂θ
(5)

The idea of contrastive divergence is to approximate
the average in the right-hand side above by a sam-
ple from a single step of a Monte-Carlo Markov Chain
(e.g. Gibbs sampling, for the Products of Experts ar-
chitecture (Hinton, 2002)). The chain is started at y
so that it would converge to the stationary intractable
distribution P (y′). Unfortunately, this technique re-
lies on the particular form of the energy function in

the case of products of experts, which lends itself nat-
urally to Gibbs sampling (using the activities of the
hidden units as one of the random variables, and the
network input as the other one, see equation 6 below).

Based on the premise that we have at our disposal a
good proposal distribution Q (an approximation of P)
from which it is easy to sample, we can take advantage
of sampling to approximate the gradient. In this pa-
per, we propose several new variants of that key idea.

1.4 Products vs Sums of Probabilities

Like previous probabilistic models (e.g. weighted av-
erages in the log-domain (Genest and Zideck, 1986;
Heskes, 1998)), the Maximum Entropy model (Berger,
Della Pietra and Della Pietra, 1996) and the neural
models described above, can be interpreted as energy-
based models that correspond to normalized products,
as in Hinton’s Products of Experts (Hinton, 2002)
model:

P (y) =
∏

i Pi(y)
Z

(6)

where Pi(y) are individual expert models, and Z is
the partition function. Such a form is also found in
Maximum entropy statistical language models (Berger,
Della Pietra and Della Pietra, 1996), in which the in-
dividual “expert” has the form

Pi(y|x) = eθifi(y,x)/Zi.

In the above neural network, as could be seen in equa-
tion 3, we have “experts” of the form

Pi(w|h) = eViwai(w,h)

(with Viw = i-th element of column w of matrix V),
or

Pi(w|h) = ebw

(the latter being essentially “unigram” experts).

This type of model can be contrasted with mixture
models such as HMMs and many other probabilistic
(EM-trained) models. Comparisons between mixtures
of experts and products of experts have been carried
out in different instances, and they suggest that prod-
ucts of experts can yield significant improvements in
terms of out-of-sample likelihood. For example, Fos-
ter’s experiments (Foster, 2002) confront head-to-head
a normalized product of probabilities (implemented by
a Maximum Entropy model) with a weighted sum of
probabilities. In this case the application is to statis-
tical translation; one would like to estimate

P (next translated word|previous translated words,source sentence)

in the process of building

P (translated sentence|source sentence).

With an additive approach, one builds a mixture of
P (next translated word|previous translated words)
and P (next translated word|source sentence). This
corresponds more to a kind of disjunction: the prob-
ability of the mixture is “not low” if one or the
other component is “not low”. With a multiplicative
approach (much more computationally expensive be-
cause of the normalization problem), the two probabil-
ities are multiplied and then normalized. This corre-
sponds more to a kind of conjunction: the probability
of the product is “not low” only if both one and the
other component are “not low”. The results of this
experiment are extremely strong, with a reduction of
perplexity by a factor of 2 using the normalized prod-
uct (Foster, 2002).

Another convincing set of comparative results is pro-
vided by Charniak’s experiments (Charniak, 1999)
with stochastic grammars. Many comparisons are per-
formed with different variants of a lexicalized stochas-
tic grammar. One of the comparisons involves the
choice between a deleted interpolation scheme – a mix-
ture – and a Maximum Entropy scheme – a prod-
uct – in order to combine several sources of informa-
tion (conditioning events to predict the rule proba-
bility). The performance measure is average perfor-
mance/recall of syntactic structure, starting from an
error rate of about 12%. Charniak finds that whereas

the Maximum Entropy scheme yields an absolute im-
provement of 0.45%, the deleted interpolation in this
case worsens performance by 0.6%, an overall differ-
ence of more than 1%, which is quite substantial with
respect to the 12% error mark.

