
Shallow vs. Deep Sum-Product Networks

Olivier Delalleau
Department of Computer Science and Operation Research

Universit́e de Montŕeal
delallea@iro.umontreal.ca

Yoshua Bengio
Department of Computer Science and Operation Research

Universit́e de Montŕeal
yoshua.bengio@umontreal.ca

Abstract

We investigate the representational power of sum-product networks (computation
networks analogous to neural networks, but whose individual units compute either
products or weighted sums), through a theoretical analysisthat compares deep
(multiple hidden layers) vs. shallow (one hidden layer) architectures. We prove
there exist families of functions that can be represented much more efficiently
with a deep network than with a shallow one, i.e. with substantially fewer hidden
units. Such results were not available until now, and contribute to motivate recent
research involving learning of deep sum-product networks,and more generally
motivate research in Deep Learning.

1 Introduction and prior work

Many learning algorithms are based on searching a family of functions so as to identify one member
of said family which minimizes a training criterion. The choice of this family of functions and how
members of that family are parameterized can be a crucial one. Although there is no universally
optimal choice of parameterization or family of functions (or “architecture”), as demonstrated by
the no-free-lunch results [37], it may be the case that some architectures are appropriate (or inap-
propriate) for a large class of learning tasks and data distributions, such as those related to Artificial
Intelligence (AI) tasks [4]. Different families of functions have different characteristics that can be
appropriate or not depending on the learning task of interest. One of the characteristics that has
spurred much interest and research in recent years isdepth of the architecture. In the case of a
multi-layer neural network, depth corresponds to the number of (hidden and output) layers. A fixed-
kernel Support Vector Machine is considered to have depth 2 [4] and boosted decision trees to have
depth 3 [7]. Here we use the wordcircuit or networkto talk about a directed acyclic graph, where
each node is associated with some output value which can be computed based on the values associ-
ated with its predecessor nodes. The arguments of the learned function are set at the input nodes of
the circuit (which have no predecessor) and the outputs of the function are read off the output nodes
of the circuit. Different families of functions correspondto different circuits and allowed choices
of computations in each node. Learning can be performed by changing the computation associated
with a node, or rewiring the circuit (possibly changing the number of nodes). The depth of the circuit
is the length of the longest path in the graph from an input node to an output node.

Deep Learning algorithms [3] are tailored to learning circuits with variable depth, typically greater
than depth 2. They are based on the idea ofmultiple levels of representation, with the intuition that
the raw input can be represented at different levels of abstraction, with more abstract features of
the input or more abstract explanatory factors representedby deeper circuits. These algorithms are
often based on unsupervised learning, opening the door to semi-supervised learning and efficient

1

use of large quantities of unlabeled data [3]. Analogies with the structure of the cerebral cortex (in
particular the visual cortex) [31] and similarities between features learned with some Deep Learning
algorithms and those hypothesized in the visual cortex [17]further motivate investigations into deep
architectures. It has been suggested that deep architectures are more powerful in the sense of being
able to more efficiently represent highly-varying functions [4, 3]. In this paper, we measure “effi-
ciency” in terms of the number of computational units in the network. An efficient representation
is important mainly because: (i) it uses less memory and is faster to compute, and (ii) given a fixed
amount of training samples and computational power, bettergeneralization is expected.

The first successful algorithms for training deep architectures appeared in 2006, with efficient train-
ing procedures for Deep Belief Networks [14] and deep auto-encoders [13, 27, 6], both exploiting
the general idea of greedy layer-wise pre-training [6]. Since then, these ideas have been inves-
tigated further and applied in many settings, demonstrating state-of-the-art learning performance
in object recognition [16, 28, 18, 15] and segmentation [20], audio classification [19, 10], natural
language processing [9, 36, 21, 32], collaborative filtering [30], modeling textures [24], modeling
motion [34, 33], information retrieval [29, 26], and semi-supervised learning [36, 22].

