Shallow vs. Deep Sum-Product Networks

Olivier Delalleau
Department of Computer Science and Operation Research
Universié de Monteal
del al l ea@ro. unontreal . ca

Yoshua Bengio
Department of Computer Science and Operation Research
Universiée de Monteal
yoshua. bengi o@mnontreal . ca

Abstract

We investigate the representational power of sum-prodettarks (computation
networks analogous to neural networks, but whose indiVidiniégs compute either
products or weighted sums), through a theoretical anatysis compares deep
(multiple hidden layers) vs. shallow (one hidden layerhéectures. We prove
there exist families of functions that can be representedhnmaore efficiently
with a deep network than with a shallow one, i.e. with sulisifiy fewer hidden
units. Such results were not available until now, and cbate to motivate recent
research involving learning of deep sum-product netwoaksl more generally
motivate research in Deep Learning.

1 Introduction and prior work

Many learning algorithms are based on searching a familymétions so as to identify one member
of said family which minimizes a training criterion. The ét® of this family of functions and how
members of that family are parameterized can be a crucial sitough there is no universally
optimal choice of parameterization or family of functiors (architecture”), as demonstrated by
the no-free-lunch results [37], it may be the case that sawct@tactures are appropriate (or inap-
propriate) for a large class of learning tasks and datailligions, such as those related to Atrtificial
Intelligence (Al) tasks [4]. Different families of functis have different characteristics that can be
appropriate or not depending on the learning task of inter®sne of the characteristics that has
spurred much interest and research in recent yeatspth of the architecture. In the case of a
multi-layer neural network, depth corresponds to the nurobéidden and output) layers. A fixed-
kernel Support Vector Machine is considered to have dep# @r{d boosted decision trees to have
depth 3 [7]. Here we use the woditcuit or networkto talk about a directed acyclic graph, where
each node is associated with some output value which canrbputed based on the values associ-
ated with its predecessor nodes. The arguments of the tb&uinetion are set at the input nodes of
the circuit (which have no predecessor) and the outputssofuthction are read off the output nodes
of the circuit. Different families of functions correspoiwl different circuits and allowed choices
of computations in each node. Learning can be performed aggihg the computation associated
with a node, or rewiring the circuit (possibly changing theber of nodes). The depth of the circuit
is the length of the longest path in the graph from an inpuertocan output node.

Deep Learning algorithms [3] are tailored to learning ditcwith variable depth, typically greater
than depth 2. They are based on the idemattiple levels of representatipwith the intuition that
the raw input can be represented at different levels of atsbn, with more abstract features of
the input or more abstract explanatory factors represdmtateeper circuits. These algorithms are
often based on unsupervised learning, opening the doomiésgpervised learning and efficient

use of large quantities of unlabeled data [3]. Analogie$whe structure of the cerebral cortex (in
particular the visual cortex) [31] and similarities betwdeatures learned with some Deep Learning
algorithms and those hypothesized in the visual cortexfilrifher motivate investigations into deep
architectures. It has been suggested that deep archésate more powerful in the sense of being
able to more efficiently represent highly-varying funcsdd, 3]. In this paper, we measure “effi-
ciency” in terms of the number of computational units in tleéwork. An efficient representation
is important mainly because: (i) it uses less memory andsiefdao compute, and (ii) given a fixed
amount of training samples and computational power, bgteeralization is expected.

The first successful algorithms for training deep architexst appeared in 2006, with efficient train-
ing procedures for Deep Belief Networks [14] and deep auatpders [13, 27, 6], both exploiting
the general idea of greedy layer-wise pre-training [6]. c8ithen, these ideas have been inves-
tigated further and applied in many settings, demonsuastate-of-the-art learning performance
in object recognition [16, 28, 18, 15] and segmentation ,[20[dio classification [19, 10], natural
language processing [9, 36, 21, 32], collaborative filg(iB0], modeling textures [24], modeling
motion [34, 33], information retrieval [29, 26], and semipgrvised learning [36, 22].