Why do we observe such improvements? We conjec-
ture that in high-dimensional spaces, a mixture is gen-
erally too wasteful of the probability mass. In the
translation example, it is clear that a conjunction is
more appropriate than a disjunction: we want to ac-
cept a translated word if it is both consistent with the
previously translated words and with the source sen-
tence. In general, the product gives rise to a sharper
likelihood, whereas a mixture can only dilute the prob-
ability mass. If each expert only has part of the infor-
mation (e.g. looking only at certain aspects or certain
variables), then it is more sensible to use a product.
The experts in the product can be seen as constraints
to be satisfied. This argument has been made by Hin-
ton (Hinton, 2002).

2 Sampling Approximations of the
Log-Likelihood Gradient

When the vocabulary size is M , the full computation
of the log-likelihood gradient essentially involves M
forward (calculating E) and backward passes (calcu-
lating ∂E

∂θ) through the neural network (there are a
few computations that do not need to be re-done, cor-
responding to the part of Wz that depends only on ht,
see equations 1 and 2).

Again, let ht = (wt−1, . . . , wt−n). With our “energy-
based” models with output E(·),

P (wt|ht) =
e−E(wt,ht)∑
w′ e−E(w′,ht)

and the gradient has two parts: positive reinforcement
for wt and negative reinforcement for every word i,
weighted by P (i|ht):

∂ log P (wt|ht)
∂θ

= −∂E(wt, ht)
∂θ

+
∑
w′

P (w′|ht)
∂E(w′, ht)

∂θ

(7)

Because of the large number of words M in the vo-
cabulary, there clearly is a huge potential for greater
computational speed by replacing the above weighted
average by Monte-Carlo samples. Since we are basi-
cally training these models by stochastic or mini-batch
gradient descent, we don’t need an exact estimation of
the gradient. An unbiased estimator, as long as it is
not too noisy, might yield training convergence about
as fast (noting that the instantaneous gradient is itself
a noisy unbiased estimator of the “complete” gradient,
which is an average across all the data points).

The basic idea of the procedures that we are explor-
ing here is thus the following: for each training exam-
ple (wt, ht), run Algorithm 1 with N samples, where
w ∼ P means sampling w with probability P (w).

Algorithm 1 Monte-Carlo approximation of gradient

Add positive contribution: ∂E(wt,ht)
∂θ

{ N is the number of random samples }
for k ← 1 to N do

Sample negative example w′ ∼ P (·|ht) (*)
Add negative contribution: − 1

N
∂E(w′,ht)

∂θ
Update parameters θ from sum of above contributions

The maximum speed-up of the above procedure is
M/N if there is no reduction in convergence speed
due to a noisier gradient. Since M is typically several
tens of thousands, and (Hinton, 2002) found N = 1 to
work well for the contrastive divergence method, this
is appealing. Unfortunately, we can’t actually per-
form a (cheap) ordinary Monte-Carlo approximation
of

∑
w′ P (w′|ht)

∂E(w′,ht)
∂θ because we don’t know how

to cheaply sample from P (w′|ht) (step (*) above): do-
ing it exactly would require as much work as doing the
full sum itself.

Fortunately, in the case of language modeling, we have
the opportunity to take advantage of approximations
Q of P , from which it is easy (cheap) to sample, e.g.
those provided by a unigram or by n-grams in general.
In particular, such an approximation can be used as
a proposal distribution in a Monte-Carlo sampling al-
gorithm. Several sampling algorithms exist that can
take advantage of a proposal distribution, as long as
P > 0⇒ Q > 0.

2.1 Independent Metropolis-Hastings

A Monte-Carlo Markov Chain (MCMC) converging to
P (·|ht) as N → ∞ can be obtained using the Inde-
pendent Metropolis-Hastings method, shown applied
to our case in Algorithm 2.

Algorithm 2 Independent Metropolis-Hastings Gra-
dient Approximation

Add positive contribution: ∂E(wt,ht)
∂θ

w ← wt

k ← 0
while k < Nc + Ns do

Sample w′ ∼ Q(·|ht)

r ← min(1, e−E(w′,ht)

e−E(w,ht)
Q(w|ht)
Q(w′|ht)

)
with probability r do

k ← k + 1
w ← w′

if k ≥ Nc then
Add negative contribution: − 1

Ns

∂E(w,ht)
∂θ

The first Nc samples are used to get the Markov chain
to converge close enough to P , while the last Ns sam-
ples are used to form the gradient average. Note that
because this is an MCMC, we obtain an unbiased sam-
ple only as Nc →∞.