Poon and Domingos [25] introduced deepsum-product networksas a method to compute partition
functions of tractable graphical models. These networks are analogous to traditional artificial neural
networks but with nodes that compute either products or weighted sums of their inputs. Analo-
gously to neural networks, we define “hidden” nodes as those nodes that are neither input nodes nor
output nodes. If the nodes are organized in layers, we define the “hidden” layers to be those that
are neither the input layer nor the output layer. Poon and Domingos [25] report experiments with
networks much deeper (30+ hidden layers) than those typically used until now, e.g. in Deep Belief
Networks [14, 3], where the number of hidden layers is usually on the order of three to five.

Whether such deep architectures have theoretical advantages compared to so-called “shallow” archi-
tectures (i.e. those with a single hidden layer) remains an open question. After all, in the case of a
sum-product network, the output value can always be writtenas a sum of products of input variables
(possibly raised to some power by allowing multiple connections from the same input), and conse-
quently it is easily rewritten as a shallow network with a sumoutput unit and product hidden units.
The argument supported by our theoretical analysis is that adeep architecture is able to compute
some functions much more efficiently than a shallow one.

Until recently, very few theoretical results supported theidea that deep architectures could present
an advantage in terms of representing some functions more efficiently. Most related results originate
from the analysis of boolean circuits (see e.g. [2] for a review). Well-known results include the
proof that solving then-bit parity task with a depth-2 circuit requires an exponential number of
gates [1, 38], and more generally that there exist functionscomputable with a polynomial-size depth-
k circuit that would require exponential size when restricted to depthk − 1 [11]. Another recent
result on boolean circuits by Braverman [8] offers proof of alongstanding conjecture, showing that
bounded-depth boolean circuits are unable to distinguish some (non-uniform) input distributions
from the uniform distribution (i.e. they are “fooled” by such input distributions). In particular,
Braverman’s result suggests that shallow circuits can in general be fooled more easily than deep
ones, i.e., that they would have more difficulty efficiently representing high-order dependencies
(those involving many input variables).

It is not obvious that circuit complexity results (that typically consider only boolean or at least dis-
crete nodes) are directly applicable in the context of typical machine learning algorithms such as
neural networks (that compute continuous representationsof their input). Orponen [23] surveys the-
oretical results in computational complexity that are relevant to learning algorithms. For instance,
Håstad and Goldmann [12] extended some results to the case of networks of linear threshold units
with positivity constraints on the weights. Bengioet al. [5, 7] investigate, respectively, complexity
issues in networks of Gaussian radial basis functions and decision trees, showing intrinsic limitations
of these architectures e.g. on tasks similar to the parity problem. Utgoff and Stracuzzi [35] infor-
mally discuss the advantages of depth in boolean circuit in the context of learning architectures.
Bengio [3] suggests that some polynomials could be represented more efficiently by deep sum-
product networks, but without providing any formal statement or proofs. This work partly addresses
this void by demonstrating families of circuits for which a deep architecture can be exponentially
more efficient than a shallow one in the context of real-valued polynomials.

Note that we do not address in this paper the problem oflearning these parameters: even if an
efficient deep representation exists for the function we seek to approximate, in general there is no

2

guarantee for standard optimization algorithms to easily converge to this representation. This paper
focuses on the representational power of deep sum-product circuits compared to shallow ones, and
studies it by considering particular families of target functions (to be represented by the learner).

We first formally define sum-product networks. We consider two families of functions represented
by deep sum-product networks (familiesF andG). For each family, we establish a lower bound on
the minimal number of hidden units a depth-2 sum-product network would require to represent a
function of this family, showing it is much less efficient than the deep representation.

2 Sum-product networks

Definition 1. A sum-product network is a network composed of units that either compute the product
of their inputs or a weighted sum of their inputs (where weights are strictly positive).

Here, we restrict our definition of the generic term “sum-product network” to networks whose sum-
mation units have positive incoming weights1, while others are called “negative-weight” networks.

Definition 2. A “negative-weight“ sum-product network may contain summation units whose
weights are non-positive (i.e. less than or equal to zero).

Finally, we formally define what we mean bydeepvs. shallownetworks in the rest of the paper.

Definition 3. A “shallow“ sum-product network contains a single hidden layer (i.e. a total of three
layers when counting the input and output layers, and a depthequal to two).