Poon and Domingos [25] introduced despm-product networks as a method to compute partition
functions of tractable graphical models. These networ&saalogous to traditional artificial neural
networks but with nodes that compute either products or ey sums of their inputs. Analo-
gously to neural networks, we define “hidden” nodes as thodesithat are neither input nodes nor
output nodes. If the nodes are organized in layers, we ddfméhidden” layers to be those that
are neither the input layer nor the output layer. Poon andiDgos [25] report experiments with
networks much deeper (30+ hidden layers) than those typigaéd until now, e.g. in Deep Belief
Networks [14, 3], where the number of hidden layers is uguailthe order of three to five.

Whether such deep architectures have theoretical advantaggared to so-called “shallow” archi-
tectures (i.e. those with a single hidden layer) remainspgemauestion. After all, in the case of a
sum-product network, the output value can always be wrétea sum of products of input variables
(possibly raised to some power by allowing multiple conitecs from the same input), and conse-
quently it is easily rewritten as a shallow network with a somtput unit and product hidden units.
The argument supported by our theoretical analysis is tltkgteq architecture is able to compute
some functions much more efficiently than a shallow one.

Until recently, very few theoretical results supported itthea that deep architectures could present
an advantage in terms of representing some functions miiceafly. Most related results originate
from the analysis of boolean circuits (see e.g. [2] for aeeyi Well-known results include the
proof that solving then-bit parity task with a depth-2 circuit requires an expoientumber of
gates [1, 38], and more generally that there exist functiomsputable with a polynomial-size depth-
k circuit that would require exponential size when restddie depthk — 1 [11]. Another recent
result on boolean circuits by Braverman [8] offers proof ¢édragstanding conjecture, showing that
bounded-depth boolean circuits are unable to distinguishes(non-uniform) input distributions
from the uniform distribution (i.e. they are “fooled” by dudinput distributions). In particular,
Braverman'’s result suggests that shallow circuits can imega be fooled more easily than deep
ones, i.e., that they would have more difficulty efficientgpresenting high-order dependencies
(those involving many input variables).

It is not obvious that circuit complexity results (that tgally consider only boolean or at least dis-
crete nodes) are directly applicable in the context of @machine learning algorithms such as
neural networks (that compute continuous representatibtineir input). Orponen [23] surveys the-
oretical results in computational complexity that are vai# to learning algorithms. For instance,
Hastad and Goldmann [12] extended some results to the casdvedrks of linear threshold units
with positivity constraints on the weights. Bengibal.[5, 7] investigate, respectively, complexity
issues in networks of Gaussian radial basis functions acidida trees, showing intrinsic limitations
of these architectures e.g. on tasks similar to the paritplpm. Utgoff and Stracuzzi [35] infor-
mally discuss the advantages of depth in boolean circuibhéncontext of learning architectures.
Bengio [3] suggests that some polynomials could be reptedemore efficiently by deep sum-
product networks, but without providing any formal stateia proofs. This work partly addresses
this void by demonstrating families of circuits for which aap architecture can be exponentially
more efficient than a shallow one in the context of real-vélpelynomials.

Note that we do not address in this paper the problereafming these parameters: even if an
efficient deep representation exists for the function wé se@pproximate, in general there is no

guarantee for standard optimization algorithms to easitywerge to this representation. This paper
focuses on the representational power of deep sum-produaaits compared to shallow ones, and
studies it by considering particular families of targetdtions (to be represented by the learner).

We first formally define sum-product networks. We consider tamilies of functions represented
by deep sum-product networks (familigsandG). For each family, we establish a lower bound on
the minimal number of hidden units a depth-2 sum-productvost would require to represent a
function of this family, showing it is much less efficient théne deep representation.

2 Sum-product networks

Definition 1. A sum-product network is a network composed of units tha¢edompute the product
of their inputs or a weighted sum of their inputs (where wisgtre strictly positive).

