

Shallow versus Deep Sum-Product Networks

Olivier Delalleau Yoshua Bengio Université de Montréal

Motivations

- Deep learning algorithms are based on multiple levels of representation, corresponding to a deep circuit.
- It has been suggested that deep architectures are more powerful in the sense of being able to more efficiently represent highly-varying functions [2, 1].
- Very few theoretical results up to now to confirm this idea, mostly in the case of networks of linear threshold units with positivity constraints on the weights [3].
- [1] suggests that polynomials represented by deep sumproduct networks would be more efficient, but no proof.
- This work aims at showing families of circuits for

Methodology

- Goal: Find families of functions computed by sum-product networks that can be represented exponentially more compactly by a deep network compared to a shallow one (= with only one hidden layer).
- Approach: Design deep sum-product networks that compute complicated polynomials, then find a lower bound on the number of hidden units required by a shallow network to compute the same polynomial.

which a deep architecture can be exponentially more efficient than a shallow one, in the context of polynomials (over real values).

Depth

- Computation can be organized in a directed acyclic graph where each node computes a function of the outputs of its predecessors in the graph.
- Depth is the length of the longest path from input to output.
- A family of circuits is defined by allowing a different set of computational elements (what computations are allowed at each node), as well as a different connectivity scheme.

- 2i layers and $n = 4^i$ input variables
- alternate additive and multiplicative binary units
- unit ℓ_j^k takes as inputs ℓ_{2j-1}^{k-1} and ℓ_{2j}^{k-1}

Lemma 1 Any element ℓ_i^k can be written as a (positively) weighted sum of products of input variables, such that each input variable x_t is used in exactly one unit of ℓ^k . Moreover, the number m_k of products found in the sum computed by ℓ_j^k does not depend on j and obeys the following recurrence rule for $k \ge 0$:

• *if*
$$k + 1$$
 is odd, then $m_{k+1} = m_k^2$

• otherwise $m_{k+1} = 2m_k$.

Proposition 1 The number of products in the sum computed in the output unit l_1^{2i} is $m_{2i} = 2^{\sqrt{n-1}}$.

Lemma 2 The products computed in the output unit l_1^{2i} can be split in two groups, one with products containing only variables $x_1, \ldots, x_{\frac{n}{2}}$ and one containing only vari-

Network Family \mathcal{G}

 $\ell_1^3 = x_1^2 + x_2^2 + x_3^2 + 3(x_1x_2 + x_1x_3 + x_2x_3) = g(x_1, x_2, x_3)$

• 2i + 1 layers and n variables (n independent of i) • alternate multiplicative and additive units • unit ℓ_j^k takes as inputs $\{\ell_m^{k-1} | m \neq j\}$

Proposition 2 For any $0 \le j \le i$, and any product of variables $P = \prod_{t=1}^{n} x_t^{\alpha_t}$ such that $\alpha_t \in \mathbb{N}$ and $\sum_t \alpha_t =$ $(n-1)^j$, there exists a unit in ℓ^{2j} whose computed value, when expanded as a weighted sum of products, contains *P* among these products.

Corollary 2 The output g_{in} of a sum-product network in \mathcal{G}_{in} , when expanded as a sum of products, contains all products of variables of the form $\prod_{t=1}^{n} x_t^{\alpha_t}$ such that $\alpha_t \in \mathbb{N}$ and $\sum_t \alpha_t = (n-1)^i$.

Proposition 3 A shallow negative-weight sum-product network computing $g_{in} \in \mathcal{G}_{in}$ must have at least $(n-1)^i$

Deep Architectures

Motivations for deep architectures:

- Learn high-level representations.
- Take advantage of unsupervised learning and unlabeled examples.
- Biological inspiration: the brain is a deep architecture.
- Cognitive inspiration: humans learn concepts hierarchically and compose old concepts to define new ones.
- Computational and statistical efficiency, if highlyvarying functions can be more efficiently represented with deep architectures.

ables $x_{\frac{n}{2}+1}, ..., x_n$.

Lemma 3 The products computed in the output unit l_1^{2i} involve more than one input variable.

Lemma 4 Any shallow sum-product network computing $f \in \mathcal{F}$ must have a "sum" unit as output.

Lemma 5 Any shallow sum-product network computing $f \in \mathcal{F}$ must have only multiplicative units in its hidden layer.

Lemma 6 Any shallow negative-weight sum-product network computing $f \in \mathcal{F}$ must have at least $2^{\sqrt{n-1}}$ hidden units, if its output unit is a sum and its hidden units are products.

Corollary 1 Any shallow sum-product network computing $f \in \mathcal{F}$ must have at least $2^{\sqrt{n-1}}$ hidden units.

hidden units.

A Deep Argument

Please use deep architectures. Why would I want to do that? sudo use deep architectures. Okay.

Inspired from http://xkcd.com

Conclusions

Sum-Product Networks

- Neural networks made of units that either compute a product of their inputs, or a sum of their inputs (weighted by positive weights).
- [4] proposed such deep sum-product networks to compute tractable graphical models.

• New examples of probably superior efficiency of deep architectures.

- Some deep sum-product networks with n inputs and depth $\log_4 n$ can represent with O(n) units what would require $O(2^{\sqrt{n}})$ units for a depth-2 network.
- Some deep sum-product networks with n inputs and depth k can represent with O(nk) units what would require $O((n-1)^k)$ units for a depth-2 network.

References

[1] BENGIO, Y. Learning deep architectures for AI. Foundations and Trends in Machine Learning 2, 1 (2009), 1–127. Also published as a book. Now Publishers, 2009.

[2] BENGIO, Y., AND LECUN, Y. Scaling learning algorithms towards AI. In Large Scale Kernel Machines, L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Eds. MIT Press, 2007.

[3] HÅSTAD, J., AND GOLDMANN, M. On the power of small-depth threshold circuits. Computational Complexity 1 (1991), 113–129.

[4] POON, H., AND DOMINGOS, P. Sum-product networks: A new deep architecture. In *Proceedings of the Twenty-seventh* Conference in Uncertainty in Artificial Intelligence (UAI) (Barcelona, Spain, 2011).