
 145

Parallel Tempering for Training of Restricted Boltzmann Machines

Guillaume Desjardins, Aaron Courville, Yoshua Bengio, Pascal Vincent, Olivier Delalleau
Dept. IRO, Université de Montréal

P.O. Box 6128, Succ. Centre-Ville, Montreal, H3C 3J7, Qc, Canada

Abstract

Alternating Gibbs sampling between visible
and latent units is the most common scheme
used for sampling from Restricted Boltzmann
Machines (RBM), a crucial component in
deep architectures such as Deep Belief Net-
works (DBN). However, we find that it often
does a very poor job of rendering the diver-
sity of modes captured by the trained model.
We suspect that this property hinders RBM
training methods such as the Contrastive Di-
vergence and Persistent Contrastive Diver-
gence algorithm that rely on Gibbs sampling
to approximate the likelihood gradient. To
alleviate this problem, we explore the use
of tempered Markov Chain Monte-Carlo for
sampling in RBMs. We find both through vi-
sualization of samples and measures of like-
lihood on a toy dataset that it helps both
sampling and learning.

1 INTRODUCTION

Restricted Boltzmann Machines (Smolensky, 1986;
Freund & Haussler, 1994; Hinton, 2002; Welling et al.,
2005) have attracted much attention in recent years
because of their power of expression (Le Roux & Ben-
gio, 2008), because inference (of hidden variables h
given visible variables v) is tractable and easy, and
because they have been used very successfully as com-
ponents in deep architectures (Bengio, 2009) such as
the Deep Belief Network (Hinton et al., 2006). Most
of the literature on Restricted Boltzmann Machines
(RBMs) relies on variations of alternating Gibbs sam-
pling, which exploits the bipartite structure of the
graphical model (there are links only between visible

Appearing in Proceedings of the 13th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2010, Chia Laguna Resort, Sardinia, Italy. Volume 9 of
JMLR: W&CP 9. Copyright 2010 by the authors.

and hidden variables), in order to learn and sample
from these models. RBMs and other Markov Random
Fields are energy-based models in which we can write
p(v,h) ∝ e−E(v,h). The log-likelihood gradient of such
models contains two main terms: the so-called posi-
tive phase contribution tells the model to decrease the
energies associated with training example v and the
so-called negative phase contribution tells the model
to increase the energy of all other configurations of
(v,h), in proportion to their probability according to
the model. The negative phase term can be estimated
via a Monte-Carlo scheme if one can sample from the
model, but exact unbiased sampling is intractable, so
different algorithms use different approximations.

The most popular learning algorithm for RBMs is the
Contrastive Divergence (CD) algorithm (Hinton, 1999;
Hinton, 2002). It relies on approximating the nega-
tive phase contribution to the gradient with samples
drawn from a short alternating Gibbs Markov chain
starting from the observed training example. Using
these short chains yields a low variance, but biased es-
timates of the gradient. One can envision the action
of the CD negative phase as pushing up the energy of
the most likely values (under the model) near train-
ing examples. This strategy of focusing training effort
near the training data appears to be effective in learn-
ing representations or features of data. However, as
our experiments suggest, the data-centric focus of CD
training can result in spurious probability modes far
from the training data – making CD less ideal as a
method of training full-fledged generative models of
data (which is what one needs for the top level of a
DBN).

The Persistent Contrastive Divergence (PCD) algo-
rithm (Tieleman, 2008) was proposed to improve upon
CD’s limitations (of pushing up only the energy of
points near training examples). Similar to CD, PCD
approximates the negative phase of the gradient with
samples drawn from a short alternating Gibbs chain.
However in PCD, rather than starting this chain from
training data, the state of the Markov chain persists
from the previous iteration of the gradient calcula-