Definition 4. A “deep“ sum-product network contains more than one hidden layer (i.e. a total of at
least four layers, and a depth at least three).

3 The family F
3.1 Definition

The first family of functions we study, denoted byF , is made of functions built from deep sum-
product networks that alternate layers of product and sum units with two inputs each (details are
provided below). The basic idea we use here is that composinglayers (i.e. using a deep architec-
ture) is equivalent to using a factorized representation ofthe polynomial function computed by the
network. Such a factorized representation can be exponentially more compact than its expansion as
a sum of products (which can be associated to a shallow network with product units in its hidden
layer and a sum unit as output). This is what we formally show in what follows.

+

×× ×

x1 x2 x3 x4

ℓ1

2
= x3x4ℓ1

1
= x1x2

µ11 = 1λ11 = 1

ℓ2

1
= λ11ℓ

1

1
+ µ11ℓ

1

2
= x1x2 + x3x4 = f(x1, x2, x3, x4)

Figure 1: Sum-product network computing the functionf ∈ F such thati = λ11 = µ11 = 1.

Let n = 4i, with i a positive integer value. Denote byℓ0 the input layer containing scalar variables
{x1, . . . , xn}, such thatℓ0j = xj for 1 ≤ j ≤ n. Now definef ∈ F as any function computed by a
sum-product network (deep fori ≥ 2) composed of alternating product and sum layers:

• ℓ2k+1
j = ℓ2k

2j−1 · ℓ2k
2j for 0 ≤ k ≤ i − 1 and1 ≤ j ≤ 22(i−k)−1

• ℓ2k
j = λjkℓ2k−1

2j−1 + µjkℓ2k−1
2j for 1 ≤ k ≤ i and1 ≤ j ≤ 22(i−k)

where the weightsλjk andµjk of the summation units are strictly positive.

The output of the network is given byf(x1, . . . , xn) = ℓ2i
1 ∈ R, the unique unit in the last layer.

The corresponding (shallow) network fori = 1 and additive weights set to one is shown in Figure 1

1This condition is required by some of the proofs presented here.

3

(this architecture is also the basic building block of bigger networks fori > 1). Note that both the
input sizen = 4i and the network’s depth2i increase with parameteri.

3.2 Theoretical results

The main result of this section is presented below in Corollary 1, providing a lower bound on the
minimum number of hidden units required by a shallow sum-product network to represent a function
f ∈ F . The high-level proof sketch consists in the following steps:
(1) Count the number of unique products found in the polynomial representation off (Lemma 1 and
Proposition 1).
(2) Show that the only possible architecture for a shallow sum-product network to computef is to
have a hidden layer made of product units, with a sum unit as output (Lemmas 2 to 5).
(3) Conclude that the number of hidden units must be at least the number of unique products com-
puted in step 3.2 (Lemma 6 and Corollary 1).

Lemma 1. Any elementℓk
j can be written as a (positively) weighted sum of products of input vari-

ables, such that each input variablext is used in exactly one unit ofℓk. Moreover, the numbermk of
products found in the sum computed byℓk

j does not depend onj and obeys the following recurrence
rule for k ≥ 0: if k + 1 is odd, thenmk+1 = m2

k, otherwisemk+1 = 2mk.

Proof. We prove the lemma by induction onk. It is obviously true fork = 0 sinceℓ0j = xj .
Assuming this is true for somek ≥ 0, we consider two cases:

• If k + 1 is odd, thenℓk+1
j = ℓk

2j−1 · ℓk
2j . By the inductive hypothesis, it is the product of

two (positively) weighted sums of products of input variables, and no input variable can
appear in bothℓk

2j−1 andℓk
2j , so the result is also a (positively) weighted sum of products

of input variables. Additionally, if the number of productsin ℓk
2j−1 andℓk

2j is mk, then
mk+1 = m2

k, since all products involved in the multiplication of the two units are different
(since they use disjoint subsets of input variables), and the sums have positive weights.

Finally, by the induction assumption, an input variable appears in exactly one unit ofℓk.
This unit is an input to a single unit ofℓk+1, that will thus be the only unit ofℓk+1 where
this input variable appears.