Here, we restrict our definition of the generic term “sumehret network” to networks whose sum-
mation units have positive incoming weightshile others are called “negative-weight” networks.

Definition 2. A “negative-weight* sum-product network may contain surtiora units whose
weights are non-positive (i.e. less than or equal to zero).

Finally, we formally define what we mean bigepvs. shallownetworks in the rest of the paper.

Definition 3. A “shallow* sum-product network contains a single hiddegéa (i.e. a total of three
layers when counting the input and output layers, and a deqtlal to two).

Definition 4. A “deep” sum-product network contains more than one hiddset (i.e. a total of at
least four layers, and a depth at least three).

3 The family 7

3.1 Definition

The first family of functions we study, denoted 13y, is made of functions built from deep sum-
product networks that alternate layers of product and suits with two inputs each (details are
provided below). The basic idea we use here is that compdayeys (i.e. using a deep architec-
ture) is equivalent to using a factorized representatioth@fpolynomial function computed by the
network. Such a factorized representation can be expailgntiore compact than its expansion as
a sum of products (which can be associated to a shallow nletwitih product units in its hidden
layer and a sum unit as output). This is what we formally showhat follows.

2 1 1 . e, — 1 1 P
07 = My + pnily = w129 + w324 = f(21, T9, 13, T4)

/

T) T3 Xy

Figure 1: Sum-product network computing the functjoa F such that = A\;; = pq1 = 1.

Let n = 4%, with 7 a positive integer value. Denote Y the input layer containing scalar variables
{x1,...,2,}, such that? = z; for 1 < j < n. Now definef € F as any function computed by a
sum-product network (deep for> 2) composed of alternating product and sum layers:

o FFF =3k 43k for0 <k <i—landl <j<22-k)-1
o (2R = Npl3h Tl 4 pptsh T for1 < k <iandl < j < 22070

where the weights ;, andy.;, of the summation units are strictly positive.

The output of the network is given bf(x1, ..., z,) = (3 € R, the unique unit in the last layer.
The corresponding (shallow) network foe= 1 and additive weights set to one is shown in Figure 1

1This condition is required by some of the proofs presented here.

(this architecture is also the basic building block of biggetworks fori > 1). Note that both the
input sizen = 4' and the network’s depthi increase with parametér

3.2 Theoretical results

The main result of this section is presented below in Corplla providing a lower bound on the
minimum number of hidden units required by a shallow sundpob network to represent a function
f € F. The high-level proof sketch consists in the following step

(1) Count the number of unique products found in the polyrmdnepresentation of (Lemma 1 and
Proposition 1).

(2) Show that the only possible architecture for a shallom-guoduct network to computg is to
have a hidden layer made of product units, with a sum unit gaubgLemmas 2 to 5).

(3) Conclude that the number of hidden units must be at léashtimber of unique products com-
puted in step 3.2 (Lemma 6 and Corollary 1).

Lemma 1. Any elemenf;? can be written as a (positively) weighted sum of productsidi vari-

ables, such that each input variablg is used in exactly one unit éf. Moreover, the number., of
products found in the sum computed@@)does not depend ghand obeys the following recurrence

rule for k > 0: if k + 1is odd, thenmy 1 = m3, otherwisemy1 = 2my,.

Proof. We prove the lemma by induction dn It is obviously true fork = 0 sinceﬁ? = ;.
Assuming this is true for somie > 0, we consider two cases:

o If k+1is odd, then/¥™" = ¢&._, . ¢5.. By the inductive hypothesis, it is the product of
two (positively) Weiglzwted sums of products of input varegland no input variable can
appear in botii’gjf1 andé’gj, so the result is also a (positively) weighted sum of prosluct

of input variables. Additionally, if the number of produdts(5; , and(5; is my, then
my+1 = m3, since all products involved in the multiplication of theatwnits are different
(since they use disjoint subsets of input variables), aadtims have positive weights.