 146

Parallel Tempering for Training of Restricted Boltzmann Machines

tion. Although the model is changing while we learn,
we do not wait for the chain to converge after each
update, with the reasoning that since (with a suffi-
ciently small learning rate) the change in both the pa-
rameters and the invariant distribution of the model
are small, just a few Gibbs iterations are sufficient to
track these changes and maintain samples from the
evolving invariant distribution of the model. However,
as noted in (Tieleman & Hinton, 2009), reliance on a
single persisting Markov chain often leads to degen-
erative training. When faced with the kind of mul-
timodal target distributions that are common in ma-
chine learning applications, MCMC methods, such as
the Gibbs sampling employed in the PCD negative
phase estimation, are subject to becoming “stuck” in
local maxima of probability density. This is because
these methods are based on local steps over the sample
space. The result is a chain that mixes slowly, over-
representing certain modes of the distribution while
under-representing others. It produces a distorted es-
timate of the negative phase contribution of the gradi-
ent that undermines training. To help mitigate these
problems, common practice is to consider many chains
in parallel as a kind of mini-batch. However, this prac-
tice only sidesteps the problem of poor mixing because
it would require us to maintain potential many more
parallel chains than modes of the distribution. We
suggest that this is not a strategy that will scale to
large-scale problems with truly complicated distribu-
tions.

Fast PCD (Tieleman & Hinton, 2009) (FPCD) was
later proposed to improve upon PCD’s mixing proper-
ties. Through an exaggerated (high learning rate) ver-
sion of the dynamics of PCD training, FPCD works
by actively discouraging the negative phase Markov
chain from dwelling in any single mode of the distri-
bution by quickly “unlearning” that mode. A potential
disadvantage of FPCD is that the negative phase sam-
ples are drawn from a distribution that can diverge
from the invariant distribution of the model. Relative
to PCD, FPCD trades sampling fidelity for superior
mixing. In some cases this trade-off appears to be
a good one, (Tieleman & Hinton, 2009) report sub-
stantial improvements in log-likelihood with FPCD in
comparison to PCD and CD.

In this paper, we propose an alternate strategy for
ameliorating the mixing of the PCD negative phase
Markov chain while still drawing samples from a pro-
cess with the correct invariant distribution. Our
method replaces the single Gibbs chain used in PCD
with a series of chains implementing a parallel temper-
ing scheme. Parallel Tempering MCMC is one of a col-
lection of methods (collectively referred to as Extended
Ensemble Monte Carlo methods (Iba, 2001)) designed

to overcome the inability of standard MCMC meth-
ods to handle multimodal distributions. The strategy
is simple: promote mixing between multiple modes of
the distribution by drawing samples from smoothed
(higher temperature) versions of the target distribu-
tion. Provided the topology of the distribution is suf-
ficiently smoothed, the local steps of standard MCMC
methods are then able to leave the local regions of high
probability density to more fully explore the sampling
space. Using a toy training set and the MNIST dig-
its dataset, we explore the properties of the proposed
parallel tempering training strategy and compare it to
CD, PCD and FPCD. We find both through visual-
ization of samples and measures of likelihood that the
use of parallel tempering in the negative phase of PCD
improves both sampling and learning.

2 APPROXIMATING
LOG-LIKELIHOOD GRADIENTS

We consider log linear models parameterized by a vec-
tor of parameters θ, for which the probability for a
configuration x will be given by:

p(x) =
1

Z(θ)
exp(−E(x))

where energy function E has the form E(x) =
−θT φ(x) = −

�
k θkφk(x). Z(θ) =

�
x exp(−E(x))

is the partition function whose computation is usually
intractable.

Vector x = (v,h) is decomposed into observed (visi-
ble) variables v and latent (hidden) variables h. The
marginal likelihood of a visible configuration v can
thus be written as

p(v) =
�

h exp(−E(v,h))�
x exp(−E(x))

This yields a marginal log-likelihood gradient with re-
spect to a model parameters θ that can be decomposed
into two terms:

∂ log p(v)
∂θ

= −
�

h

p(h|v)
∂E(v,h)

∂θ
+

�

x

p(x)
∂E(x)

∂θ

= Ep(h|v)[φ(v,h)]− Ep(x)[φ(x)]

where Ep[. . .] denotes expectation with respect to dis-
tribution p.