• If k + 1 is even, thenℓk+1
j = λjkℓk

2j−1 + µjkℓk
2j . Again, from the induction assumption, it

must be a (positively) weighted sum of products of input variables, but withmk+1 = 2mk

such products. As in the previous case, an input variable will appear in the single unit of
ℓk+1 that has as input the single unit ofℓk in which this variable must appear.

Proposition 1. The number of products in the sum computed in the output unitl2i
1 of a network

computing a function inF is m2i = 2
√

n−1.

Proof. We first prove by induction onk ≥ 1 that for oddk, mk = 22
k+1
2 −2, and for evenk,

mk = 22
k
2 −1. This is obviously true fork = 1 since22

1+1
2 −2 = 20 = 1, and all units inℓ1 are

single products of the formxrxs. Assuming this is true for somek ≥ 1, then:

• if k + 1 is odd, then from Lemma 1 and the induction assumption, we have:

mk+1 = m2
k =

(

22
k
2 −1

)2

= 22
k
2

+1−2 = 22
(k+1)+1

2 −2

• if k + 1 is even, then instead we have:

mk+1 = 2mk = 2 · 22
k+1
2 −2 = 22

(k+1)
2 −1

which shows the desired result fork + 1, and thus concludes the induction proof. Applying this
result withk = 2i (which is even) yields

m2i = 22
2i
2 −1 = 2

√
22i−1 = 2

√
n−1.

4

Lemma 2. The products computed in the output unitl2i
1 can be split in two groups, one with products

containing only variablesx1, . . . , xn
2

and one containing only variablesxn
2 +1, . . . , xn.

Proof. This is obvious since the last unit is a “sum“ unit that adds two terms whose inputs are these
two groups of variables (see e.g. Fig. 1).

Lemma 3. The products computed in the output unitl2i
1 involve more than one input variable.

Proof. It is straightforward to show by induction onk ≥ 1 that the products computed bylkj all
involve more than one input variable, thus it is true in particular for the output layer (k = 2i).

Lemma 4. Any shallow sum-product network computingf ∈ F must have a “sum” unit as output.

Proof. By contradiction, suppose the output unit of such a shallow sum-product network is multi-
plicative. This unit must have more than one input, because in the case that it has only one input,
the output would be either a (weighted) sum of input variables (which would violate Lemma 3), or
a single product of input variables (which would violate Proposition 1), depending on the type (sum
or product) of the single input hidden unit. Thus the last unit must compute a product of two or
more hidden units. It can be re-written as a product of two factors, where each factor corresponds to
either one hidden unit, or a product of multiple hidden units(it does not matter here which specific
factorization is chosen among all possible ones). Regardless of the type (sum or product) of the
hidden units involved, those two factors can thus be writtenas weighted sums of products of vari-
ablesxt (with positive weights, and input variables potentially raised to powers above one). From
Lemma 1, bothx1 andxn must be present in the final output, and thus they must appear in at least
one of these two factors. Without loss of generality, assumex1 appears in the first factor. Variables
xn

2 +1, . . . , xn then cannot be present in the second factor, since otherwiseone product in the output
would contain bothx1 and one of these variables (this product cannot cancel out since weights must
be positive), violating Lemma 2. But with a similar reasoning, since as a resultxn must appear in
the first factor, variablesx1, . . . , xn

2
cannot be present in the second factor either. Consequently, no

input variable can be present in the second factor, leading to the desired contradiction.

Lemma 5. Any shallow sum-product network computingf ∈ F must have only multiplicative units
in its hidden layer.

Proof. By contradiction, suppose there exists a “sum“ unit in the hidden layer, writtens =
∑

t∈S αtxt with S the set of input indices appearing in this sum, andαt > 0 for all t ∈ S. Since
according to Lemma 4 the output unit must also be a sum (and have positive weights according to
Definition 1), then the final output will also contain terms ofthe formβtxt for t ∈ S, with βt > 0.
This violates Lemma 3, establishing the contradiction.