Finally, by the induction assumption, an input variableeg in exactly one unit of*.
This unit is an input to a single unit ¢f+!, that will thus be the only unit of**! where
this input variable appears.

o If k+ Lis even, ther" ™ = \;p 05, | + 11;,,05,. Again, from the induction assumption, it
must be a (positivelyf weighted sum of products of inputakles, but withn, 1 = 2m;
such products. As in the previous case, an input variableawpear in the single unit of
¢k+1 that has as input the single unit&fin which this variable must appear.

Proposition 1. The number of products in the sum computed in the output/finitf a network
computing a function itF is moq; = 2V,

k41
Proof. We first prove by induction ot > 1 that for oddk, m; = 22 * —2, and for even,

k 141
my, = 22271, This is obviously true fok = 1 since2? * =2 = 2° = 1, and all units in/* are
single products of the form,. ;. Assuming this is true for some> 1, then:

e if £+ 1is odd, then from Lemma 1 and the induction assumption, we:hav

(k+1)+1
2 2

k 2 k
2 22 -1 22t 9
Mpr1 =my = | 2 =2 =2

e if k£ + 1is even, then instead we have:
k41 (k+1)
Mpp1 =2my, =222 2 72 =22 % ~1
which shows the desired result fér+ 1, and thus concludes the induction proof. Applying this
result withk = 24 (which is even) yields

Mg = 22%71 _ 2@71 —ovn—1

Lemma 2. The products computed in the output uitcan be split in two groups, one with products
containing only variables, ..., z= and one containing only variabless 1, ..., z,.

Proof. This is obvious since the last unit is a “sum* unit that adds terms whose inputs are these
two groups of variables (see e.g. Fig. 1). O

Lemma 3. The products computed in the output ugitinvolve more than one input variable.

Proof. It is straightforward to show by induction dn > 1 that the products computed lﬁﬁ/ all
involve more than one input variable, thus it is true in matar for the output layeri(= 2:). O

Lemma 4. Any shallow sum-product network computifige 7 must have a “sum” unit as output.

Proof. By contradiction, suppose the output unit of such a shallom-product network is multi-
plicative. This unit must have more than one input, becanghd case that it has only one input,
the output would be either a (weighted) sum of input varislfiehich would violate Lemma 3), or
a single product of input variables (which would violate [psition 1), depending on the type (sum
or product) of the single input hidden unit. Thus the last umist compute a product of two or
more hidden units. It can be re-written as a product of twtola; where each factor corresponds to
either one hidden unit, or a product of multiple hidden u(ittsdoes not matter here which specific
factorization is chosen among all possible ones). Regssdié the type (sum or product) of the
hidden units involved, those two factors can thus be writenveighted sums of products of vari-
ablesx; (with positive weights, and input variables potentiallyseal to powers above one). From
Lemma 1, bothe; andz,, must be present in the final output, and thus they must appedréast
one of these two factors. Without loss of generality, assumappears in the first factor. Variables
rz41,...,7, then cannot be present in the second factor, since otheowesproduct in the output
would contain both:; and one of these variables (this product cannot cancel ocg sveights must
be positive), violating Lemma 2. But with a similar reasapisince as a resuit, must appear in
the first factor, variables, ..., z» cannot be present in the second factor either. Consequeatly
input variable can be present in the second factor, leaditiget desired contradiction. O

Lemma 5. Any shallow sum-product network computifige 7 must have only multiplicative units
in its hidden layer.

Proof. By contradiction, suppose there exists a “sum*“ unit in thédbein layer, writtens =
> g arxe With S the set of input indices appearing in this sum, apd> 0 for all ¢ € S. Since
according to Lemma 4 the output unit must also be a sum (ang pasitive weights according to
Definition 1), then the final output will also contain termstioé formg,z; for t € S, with 5, > 0.
This violates Lemma 3, establishing the contradiction. O

Lemma 6. Any shallow negative-weight sum-product network (see Diefir2) computingf € F
must have at leastv”~! hidden units, if its output unit is a sum and its hidden uniesgroducts.

