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Conclusions

•New examples of probably superior efficiency of deep architectures.

• Some deep sum-product networks with n inputs and depth log4 n can represent with O(n) units what would require
O(2

√
n) units for a depth-2 network.

• Some deep sum-product networks with n inputs and depth k can represent with O(nk) units what would require
O((n − 1)k) units for a depth-2 network.
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A Deep Argument

Inspired fromhttp://xkcd.com
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• 2i + 1 layers andn variables (n independent ofi)

• alternate multiplicative and additive units

• unit ℓk
j takes as inputs{ℓk−1

m |m 6= j}

Proposition 2 For any 0 ≤ j ≤ i, and any product of
variablesP = Πn

t=1x
αt

t such thatαt ∈ N and
∑

t αt =
(n − 1)j, there exists a unit inℓ2j whose computed value,
when expanded as a weighted sum of products, contains
P among these products.

Corollary 2 The outputgin of a sum-product network
in Gin, when expanded as a sum of products, contains all
products of variables of the formΠn

t=1x
αt

t such thatαt ∈ N

and
∑

t αt = (n − 1)i.

Proposition 3 A shallow negative-weight sum-product
network computinggin ∈ Gin must have at least(n − 1)i

hidden units.
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Network FamilyF
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• 2i layers andn = 4i input variables

• alternate additive and multiplicative binary units

• unit ℓk
j takes as inputsℓk−1

2j−1 andℓk−1
2j

Lemma 1 Any elementℓk
j can be written as a (posi-

tively) weighted sum of products of input variables, such
that each input variablext is used in exactly one unit of
ℓk. Moreover, the numbermk of products found in the
sum computed byℓk

j does not depend onj and obeys the
following recurrence rule fork ≥ 0:

• if k + 1 is odd, thenmk+1 = m2
k,

• otherwisemk+1 = 2mk.

Proposition 1 The number of products in the sum com-
puted in the output unitl2i1 is m2i = 2

√
n−1.

Lemma 2 The products computed in the output unitl2i1

can be split in two groups, one with products containing
only variablesx1, . . . , xn

2
and one containing only vari-

ablesxn
2
+1, . . . , xn.

Lemma 3 The products computed in the output unitl2i1

involve more than one input variable.

Lemma 4 Any shallow sum-product network computing
f ∈ F must have a “sum” unit as output.

Lemma 5 Any shallow sum-product network computing
f ∈ F must have only multiplicative units in its hidden
layer.

Lemma 6 Any shallow negative-weight sum-product
network computingf ∈ F must have at least2

√
n−1 hid-

den units, if its output unit is a sum and its hidden units
are products.

Corollary 1 Any shallow sum-product network comput-
ing f ∈ F must have at least2

√
n−1 hidden units.
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Methodology

•Goal: Find families of functions computed by sum-product networks that can be represented exponentially more com-
pactly by a deep network compared to a shallow one (= with onlyone hidden layer).

•Approach: Design deep sum-product networks that compute complicatedpolynomials, then find a lower bound on the
number of hidden units required by a shallow network to compute the same polynomial.
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Sum-Product Networks
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•Neural networks made of units that either compute
a product of their inputs, or a sum of their inputs
(weighted by positive weights).

• [4] proposed such deep sum-product networks to com-
pute tractable graphical models.
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Deep Architectures

Motivations for deep architectures:

• Learn high-level representations.

•Take advantage of unsupervised learning and unlabeled
examples.

•Biological inspiration: the brain is a deep architecture.

•Cognitive inspiration: humans learn concepts hierarchi-
cally and compose old concepts to define new ones.

•Computational and statistical efficiency, if highly-
varying functions can be more efficiently represented
with deep architectures.
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Depth

•Computation can be organized in a directed acyclic
graph where each node computes a function of the out-
puts of its predecessors in the graph.

•Depth is the length of the longest path from input to
output.

•A family of circuits is defined by allowing a different
set of computational elements (what computations are
allowed at each node), as well as a different connectiv-
ity scheme.
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Motivations

•Deep learning algorithms are based on multiple levels
of representation, corresponding to a deep circuit.

• It has been suggested that deep architectures are more
powerful in the sense of being able to more efficiently
represent highly-varying functions [2, 1].

•Very few theoretical results up to now to confirm this
idea, mostly in the case of networks of linear threshold
units with positivity constraints on the weights [3].

• [1] suggests that polynomials represented by deep sum-
product networks would be more efficient, but no proof.

•This work aims at showing families of circuits for
which a deep architecture can be exponentially more
efficient than a shallow one, in the context of polyno-
mials (over real values).
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