Lemma 6. Any shallow negative-weight sum-product network (see Definition 2) computingf ∈ F
must have at least2

√
n−1 hidden units, if its output unit is a sum and its hidden units are products.

Proof. Such a network computes a weighted sum of its hidden units, where each hidden unit is a
product of input variables, i.e. its output can be written asΣjwjΠtx

γjt

t with wj ∈ R andγjt ∈
{0, 1}. In order to compute a function inF , this shallow network thus needs a number of hidden
units at least equal to the number of unique products in that function. From Proposition 1, this
number is equal to2

√
n−1.

Corollary 1. Any shallow sum-product network computingf ∈ F must have at least2
√

n−1 hidden
units.

Proof. This is a direct corollary of Lemmas 4 (showing the output unit is a sum), 5 (showing that
hidden units are products), and 6 (showing the desired result for any shallow network with this
specific structure – regardless of the sign of weights).

5

3.3 Discussion

Corollary 1 above shows that in order to compute some function in F with n inputs, the number of
units in a shallow network has to be at least2

√
n−1, (i.e. grows exponentially in

√
n). On another

hand, the total number of units in the deep (fori > 1) network computing the same function, as
described in Section 3.1, is equal to1+2+4+8+ . . .+22i−1 (since all units are binary), which is
also equal to22i − 1 = n− 1 (i.e. grows only quadratically in

√
n). It shows that some deep sum-

product network with n inputs and depthO(log n) can represent withO(n) units what would
require O(2

√
n) units for a depth-2 network. Lemma 6 also shows a similar result regardless

of the sign of the weights in the summation units of the depth-2 network, but assumes a specific
architecture for this network (products in the hidden layerwith a sum as output).

4 The family G
In this section we present similar results with a different family of functions, denoted byG. Com-
pared toF , one important difference of deep sum-product networks built to define functions inG
is that they can vary their input size independently of theirdepth. Their analysis thus provides ad-
ditional insight when comparing the representational efficiency of deep vs. shallow sum-product
networks in the case of a fixed dataset.

4.1 Definition

Networks in familyG also alternate sum and product layers, but their units have as inputs all units
from the previous layerexcept one. More formally, define the familyG = ∪n≥2,i≥0Gin of func-
tions represented by sum-product networks, where the sub-family Gin is made of all sum-product
networks withn input variables and2i + 2 layers (including the input layerℓ0), such that:

1. ℓ1 contains summation units; further layers alternate multiplicative and summation units.
2. Summation units have positive weights.
3. All layers are of sizen, except the last layerℓ2i+1 that contains a single sum unit that sums

all units in the previous layerℓ2i.
4. In each layerℓk for 1 ≤ k ≤ 2i, each unitℓk

j takes as inputs{ℓk−1
m |m 6= j}.

An example of a network belonging toG1,3 (i.e. with three layers and three input variables) is shown
in Figure 2.

+ + +

+

× × ×

x1 x2 x3

ℓ1

3
= x1 + x2ℓ1

2
= x1 + x3ℓ1

1
= x2 + x3

ℓ2

3
= x2

3
+ x1x2

+x1x3 + x2x3

ℓ2

1
= x2

1
+ x1x2

+x1x3 + x2x3

ℓ2

2
= . . .

ℓ3

1
= x2

1
+ x2

2
+ x2

3
+ 3(x1x2 + x1x3 + x2x3) = g(x1, x2, x3)

Figure 2: Sum-product network computing a function ofG1,3 (summation units’ weights are all 1’s).

4.2 Theoretical results

The main result is stated in Proposition 3 below, establishing a lower bound on the number of hidden
units of a shallow sum-product network computingg ∈ G. The proof sketch is as follows:

1. We show that the polynomial expansion ofg must contain a large set of products (Proposi-
tion 2 and Corollary 2).

2. We use both the number of products in that set as well as their degree to establish the
desired lower bound (Proposition 3).

6

We will also need the following lemma, which states that whenn − 1 items each belong ton − 1
sets among a total ofn sets, then we can associate to each item one of the sets it belongs to without
using the same set for different items.