Proof. Such a network computes a weighted sum of its hidden unitseyevlach hidden unit is a
product of input variables, i.e. its output can be writtersgs,I1,2,°* with w; € R and~,, €
{0,1}. In order to compute a function i, this shallow network thus needs a number of hidden
units at least equal to the number of unique products in tat¢tion. From Proposition 1, this

number is equal tav”—1, O

Corollary 1. Any shallow sum-product network computifig F must have at leagtv”~! hidden
units.

Proof. This is a direct corollary of Lemmas 4 (showing the output isya sum), 5 (showing that
hidden units are products), and 6 (showing the desiredtrésubny shallow network with this
specific structure — regardless of the sign of weights). O

3.3 Discussion

Corollary 1 above shows that in order to compute some funéticc with n inputs, the number of
units in a shallow network has to be at least*—!, (i.e. grows exponentially iR/n). On another
hand, the total number of units in the deep (for 1) network computing the same function, as
described in Section 3.1, is equallte- 2 +4 + 8 + . .. + 2%~ 1 (since all units are binary), which is
also equal t@? — 1 = n — 1 (i.e. grows only quadratically ig/n). It shows that some deep sum-
product network with n inputs and depth O(log n) can represent withO(n) units what would
require O(2ﬁ) units for a depth-2 network. Lemma 6 also shows a similar result regardless
of the sign of the weights in the summation units of the débtietwork, but assumes a specific
architecture for this network (products in the hidden layé&h a sum as output).

4 The family G

In this section we present similar results with a differearhily of functions, denoted bg. Com-
pared toF, one important difference of deep sum-product network# buidefine functions irg

is that they can vary their input size independently of tdejpth. Their analysis thus provides ad-
ditional insight when comparing the representational iefficy of deep vs. shallow sum-product
networks in the case of a fixed dataset.

4.1 Definition

Networks in familyG also alternate sum and product layers, but their units hawepats all units
from the previous layeexcept one More formally, define the familyy = U,,>2 ;>0G;,, of func-
tions represented by sum-product networks, where the @ulihf G;,, is made of all sum-product
networks withn input variables an@i + 2 layers (including the input layef), such that:

1. ¢* contains summation units; further layers alternate miigégive and summation units.

2. Summation units have positive weights.

3. All layers are of sizes, except the last layer’*! that contains a single sum unit that sums
all units in the previous layef*’.

4. In each layef* for 1 < k < 2i, each unit’} takes as input§¢f, ! |m # j}.

An example of a network belonging 4 s (i.e. with three layers and three input variables) is shown
in Figure 2.

063 =2} + 23+ 23 + 3(z122 + 2173 + T273) = g1, T2, T3)

2 =22 + 129
+21T3 + T3

B =22 + 129
+x1T3 + T3

Figure 2: Sum-product network computing a functioref (summation units’ weights are all 1's).

4.2 Theoretical results

The main result is stated in Proposition 3 below, estabighilower bound on the number of hidden
units of a shallow sum-product network computipng G. The proof sketch is as follows:

1. We show that the polynomial expansiongahust contain a large set of products (Proposi-
tion 2 and Corollary 2).

2. We use both the number of products in that set as well as diegiree to establish the
desired lower bound (Proposition 3).

We will also need the following lemma, which states that when 1 items each belong ta — 1
sets among a total of sets, then we can associate to each item one of the setsrigiselowithout
using the same set for different items.

Lemma?7. LetSy,...,S, ben sets . > 2) containing elements dfP;, ..., P,_1}, such that for
anyq,r, |{r|P; € S,}| > n —1 (i.e. each elemen®, belongs to at least — 1 sets). Then there
existry, ..., r, differentindices such that, € S, for1 <q <n—1.