When we choose Nc small (e.g. 0), we do not wait at
all for the convergence of the MCMC. This is following
the intuition of Hinton’s contrastive divergence (which
is based on Gibbs sampling), that a good approxima-
tion of the gradient can be obtained after only one
step of the chain, if we start the chain at the observed
input wt. However, because of the nature of “word
space” and its simple-minded representation here, it
is not clear that the above sampling scheme has much
preference for “neighboring” words. If on the other
hand we were sampling words based on their continu-
ous representation (in the word features C(i)), such a
scheme be closer in spirit to the contrastive divergence
algorithm. But the way to efficiently perform such a
sample is not clear yet.

2.2 Importance Sampling Approximation

Importance sampling is a Monte-Carlo scheme which
does not involve a Markov Chain; every sample is
an unbiased estimator. It is used when one can-
not sample from P but has a proposal distribution
Q. Whereas the ordinary Monte-Carlo estimator of
EP [g(Y)] =

∑
y′ P (y′)g(y′) is

n
1
N

∑
y′∼P

g(y′)

the corresponding importance sampling estimator is
obtained by sampling from Q instead of P , and weigh-
ing the samples:

1
N

∑
y′∼Q

g(y′)
P (y′)
Q(y′)

.

It is easy to show that the above is an unbiased esti-
mator of EP [g(Y)]. Strictly speaking, we cannot use
ordinary unbiased importance sampling since we don’t
want to compute P (y′) exactly (only up to the normal-
ization constant Z). However, we can use an approxi-
mate scheme in which Z is also estimated. Compared
to the Metropolis method, this has the clear advantage
of not being an MCMC, i.e. we don’t need to worry
about convergence of the Markov chain.

Z is itself an average (with uniform distribution 1/M):

Z(ht) =
∑
w′

e−E(w′,ht) = M
∑
w′

(1/M)e−E(w′,ht)

so it can be estimated by importance sampling (pro-

posal distribution = Q to reuse the same samples) 1:

Ẑ(ht) =
M

N

∑
w′∼Q(·|ht)

e−E(w′,ht)

MQ(w′|ht)

Ẑ(ht) =
1
N

∑
w′∼Q(·|ht)

e−E(w′,ht)

Q(w′|ht)

Using this estimator, we can apply (biased) impor-
tance sampling to the average gradient of the negative
examples:

1
N

∑
w′∼Q(·|ht)

e−E(w′,ht)

Q(w′|ht)Ẑ(ht)
∂E(w′, ht)

∂θ

so the overall gradient estimator for example (wt, ht),
using the set J of N samples from Q(·|ht) is:

−∂E(w, ht)
∂θ

+
∑

w′∈J
∂E(w′,ht)

∂θ e−E(w′,ht)/Q(w′|ht)∑
w′∈J e−E(w′,ht)/Q(w′|ht)

Note that since E[A/B] 6= E[A]/E[B], this is a biased
estimator (the more so for small N). 2 The procedure
is summarized in Algorithm 3.

Algorithm 3 Importance Sampling Gradient Approx-
imation
Add positive contribution: ∂E(wt,ht)

∂θ
vector a← 0
b← 0
repeat N times

Sample w′ ∼ Q(·|ht)

r ← e−E(w′,ht)

Q(w′|ht)

a← a + r ∂E(w′,ht)
∂θ

b← b + r
Add negative contribution: −a

b

3 Adapting the Sample Size

Our preliminary experiments with Algorithm 3 showed
that whereas a small sample size was appropriate in
the initial training epochs, a larger sample size was
necessary later on to avoid divergence (increases in
perplexity). This is probably because more precision
is required in the gradient as training progresses, al-
though we have yet to determine if this is due to a

1Some analysis of the importance sampling estimate
proposed here can be found in ??

2However, the fact that we use the same sample for
estimating both the numerator and the denominator cer-
tainly does help reduce the bias, because the value of each

e−E(w′,ht)/Q(w′|ht) will affect both of them in a similar
way (i.e. small values will reduce both the numerator and
the denominator while large values will increase both).

too large bias or a too large variance of the gradient
estimator (increasing the sample size decreases both).