Lemma 7. LetS1, . . . , Sn ben sets (n ≥ 2) containing elements of{P1, . . . , Pn−1}, such that for
anyq, r, |{r|Pq ∈ Sr}| ≥ n − 1 (i.e. each elementPq belongs to at leastn − 1 sets). Then there
existr1, . . . , rn−1 different indices such thatPq ∈ Srq

for 1 ≤ q ≤ n − 1.

Proof. Omitted due to lack of space (very easy to prove by construction).

Proposition 2. For any0 ≤ j ≤ i, and any product of variablesP = Πn
t=1x

αt

t such thatαt ∈ N and
∑

t αt = (n − 1)j , there exists a unit inℓ2j whose computed value, when expanded as a weighted
sum of products, containsP among these products.

Proof. We prove this proposition by induction onj.

First, forj = 0, this is obvious since anyP of this form must be made of a single input variablext,
that appears inℓ0t = xt.

Suppose now the proposition is true for somej < i. Consider a productP = Πn
t=1x

αt

t such that
αt ∈ N and

∑

t αt = (n − 1)j+1. P can be factored inn − 1 sub-products of degree(n − 1)j ,

i.e. writtenP = P1 . . . Pn−1 with Pq = Πn
t=1x

βqt

t , βqt ∈ N and
∑

t βqt = (n − 1)j for all q. By
the induction hypothesis, eachPq can be found in at least one unitℓ

2j
kq

. As a result, by property 4

(in the definition of familyG), eachPq will also appear in the additive layerℓ2j+1, in at leastn − 1

different units (the only sum unit that may not containPq is the one that does not haveℓ
2j
kq

as input).

By Lemma 7, we can thus find a set of unitsℓ2j+1
rq

such that for any1 ≤ q ≤ n − 1, the product
Pq appears inℓ2j+1

rq
, with indicesrq being different from each other. Let1 ≤ s ≤ n be such that

s 6= rq for all q. Then, from property 4 of familyG, the multiplicative unitℓ2(j+1)
s computes the

productΠn−1
q=1 ℓ2j+1

rq
, and as a result, when expanded as a sum of products, it contains in particular

P1 . . . Pn−1 = P . The proposition is thus true forj + 1, and by induction, is true for allj ≤ i.

Corollary 2. The outputgin of a sum-product network inGin, when expanded as a sum of products,
contains all products of variables of the formΠn

t=1x
αt

t such thatαt ∈ N and
∑

t αt = (n − 1)i.

Proof. Applying Proposition 2 withj = i, we obtain that all products of this form can be found in
the multiplicative units ofℓ2i. Since the output unitℓ2i+1

1 computes a sum of these multiplicative
units (weighted with positive weights), those products arealso present in the output.

Proposition 3. A shallow negative-weight sum-product network computinggin ∈ Gin must have at
least(n − 1)i hidden units.

Proof. First suppose the output unit of the shallow network is a sum.Then it may be able to compute
gin, assuming we allow multiplicative units in the hidden layerin the hidden layer to use powers
of their inputs in the product they compute (which we allow here for the proof to be more generic).
However, it will require at least as many of these units as thenumber of unique products that can
be found in the expansion ofgin. In particular, from Corollary 2, it will require at least the number
of unique tuples of the form(α1, . . . , αn) such thatαt ∈ N and

∑n
t=1 αt = (n − 1)i. Denoting

dni = (n − 1)i, this number is known to be equal to
(

n+dni−1
dni

)

, and it is easy to verify it is higher
than (or equal to)dni for anyn ≥ 2 andi ≥ 0.

Now suppose the output unit is multiplicative. Then there can be no multiplicative hidden unit,
otherwise it would mean one could factor some input variablext in the computed function output:
this is not possible since by Corollary 2, for any variablext there exist products in the output function
that do not involvext. So all hidden units must be additive, and since the computedfunction contains
products of degreedni, there must be at leastdni such hidden units.

7

4.3 Discussion

Proposition 3 shows that in order to compute the same function asgin ∈ Gin, the number of units
in the shallow network has to grow exponentially ini, i.e. in the network’s depth (while the deep
network’s size grows linearly ini). The shallow network also needs to grow polynomially in the
number of input variablesn (with a degree equal toi), while the deep network grows only linearly in
n. It means that some deep sum-product network withn inputs and depthO(i) can represent
with O(ni) units what would require O((n − 1)i) units for a depth-2 network.