This decomposition suggests computing the gradient
by estimating these two expectations through sam-
pling. The first term corresponds to sampling hid-
den configurations when the visibles are clamped to
the training input; it will be called the positive phase
contribution. The second term corresponds to obtain-
ing joint hidden and visible samples from the current

 147

Desjardins, Courville, Bengio, Vincent, Delalleau

model; it will be called the negative phase. We will
be particularly interested in RBMs which correspond
to parameterization θ = {W,b, c}, and E(v,h) =
−(hT Wv + hT b + vT c), i.e. φ(v,h) = (hvT ,h,v).
Parameter bi, cj and Wij are associated respectively
with hi, vj and hivj . In RBMs, it is straightforward to
sample h|v and v|h, so obtaining samples for the pos-
itive phase is easy. However obtaining samples from
the model for the unclamped negative phase is not, as
it would require running the alternating Gibbs chain
(alternating between sampling h|v and v|h) to equi-
librium.

Contrastive Divergence: The Contrastive Diver-
gence (CD) algorithm (Hinton, 1999; Hinton, 2002)
approximates the gradient by running the chain for
only a few steps to get a sample for the negative
phase. Parameters are then learnt by stochastic gra-
dient descent using a learning rate η and the ap-
proximated log likelihood gradient computation, i.e.
θ ← θ + η

�
φ(v, h̃0)− φ(ṽk, h̃k)

�
, where we initialize

the Gibbs chain at ṽ0 = v, sampling h̃0 ∼ p(h|v = ṽ0)
and where (ṽk, h̃k) is obtained after k alternating steps
performed in the Gibbs chain. Typically one uses
k = 1 for efficiency reasons.

Despite CD’s popularity, it does not yield the best
approximation of the log-likelihood gradient (Carreira-
Perpiñan & Hinton, 2005; Bengio & Delalleau, 2009).
Empirically, we find that at the beginning of training
it behaves well. But as the training progresses and the
magnitude of the parameter increases, the ergodicity
of the Markov chain decreases and, consequently, the
quality of approximation to the gradient degrades.

Persistent CD: Persistent CD (PCD) on the other
hand, approximates the gradient by drawing negative
phase samples from a persistent Markov chain, which
attempts to track changes in the model. If we denote
the state of this chain at timestep t as v(−)

t , then the
gradient update follows

�
φ(v, h̃0)− φ(ṽ(−)

t+k, h̃(−)
t+k)

�
,

where (ṽ(−)
t+k, h̃(−)

t+k) are again obtained after k alter-
nating Gibbs steps starting from state v(−)

t . This es-
timator of the likelihood gradient can be seen as the
exactly gradient of the following cost function (Tiele-
man & Hinton, 2009): KL(p||pθ)−KL(pθ,t||pθ), where
p is the training distribution, pθ the model distribu-
tion and pθ,t is the distribution formed by the Markov
chain at time t. The second term is, in essence, an er-
ror term, incurred by performing only k steps of Gibbs
sampling instead of running the chain to equilibrium.
When the mixing rate of the chain is good, this error
term can be all but ignored. As the ergodicity of the
Markov chain decreases however (due to large learning

rates or long training time), it becomes the dominant
factor leading to unstable behavior (Tieleman, 2008).

Fast PCD: Fast PCD (Tieleman & Hinton, 2009)
(FPCD) was later proposed to improve upon this lim-
itation by introducing a separate mixing mechanism,
which does not deteriorate as training progresses. To
do this, FPCD maintains two sets of weights. The
“slow weights” wm represent the standard parameters
of the model and are used in both the positive and
negative phases. An additional set of ”fast weights”
is used in the negative phase however, where samples
are drawn from a persistent Markov chain with weights
wm + vm. The fast-weights create a dynamic overlay
on top of the energy surface defined by the model. It
encourages mixing by temporarily reducing the proba-
bility of recently visited modes. Good mixing can thus
be achieved by using a large learning rate for the fast
parameters vm. Since this learning rate is independent
from that used for wm, the model can still be fine-
tuned using a decreasing learning rate with no impact
on mixing. Both wm and vm are updated according
to the standard PCD gradient, although changes in
the weights vm are decayed exponentially fast to 0 to
ensure that their effect is only temporary.