This has led to an improved algorithm (Algorithm 4),
which is the one that gave us the result reported in the
next section, and in which the number of samples is
gradually increased according to a diagnostic. It uses
Algorithm 3 in the inner loop.

The measure used for the diagnostic is known as the
“effective sample size” S of the importance sampling
estimator (Logvinenko, 2001):

S =
(
∑N

j=1 rj)2∑N
j=1 r2

j

where rj is the importance sampling ratio for the j-th
sample, rj = P (w′

j)/Q(w′
j), which is estimated here

with rj ≈
e
−E(w′j ,ht)/Q(w′

j |ht)∑
w′∈J e−E(w′,ht)/Q(w′|ht)

, where J is the set

of N words sampled from Q(·|ht) and w′
j is the j-th

sampled word in J . The idea is to choose N so as
to make sure that the effective sample size is always
greater than a minimum value N0. We do that by
sampling by “blocks” of size Nb ≥ 1 until the effective
sample size becomes larger than the target N0. If the
number of sampled words becomes too large, we switch
back to a full backpropagation (i.e. iterating over all
words).

Algorithm 4 Adaptive Sample Size Algorithm
e← 1
while e ≤ n do { n is the number of epochs }

foreach training pair (wt, ht) do
s← 0 { actual effective sample size }
N ← 0 { true sample size }
while s < N0 do

if N > threshold then
Compute the gradient (on all words)
break

Compute the gradient estimator
using Algorithm 3 with Nb samples
and update parameters θ accordingly

N ← N + Nb

Update effective sample size s:

s← (
∑N

j=1 rj)
2∑N

j=1 r2
j

4 Experimental Results

4.1 Metropolis-Hastings

Experiments with the Metropolis-Hastings algorithm
(Algorithm 2) have yielded very poor results. At first,
the training perplexity decreases; but as soon as the
network’s distribution starts to diverge too much from
the proposal, perplexity increases. Sampling more to

wait for convergence (i.e. increasing Nc) does not seem
to help, at least for reasonable values of Nc (e.g. 100,
500, 1000), nor does increasing Ns. Sampling from an-
other proposal distribution (e.g. interpolated trigram
instead of unigram) yielded even worse results.

We believe that the explanation lies in the MCMC be-
ing too far from convergence, but we have yet to verify
this experimentally. The results of these experiments
also suggested a very strong sensitivity to the proposal
distribution.

4.2 Importance sampling

The importance sampling algorithm has been much
more successful. We provide results of an experiment
in which we compare a model trained with the exact
and complete gradient (i.e. iterating through all the
M words in the vocabulary) and a model trained with
importance sampling (Algorithm 4).

Both models were trained on the Brown corpus, with
the same data preprocessing as in (Bengio, Ducharme
and Vincent, 2002). The most important step is the
merging of rare words into a single token, to yield M =
16383 words in the vocabulary. We used the same
800,000 training examples and the test set of 181,041
examples (the validation set was not used to perform
early stopping, instead a fixed number of iterations
were run).

The two models had 80 hidden units (dimension of vec-
tor a of hidden unit activations in equation 2), 30 fea-
tures per word (number of rows of matrix C), and the
output weights V are controlled by the target word wt.
The number of words of context was n = 3. For Algo-
rithm 4 the target effective sampling size was N0 = 100
and blocks of size Nb = 50 were used. When the sam-
ple size became as large as the vocabulary size, we
switched back to a full backpropagation. The unigram
is used as a proposal distribution. Preliminary experi-
ments with the higher order n-grams did not help, nor
did adaptive mixtures of unigram and interpolated tri-
gram (so as to match the neural network’s perplexity).

The tiny data set used in Algorithm 4 to check perplex-
ity was a set of 1000 examples randomly taken from
the training set. This estimated training perplexity
was recalculated after each batch of 200,000 examples.

We ran both algorithms for 10 full epochs (full passes
over all of the 800,000 examples of the training set).
The train and test perplexities were approximately the
same for both models: about 214 on the training set
and 278 on the test set.