Note that in the similar results found for familyF , the depth-2 network computing the same function
as a function inF had to be constrained to either have a specific combination ofsum and hidden
units (in Lemma 6) or to have non-negative weights (in Corollary 1). On the contrary, the result
presented here for familyG holds without requiring any of these assumptions.

5 Conclusion

We compared a deep sum-product network and a shallow sum-product network representing the
same function, taken from two families of functionsF andG. For both families, we have shown that
the number of units in the shallow network has to grow exponentially, compared to a linear growth
in the deep network, so as to represent the same functions. The deep version thus offers a much
more compact representation of the same functions.

This work focuses on two specific families of functions: finding more general parameterization of
functions leading to similar results would be an interesting topic for future research. Another open
question is whether it is possible to represent such functions only approximately (e.g. up to an
error boundǫ) with a much smaller shallow network. Results by Braverman [8] on boolean circuits
suggest that similar results as those presented in this paper may still hold, but this topic has yet to be
formally investigated in the context of sum-product networks. A related problem is also to look into
functions defined only on discrete input variables: our proofs do not trivially extend to this situation
because we cannot assume anymore that two polynomials yielding the same output values must have
the same expansion coefficients (since the number of input combinations becomes finite).

Acknowledgments

The authors would like to thank Razvan Pascanu and David Warde-Farley for their help in improv-
ing this manuscript, as well as the anonymous reviewers for their careful reviews. This work was
partially funded by NSERC, CIFAR, and the Canada Research Chairs.

References
[1] Ajtai, M. (1983).

P

1

1
-formulae on finite structures.Annals of Pure and Applied Logic, 24(1), 1–48.

[2] Allender, E. (1996). Circuit complexity before the dawn of the new millennium. In16th Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, pages 1–18. Lecture Notes in
Computer Science 1180, Springer Verlag.

[3] Bengio, Y. (2009). Learning deep architectures for AI.Foundations and Trends in Machine Learning, 2(1),
1–127. Also published as a book. Now Publishers, 2009.

[4] Bengio, Y. and LeCun, Y. (2007). Scaling learning algorithms towards AI. In L. Bottou, O. Chapelle,
D. DeCoste, and J. Weston, editors,Large Scale Kernel Machines. MIT Press.

[5] Bengio, Y., Delalleau, O., and Le Roux, N. (2006). The curse ofhighly variable functions for local kernel
machines. InNIPS’05, pages 107–114. MIT Press, Cambridge, MA.

[6] Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy layer-wise training of deep
networks. InNIPS 19, pages 153–160. MIT Press.

[7] Bengio, Y., Delalleau, O., and Simard, C. (2010). Decision trees do not generalize to new variations.
Computational Intelligence, 26(4), 449–467.

[8] Braverman, M. (2011). Poly-logarithmic independence fools bounded-depth boolean circuits.Communi-
cations of the ACM, 54(4), 108–115.

[9] Collobert, R. and Weston, J. (2008). A unified architecture for natural language processing: Deep neural
networks with multitask learning. InICML 2008, pages 160–167.

[10] Dahl, G. E., Ranzato, M., Mohamed, A., and Hinton, G. E. (2010). Phone recognition with the mean-
covariance restricted boltzmann machine. InAdvances in Neural Information Processing Systems (NIPS).

8

[11] Håstad, J. (1986). Almost optimal lower bounds for small depth circuits.In Proceedings of the 18th
annual ACM Symposium on Theory of Computing, pages 6–20, Berkeley, California. ACM Press.

[12] Håstad, J. and Goldmann, M. (1991). On the power of small-depth threshold circuits. Computational
Complexity, 1, 113–129.

[13] Hinton, G. E. and Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks.
Science, 313(5786), 504–507.

[14] Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep belief nets.Neural
Computation, 18, 1527–1554.