3 TEMPERED MCMC

Consider the target distribution from which we wish
to draw samples, given by:

p(x) =
exp(−E(x))

Z
. (1)

We create an extended system by augmenting the tar-
get distribution with an indexed temperature param-
eter:

pti(x) =
exp(−E(x)/ti)

Z(ti)
(2)

At high temperatures (ti >> 1), the effect of the tem-
perature parameter is to smooth the distribution, as
the effective energies become more uniform (uniformly
zero) over the sampling space.

In the case of Parallel tempering, the strategy is to sim-
ulate from multiple MCMC chains, each at one of an
ordered sequence of temperatures ti from temperature
t0 = 1 that samples from the distribution of interest
(the target distribution) to a high temperature tT = τ ,
i.e.

t0 = 1 < t1 < · · · < ti < · · · < tT−1 < tT = τ.

At high temperatures, the chain mixes well but is not
sampling from the distribution in which we are inter-
ested, so the following question remains: how do we

 148

Parallel Tempering for Training of Restricted Boltzmann Machines

make use of the well mixing chains running at high
temperatures to improve sampling efficiency from our
target distribution at t0 = 1? In parallel temper-
ing this question is addressed via the introduction of
cross temperature state swaps. At each time-step, two
neighbouring chains running at temperature tk and
tk+1 may exchange their particles xk and xk+1 with
an exchange probability given by:

r =
ptk(xk+1)ptk+1(xk)
ptk(xk)ptk+1(xk+1)

(3)

For the family of Gibbs distribution (in which we are
particularly interested in), this boils down to:

r = exp((βk − βk+1) · (E(xk)− E(xk+1))), (4)

where βk is the inverse temperature parameter.

It is straightforward to see how this algorithm can be
applied to the training of RBMs. Instead of running
a single persistent Markov Chain as in PCD, multiple
chains are run in parallel, each at their own tempera-
ture ti. For each gradient update, all chains perform
one step of Gibbs sampling after which state swaps
are proposed between randomly selected neighbouring
chains. The negative particle used in the gradient of
Eq. 1 is then the particle at temperature t0.

While there are numerous ways to promote mixing
in MCMC simulations, Parallel Tempering MCMC is
particularly well suited to being paired with a PCD-
style learning algorithm. The multiple parallel chains
constitute a pool of samples (replicas) whose relative
probability with respect to the target distribution is
reflected in their relative dwell time in the nominal
temperature chain. This offers a significant advantage
over the standard practice with PCD of maintaining a
batch of independent chains, since there is no way of
weighing the relative likelihood of the samples within
these batches. This relative weighting mechanism per-
mits rapid adaptation of the sampling scheme to small
changes in the relative probability of existing modes
of the distribution. For example, consider the MNIST
dataset, if by chance there were a disproportionate
number of twos drawn in the negative phase at learn-
ing iteration k, then through the action of the gradient,
the chain swapping mechanism would respond quickly
to reduce the number of twos in the negative phase
samples drawn at interation k + 1. As a result, learn-
ing with parallel tempering is naturally more robust
to instabilities that often plague PCD (Younes, 1998).