However, we achieved a 19-fold speed-up with impor-
tance sampling, bringing the training time from several
days down to a few hours. Note that the deleted inter-

polation trigram gives a perplexity of 336 on that same
test data, and that further significant improvements
in perplexity can be obtained by simple averaging of
the trigram and the neural network (e.g. down to 265
in (Bengio, Ducharme and Vincent, 2002)).

5 Future Work

Better results (i.e. requiring a smaller sampling size)
might be obtained with a more appropriate proposal
distribution. Surprisingly, the unigram worked much
better than the interpolated bigram or interpolated
trigram as a proposal distribution in our experiments.

At the beginning of training, it is natural to sample
from the unigram, the network’s distribution being
very close to it; however, contrary to our expectations,
we discovered that switching to a bigram or trigram
later, even smoothly, actually worsens the training, re-
quiring a much larger sampling size than for the uni-
gram to lower the perplexity.

One way to make our proposal distribution Q better
would be to make it a better approximation of P . A
possibly even better approach is to strive toward the
minimum variance estimator.

In the discrete case, it is well known that the min-
imum variance proposal distribution for importance
sampling, trying to estimate the scalar EP [g(Y)], is

P (y)|g(y)|∑
y′ P (y′)|g(y′)|

However, we are averaging a vector and we want to use
a common proposal distribution for all the elements of
the vector. In that case it is easy to show that the
minimum variance proposal distribution is

P (y)‖g(y)‖∑
y′ P (y′)‖g(y′)‖

.

where ||g(y)|| is the L2 norm of vector g(y). This is ob-
tained by writing the variance of the importance sam-
pling estimator, adding a Lagrangian for the constraint∑

y′ Q(y′) = 1, and solving for the zero derivative with
respect to Q(y).

Let us therefore consider how we could approximate
a minimum variance proposal distribution, e.g. using
a bigram estimator B(wt|wt−1) that depends only on
the previous word (the rest of the context is dropped).

Let W = {sampled negative examples at t} ∪ {wt},
where context ht = (wt−1, wt−2, . . .). Let b̄ =∑

w′∈W B(w′|wt−1) be the total B mass of those words
and ȳ =

∑
w′∈W ‖

∂E(w′,ht)
∂θ ‖e−E(w′,ht) their neural net-

work total unweighted probability. We propose the fol-
lowing adaptive reweighting of the bigram probabilities

B(w′|wt−1) to track P (w′|wt−1), as follows:

B(w′|wt)← (1−α)B(w′|wt)+α

∥∥∥∥∂E(w′, ht)
∂θ

∥∥∥∥e−E(w′,ht)b̄

ȳ

doing this ∀w′ ∈ W. The idea is to redistribute prob-
ability mass between the sampled words so that for
B their relative probability within W agrees with the
ideal proposal distribution, i.e.

B(i|wt)
b̄

≈
∥∥∥∥∂E(w′, ht)

∂θ

∥∥∥∥e−E(i,ht)

ȳ

Here α plays the role of a “learning rate” (with mean

squared error target being
∥∥∥∥∂E(w′,ht)

∂θ

∥∥∥∥ e−E(w′,ht)b̄
ȳ) to

average over different ht sharing the same wt−1, and
to keep adapting B as parameters change.

For saving on storage, the entries for very rare
(wt, wt−1) pairs (e.g. not appearing in the data) might
not be stored in B. For these one could just back-off
to the unigram as the proposal distribution.

6 Conclusion

This paper has argued for distributed representations
to model high-dimensional dependencies in statistical
language modeling, and presented a new learning tech-
nique for arbitrary energy-based models based on im-
portance sampling. This technique avoids the costly
exact gradient computation that involves computa-
tions proportional to the vocabulary size each time an
example is presented.