Proof. Omitted due to lack of space (very easy to prove by constrmlti O

Proposition 2. Forany0 < j < i, and any product of variableB = IT}"_, zi"* such thaty; € Nand
>, ar = (n— 1)7, there exists a unit ii>J whose computed value, when expanded as a weighted
sum of products, contain® among these products.

Proof. We prove this proposition by induction gn

First, for j = 0, this is obvious since an¥ of this form must be made of a single input varialble
that appears i) = ;.

Suppose now the proposition is true for sojne i. Consider a producP = I}, z;"* such that
o € Nandd", oy = (n — 1)7*1. P can be factored im — 1 sub-products of degrefer — 1),
i.e. writtenP = P, ... P,_; with P, = H?Zla:f‘”, By € Nandy, B = (n — 1)7 for all ¢. By
the induction hypothesis, eadhy can be found in at least one urﬂﬁg. As a result, by property 4
(in the definition of familyG), eachP, will also appear in the additive layéf’+!, in at least, — 1
different units (the only sum unit that may not contéinis the one that does not ha@é as input).

By Lemma 7, we can thus find a set of urﬂfg;“ such that for anyl < ¢ < n — 1, the product
P, appears in27*1, with indicesr, being different from each other. Lét< s < n be such that

s # rq for all g. Then, from property 4 of family, the multiplicative unitg20 Y computes the
productﬂgz‘f@g“, and as a result, when expanded as a sum of products, it esitaparticular
P, ...P,_1 = P. The proposition is thus true fgr+ 1, and by induction, is true for ajl <i. O

Corollary 2. The outpuy;,, of a sum-product network ii;,,, when expanded as a sum of products,
contains all products of variables of the fodif_, z;"* such thatr, € Nand), oy = (n — 1)".

Proof. Applying Proposition 2 withj = 4, we obtain that all products of this form can be found in
the multiplicative units of*’. Since the output unit?* ™! computes a sum of these multiplicative
units (weighted with positive weights), those productsase present in the output. O

Proposition 3. A shallow negative-weight sum-product network compujings G;,, must have at
least(n — 1)* hidden units.

Proof. First suppose the output unit of the shallow network is a stinen it may be able to compute
gin, @ssuming we allow multiplicative units in the hidden lajrethe hidden layer to use powers
of their inputs in the product they compute (which we allowenfor the proof to be more generic).
However, it will require at least as many of these units asnilaber of unique products that can
be found in the expansion @f,,. In particular, from Corollary 2, it will require at leastdimumber
of unique tuples of the fornias, ..., a;,) such thato; € Nand)"}' | a; = (n — 1)°. Denoting
dni = (n — 1), this number is known to be equal (6*;1::‘1), and it is easy to verify it is higher
than (or equal to),,; for anyn > 2 andi > 0.

Now suppose the output unit is multiplicative. Then thera ba no multiplicative hidden unit,
otherwise it would mean one could factor some input variable the computed function output:
this is not possible since by Corollary 2, for any variabl¢here exist products in the output function
that do not involver;. So all hidden units must be additive, and since the comgutedion contains
products of degreé,,;, there must be at leag},; such hidden units. O

4.3 Discussion

Proposition 3 shows that in order to compute the same fumetyy;,, € G;,, the number of units

in the shallow network has to grow exponentially:jn.e. in the network’s depth (while the deep
network’s size grows linearly im). The shallow network also needs to grow polynomially in the
number of input variables (with a degree equal &), while the deep network grows only linearly in
n. It means that some deep sum-product network withn inputs and depth O(i) can represent
with O(ni) units what would require O((n — 1)*) units for a depth-2 network.

Note that in the similar results found for famify, the depth-2 network computing the same function
as a function inF had to be constrained to either have a specific combinaticumf and hidden
units (in Lemma 6) or to have non-negative weights (in Carglll). On the contrary, the result
presented here for family holds without requiring any of these assumptions.