Related Work Alternatively, one may also forego
parallel chains altogether. In work which was done
concurrently but independently of ours, (Salakhutdi-
nov, 2010) uses the method of tempered transitions

(Neal, 1994) to promote mixing and fine-tuning the
parameters of Markov random fields. In this setting,
transition operators are applied to a single Markov
chain in sequence, such that the temperature of the
chain is gradually increased to a maximum value be-
fore being decreased back to the nominal temperature.
The resulting particle is then accepted based on the
likelihood of the entire trajectory. While this is sim-
ilar in spirit to the method we propose, maintaining
the extended set of particles has the advantage that
it does not suffer from potentially high accept/reject
ratios. This makes the parallel implementation better
suited for use throughout training, as opposed to being
limited to a fine-tuning stage.

4 EXPERIMENTAL
OBSERVATIONS

In Section 2, we saw how CD and other ”persistent”
learning algorithms differ in their approximations to
the true likelihood gradient. While PCD is inher-
ently brittle to the problem of reduced ergodicity, CD
and FPCD both offer alternative ways of dealing with
this issue. We thus begin our experimental section
with qualitative observations of negative phase sam-
ples obtained with each method. We do this in order
to illustrate the failure modes of each algorithm and
show that the tempered approach is not subject to
the same issues. We perform these observations by
training 500 hidden units RBMs on the very familiar
MNIST dataset.

4.1 QUALITATIVE OBSERVATIONS

CD-k Since CD initializes its Markov chain with a
positive training example and mixing rate is known
to decrease with learning, negative phase samples ob-
tained with CD are bound to become increasingly au-
tocorrelated and correlated with training data.

Without some form of early-stopping, this can lead to
a degeneracy where the energy of training examples
is lowered but increased in the immediate proximity,
in effect creating an energy barrier around the wells
formed by the data. When sampling from the resulting
model, a Markov Chain initialized with a random state
will thus fail to find the high-probability modes as the
energy barrier defines a boundary of low-probability.
This can be observed in Fig. 1. In this figure, each
row represents samples from independent chains, with
samples shown every 50 steps of Gibbs sampling. The
top two chains were initialized randomly while the bot-
tom two chains were initialized from the test set. The
chains at the top never converge to a digit, while the
bottom chains exhibit very poor mixing.

 149

Desjardins, Courville, Bengio, Vincent, Delalleau

Figure 1: (left) Gibbs sampling from an RBM trained
with CD, initializing the chain with random samples
(top 2 chains) vs. test images (bottom 2). (right)
Cross-temperature state swaps obtained by sampling
from the CD-trained model with parallel tempering.

This phenomenon can be confirmed by using parallel
tempering to sample from an RBM trained with CD.
Fig.1 shows a mixing plot obtained using 50 chains
and a maximum temperature of 10. The first line of
the image shows the initial state of the system, with
each color representing a single particle xk native to
temperature tk, with temperatures ordered from left
to right. Each subsequent line tracks the movement
of the original particle through time. High acceptance
ratios should cause the colors to become entangled af-
ter a certain number of iterations. However, the en-
ergy barrier formed by CD around positive training
examples can create a bottleneck, through which high
energy particles do not go through. This effect will
only be worse for a Markov chain operating at a tem-
perature of 1.

PCD and FPCD In Figure 2(a), we confirm that
samples drawn during PCD learning mix fairly well
early on in training. The samples shown were col-
lected midway through the learning procedure (epoch
5 of 10), from an RBM with 500 hidden units trained
with persistent CD. Fig. 2(c) shows samples obtained
after epoch 10. At this point learning was effectively
stopped (learning rate of 0). Consistent with our un-
derstanding of PCD, we can see that with more train-
ing, mixing degraded significantly. As shown in Fig-
ure 3, while FPCD samples mix much more read-
ily than those of PCD, they also generates “spuri-
ous” samples that, in effect, represent the paths which
negative phase samples must take in jumping from
one mode to another. These inter-mode samples are
clearly overrepresented in the FPCD negative phase
gradient contribution relative to the true model distri-
bution.

Parallel Tempering We now show that RBMs
trained with tempered MCMC address the above prob-
lems in a straightforward and principled manner. Fig-
ure 2 shows that samples obtained from the fully
trained model (once learning is stopped) mix well. The
number of chains was chosen to be large enough such
that the mixing plot of Figure 1 showed (i) a large

Figure 3: Samples obtained using the fast-weight sam-
pling procedure: these represent the path taken by the
negative particles to move from one mode to another.