The basic idea here is that the total gradient is de-
composed in two parts: a “positive” contribution due
to the observed example, and a “negative” contribu-
tion due to all the other examples (because of the
partition function), weighted by their probability. A
Monte-Carlo scheme approximates this weighted av-
erage with only a few samples, thereby resulting in a
noisier estimate of the gradient. However, in the con-
text of stochastic gradient descent, which already uses
a noisy but unbiased estimator of the gradient, it is
possible to take advantage of this method. In exper-
iments on the Brown corpus, the proposed adaptive
importance sampling scheme gave a 19-fold speedup
over ordinary gradient computation, yielding a net-
work with as good training and test performance as
the full-gradient model, and thus beating the interpo-
lated trigram test performance.

The sampling method proposed here to speed up train-
ing can be applied to a large class of problems that go
beyond our particular architecture and our particular
statistical language modeling application. Basically,
this method can be very useful when one has to com-
pute gradients of a conditional class probability esti-
mator, when the number of (output) classes is very

large. Such problems are likely to occur in language
modeling, but in other cases as well. For example, in
chinese character recognition, the number of character
classes is on the order of 50,000, and our method could
be directly applied.

More work is required to further our understanding
of the reasons why some sampling schemes work and
others don’t, how to adapt the number of samples,
and how to adapt the proposal distribution, but the
proposed algorithm is already very useful.

Acknowledgments
The authors would like to thank Geoffrey Hinton for
helpful discussions, and the following funding organi-
zations: NSERC, MITACS, and the Canada Research
Chairs.

References

Bengio, S. and Bengio, Y. (2000). Taking on the curse of
dimensionality in joint distributions using neural net-
works. IEEE Transactions on Neural Networks, spe-
cial issue on Data Mining and Knowledge Discovery,
11(3):550–557.

Bengio, Y., Ducharme, R., and Vincent, P. (2002). A neu-
ral probabilistic language model. Technical Report
1178, Dept. IRO, Université de Montréal.

Berger, A., Della Pietra, S., and Della Pietra, V. (1996).
A maximum entropy approach to natural language
processing. Computational Linguistics, 22:39–71.

Charniak, E. (1999). A maximum-entropy-inspired parser.
Technical Report CS-99-12, Brown University.

Chelba, C. and Jelinek, F. (2000). Structured language
modelin. Computer, Speech and Language, 14(4):282–
332.

Collins, M. (1999). Head-driven statistical models for natu-
ral language parsing. PhD thesis, University of Penn-
sylvania.

Foster, G. (2002). Text Prediction for Translators. PhD
thesis, Dept. IRO, Université de Montréal.

Genest, C. and Zideck, J. (1986). Combining probability
distributions: A critique and an annotated bibliogra-
phy. Statistical Science, 1:114–148.

Heskes, T. (1998). Bias/variance decompositions for
likelihood-based estimators. Neural Computation,
10:1425–1433.

Hinton, G. (1986). Learning distributed representations of
concepts. In Proceedings of the Eighth Annual Con-
ference of the Cognitive Science Society, pages 1–12,
Amherst 1986. Lawrence Erlbaum, Hillsdale.

Hinton, G. (2002). Training products of experts by min-
imizing contrastive divergence. Neural Computation,
14(8):1771–1800.

Jelinek, F. and Mercer, R. L. (1980). Interpolated estima-
tion of Markov source parameters from sparse data.
In Gelsema, E. S. and Kanal, L. N., editors, Pattern
Recognition in Practice. North-Holland, Amsterdam.

Jordan, M. (1998). Learning in Graphical Models. Kluwer,
Dordrecht, Netherlands.

Katz, S. M. (1987). Estimation of probabilities from sparse
data for the language model component of a speech
recognizer. IEEE Transactions on Acoustics, Speech,
and Signal Processing, ASSP-35(3):400–401.

Logvinenko, J. S. L. . R. C. . T. (2001). A theoretical
framework for sequential importance sampling and
resampling. In A. Doucet, N. de Freitas, N. G.,
editor, Sequential Monte Carlo Methods in Practice.
Springer-Verlag.

Manning, C. and Schutze, H. (1999). Foundations of Sta-
tistical Natural Language Processing. MIT Press.

Saul, L. and Jordan, M. (1996). Exploiting tractable sub-
structures in intractable networks. In Mozer, M.,
Touretzky, D., and Perrone, M., editors, Advances in
Neural Information Processing Systems 8. MIT Press,
Cambridge, MA.