[15] Kavukcuoglu, K., Sermanet, P., Boureau, Y.-L., Gregor, K., Mathieu, M., and LeCun, Y. (2010). Learning
convolutional feature hierarchies for visual recognition. InNIPS’10.

[16] Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio, Y. (2007). An empirical evaluation of
deep architectures on problems with many factors of variation. InICML’07, pages 473–480. ACM.

[17] Lee, H., Ekanadham, C., and Ng, A. (2008). Sparse deep belief net model for visual area V2. InNIPS’07,
pages 873–880. MIT Press, Cambridge, MA.

[18] Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009a).Convolutional deep belief networks for
scalable unsupervised learning of hierarchical representations. InICML 2009. Montreal (Qc), Canada.

[19] Lee, H., Pham, P., Largman, Y., and Ng, A. (2009b). Unsupervised feature learning for audio classification
using convolutional deep belief networks. InNIPS’09, pages 1096–1104.

[20] Levner, I. (2008). Data Driven Object Segmentation. Ph.D. thesis, Department of Computer Science,
University of Alberta.

[21] Mnih, A. and Hinton, G. E. (2009). A scalable hierarchical distributed language model. InNIPS’08,
pages 1081–1088.

[22] Mobahi, H., Collobert, R., and Weston, J. (2009). Deep learningfrom temporal coherence in video. In
ICML’2009, pages 737–744.

[23] Orponen, P. (1994). Computational complexity of neural networks: a survey.Nordic Journal of Comput-
ing, 1(1), 94–110.

[24] Osindero, S. and Hinton, G. E. (2008). Modeling image patches witha directed hierarchy of markov
random field. InNIPS’07, pages 1121–1128, Cambridge, MA. MIT Press.

[25] Poon, H. and Domingos, P. (2011). Sum-product networks: Anew deep architecture. InUAI’2011,
Barcelona, Spain.

[26] Ranzato, M. and Szummer, M. (2008). Semi-supervised learning of compact document representations
with deep networks. InICML.

[27] Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. (2007). Efficient learning of sparse representations
with an energy-based model. InNIPS’06, pages 1137–1144. MIT Press.

[28] Ranzato, M., Boureau, Y.-L., and LeCun, Y. (2008). Sparse feature learning for deep belief networks. In
NIPS’07, pages 1185–1192, Cambridge, MA. MIT Press.

[29] Salakhutdinov, R. and Hinton, G. E. (2007). Semantic hashing. InProceedings of the 2007 Workshop on
Information Retrieval and applications of Graphical Models (SIGIR 2007), Amsterdam. Elsevier.

[30] Salakhutdinov, R., Mnih, A., and Hinton, G. E. (2007). RestrictedBoltzmann machines for collaborative
filtering. In ICML 2007, pages 791–798, New York, NY, USA.

[31] Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich, U., and Poggio, T. (2007). A quantitative theory
of immediate visual recognition.Progress in Brain Research, Computational Neuroscience: Theoretical
Insights into Brain Function, 165, 33–56.

[32] Socher, R., Lin, C., Ng, A. Y., and Manning, C. (2011). Learning continuous phrase representations and
syntactic parsing with recursive neural networks. InICML’2011.

[33] Taylor, G. and Hinton, G. (2009). Factored conditional restrictedBoltzmann machines for modeling
motion style. InICML 2009, pages 1025–1032.

[34] Taylor, G., Hinton, G. E., and Roweis, S. (2007). Modeling human motion using binary latent variables.
In NIPS’06, pages 1345–1352. MIT Press, Cambridge, MA.

[35] Utgoff, P. E. and Stracuzzi, D. J. (2002). Many-layered learning. Neural Computation, 14, 2497–2539.

[36] Weston, J., Ratle, F., and Collobert, R. (2008). Deep learning viasemi-supervised embedding. InICML
2008, pages 1168–1175, New York, NY, USA.

[37] Wolpert, D. H. (1996). The lack of a priori distinction between learning algorithms.Neural Computation,
8(7), 1341–1390.

[38] Yao, A. (1985). Separating the polynomial-time hierarchy by oracles. InProceedings of the 26th Annual
IEEE Symposium on Foundations of Computer Science, pages 1–10.

9