5 Conclusion

We compared a deep sum-product network and a shallow sudugraetwork representing the
same function, taken from two families of functiaAsand¢. For both families, we have shown that
the number of units in the shallow network has to grow exptialiyy compared to a linear growth

in the deep network, so as to represent the same functions.déép version thus offers a much
more compact representation of the same functions.

This work focuses on two specific families of functions: fimglimore general parameterization of
functions leading to similar results would be an interesgtiopic for future research. Another open
question is whether it is possible to represent such funstanly approximately (e.g. up to an
error bounck) with a much smaller shallow network. Results by Bravern&roh boolean circuits
suggest that similar results as those presented in this paestill hold, but this topic has yet to be
formally investigated in the context of sum-product netkgorA related problem is also to look into
functions defined only on discrete input variables: our fga not trivially extend to this situation
because we cannot assume anymore that two polynomialéngette same output values must have
the same expansion coefficients (since the number of inpnbowtions becomes finite).

Acknowledgments

The authors would like to thank Razvan Pascanu and David &&adley for their help in improv-
ing this manuscript, as well as the anonymous reviewershigir tareful reviews. This work was
partially funded by NSERC, CIFAR, and the Canada Researetir€h

References

[1] Ajtai, M. (1983). Z}-formulae on finite structure\nnals of Pure and Applied Logi24(1), 1-48.

[2] Allender, E. (1996). Circuit complexity before the dawn of the neillennium. In16th Annual Conference
on Foundations of Software Technology and Theoretical Computerc&ciesges 1-18. Lecture Notes in
Computer Science 1180, Springer Verlag.

[3] Bengio, Y. (2009). Learning deep architectures for Féundations and Trends in Machine Learnji2¢l),
1-127. Also published as a book. Now Publishers, 2009.

[4] Bengio, Y. and LeCun, Y. (2007). Scaling learning algorithms talsahl. In L. Bottou, O. Chapelle,
D. DeCoste, and J. Weston, editdrayge Scale Kernel MachineMIT Press.

[5] Bengio, Y., Delalleau, O., and Le Roux, N. (2006). The curshkighly variable functions for local kernel
machines. INIPS’05 pages 107-114. MIT Press, Cambridge, MA.

[6] Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (200%reedy layer-wise training of deep
networks. InNIPS 19 pages 153-160. MIT Press.

[7] Bengio, Y., Delalleau, O., and Simard, C. (2010). Decision treesiat generalize to new variations.
Computational Intelligence26(4), 449-467.

[8] Braverman, M. (2011). Poly-logarithmic independence foolsnaaal-depth boolean circuit€ommuni-
cations of the ACV54(4), 108-115.

[9] Collobert, R. and Weston, J. (2008). A unified architecture for rdfanguage processing: Deep neural
networks with multitask learning. IlCML 2008 pages 160-167.

[10] Dahl, G. E., Ranzato, M., Mohamed, A., and Hinton, G. E. (301®@hone recognition with the mean-
covariance restricted boltzmann machineAtivances in Neural Information Processing Systems (NIPS)

[11] Hastad, J. (1986). Almost optimal lower bounds for small depth circuitsProceedings of the 18th
annual ACM Symposium on Theory of Computjpeiges 6—20, Berkeley, California. ACM Press.

[12] Hastad, J. and Goldmann, M. (1991). On the power of small-depth thiceshicuits. Computational
Complexity1, 113-129.

[13] Hinton, G. E. and Salakhutdinov, R. (2006). Reducing the dimeasity of data with neural networks.
Science3135786), 504-507.

[14] Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast leagraigorithm for deep belief netdNeural
Computation18, 1527-1554.

[15] Kavukcuoglu, K., Sermanet, P., Boureau, Y.-L., Gregor,Mathieu, M., and LeCun, Y. (2010). Learning
convolutional feature hierarchies for visual recognitionNI®S’1Q

[16] Larochelle, H., Erhan, D., Courville, A., Bergstra, J., anch@ie, Y. (2007). An empirical evaluation of
deep architectures on problems with many factors of variatiofCML'07, pages 473—-480. ACM.

[17] Lee, H., Ekanadham, C., and Ng, A. (2008). Sparse delgf bet model for visual area V2. INIPS'07,
pages 873-880. MIT Press, Cambridge, MA.

[18] Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (200929nvolutional deep belief networks for
scalable unsupervised learning of hierarchical representatioh@Mh 2002 Montreal (Qc), Canada.

[19] Lee, H., Pham, P., Largman, Y., and Ng, A. (2009b). Uresuised feature learning for audio classification
using convolutional deep belief networks. NilPS’09 pages 1096—1104.

[20] Levner, I. (2008). Data Driven Object SegmentatiorPh.D. thesis, Department of Computer Science,
University of Alberta.

[21] Mnih, A. and Hinton, G. E. (2009). A scalable hierarchical distiéalilanguage model. INIPS’08§
pages 1081-1088.

[22] Mobahi, H., Collobert, R., and Weston, J. (2009). Deep learfrioig temporal coherence in video. In
ICML'2009, pages 737-744.

[23] Orponen, P. (1994). Computational complexity of neural neétaoa surveyNordic Journal of Comput-
ing, 1(1), 94-110.

[24] Osindero, S. and Hinton, G. E. (2008). Modeling image patches avidirected hierarchy of markov
random field. INNIPS’07, pages 1121-1128, Cambridge, MA. MIT Press.

[25] Poon, H. and Domingos, P. (2011). Sum-product networksiev deep architecture. IdAI'2011,
Barcelona, Spain.

[26] Ranzato, M. and Szummer, M. (2008). Semi-supervised leguafitompact document representations
with deep networks. ICML.

[27] Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. (20Bffjcient learning of sparse representations
with an energy-based model. NIPS’06 pages 1137-1144. MIT Press.

[28] Ranzato, M., Boureau, Y.-L., and LeCun, Y. (2008). Spdesture learning for deep belief networks. In
NIPS’07, pages 1185-1192, Cambridge, MA. MIT Press.

[29] Salakhutdinov, R. and Hinton, G. E. (2007). Semantic hashingrdoneedings of the 2007 Workshop on
Information Retrieval and applications of Graphical Models (SIGIR 908Mmsterdam. Elsevier.

[30] Salakhutdinov, R., Mnih, A., and Hinton, G. E. (2007). Restridettzmann machines for collaborative
filtering. InICML 2007, pages 791-798, New York, NY, USA.

[31] Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich, Uhddoggio, T. (2007). A quantitative theory
of immediate visual recognitionProgress in Brain Research, Computational Neuroscience: Thealetic
Insights into Brain Function165, 33-56.

[32] Socher, R, Lin, C., Ng, A. Y., and Manning, C. (2011). L@ag continuous phrase representations and
syntactic parsing with recursive neural networks|@iviL'’2011.

[33] Taylor, G. and Hinton, G. (2009). Factored conditional restridettzmann machines for modeling
motion style. INNICML 2009 pages 1025-1032.

[34] Taylor, G., Hinton, G. E., and Roweis, S. (2007). Modeling hommotion using binary latent variables.
In NIPS’06 pages 1345-1352. MIT Press, Cambridge, MA.

[35] Utgoff, P. E. and Stracuzzi, D. J. (2002). Many-layered legynNeural Computationl4, 2497-2539.

[36] Weston, J., Ratle, F., and Collobert, R. (2008). Deep learningenai-supervised embedding. @ML
2008 pages 1168-1175, New York, NY, USA.

[37] Wolpert, D. H. (1996). The lack of a priori distinction between |éagralgorithms .Neural Computation
8(7), 1341-1390.

[38] Yao, A. (1985). Separating the polynomial-time hierarchy by lesacinProceedings of the 26th Annual
IEEE Symposium on Foundations of Computer Scignages 1-10.