Figure 4: Examples from our toy dataset with p =
0.01 (top) and p = 0.1 bottom. p controls the relative
distance between the four basic modes.

number of cross-temperature state swaps and (ii) that
a single particle xi, on average, visited temperatures
in the range [t0, tT] with equal proportions.

4.2 TOY DATASET

Here we consider a more quantitative assessment of
the improvements offered by using tempered MCMC,
compared to regular CD-1, PCD-1 and FPCD-1. In
order to compute the exact log-likelihood of our mod-
els, we use a toy dataset of 4x4 binary pixel images.
The dataset is composed of 10, 000 images, which are
variations of four basic modes, chosen to be maximally
distant from one another. For each basic mode, we
generate 2, 500 near replicas, by considering a proba-
bility p of permuting each pixel independently. Note
that from the point of view of a Gibbs sampler, the
probability p directly controls the effective distance be-
tween each mode. As such, this dataset is well suited
to study the issue of mixing in learning algorithms.

Figure 4 shows 10 training samples with p = 0.01 (top)
and 10 examples with p = 0.1 (bottom).

In all experiments, we performed 500, 000 weight up-
dates for both positive and negative phases. Each
training example is thus presented 50 times to each
model. Learning rates were either held constant
throughout learning or decreased to zero, either lin-
early (Tieleman, 2008) or with the standard 1/t sched-
ule. No weight decay was used in any of the models.
As for the other hyperparameters, we tested number
of hidden units in {2,5,10} and initial learning rates in
{10−2, 10−3, 10−4, 10−5}. The tempered models were
trained with {2,5,10} parallel chains with minimal in-
verse temperature of β = 0. To offset the computa-
tional cost of having parallel chains, CD, PCD and
FPCD performed k = {2, 5, 10} steps of Gibbs sam-
pling between consecutive parameter updates, accu-
mulating negative phase samples so as to form a nega-

 150

Parallel Tempering for Training of Restricted Boltzmann Machines

(a) PCD, epoch 5/10 (b) TMCMC, epoch 5/10 (c) PCD, epoch 10/10 (d) TMCMC, epoch 10/10

Figure 2: Negative samples drawn from a 500 hidden unit RBM trained with PCD and tempered MCMC
(TMCMC) during and after training. Each row shows samples drawn from a single Gibbs chain, with 50 steps
of Gibbs sampling between consecutive images. PCD and tempered MCMC both yield good samples during
training, fueled in part by the ”fast weights” effect. Once the learning rate becomes null, the mixing rate of
PCD degrades significantly. In contrast, the tempered MCMC approach maintains exceptionally good mixing.

tive phase mini-batch. Tempered models were limited
to a single Gibbs steps.

Figure 5: Log-likelihood of the training data under a
model trained with PCD and TMCMC, as a function
of the parameter p. Learning rate is fixed to 10−3 and
number of hidden units to 10. TMCMC significantly
outperforms PCD, as the modes become further apart.

In Figure 5, we show typical results obtained using
PCD with k = 10 and TMCMC with 10 parallel
chains. When the modes are close to one another
(p = 0.1), mixing is trivial and both algorithms per-
form equally well (learning rate of 0.001). As the
modes become further apart however, good mixing
becomes crucial. Negative particles must move from
one mode to another to adequately model the distri-
bution. This is hampered by learning however, which
decreases the mixing rate of the Markov chain (Younes,
1998). Around 60, 000 updates, mixing degrades to the
point where the PCD algorithm starts to diverge: the
Markov chain can no longer keep up with the param-
eter updates, resulting in a sudden drop in likelihood.
Similar results are obtained for CD and FPCD. With
10 chains and a learning rate of 0.001, TMCMC seems
immune to this issue.

(a) (b)

Figure 6: (a) Log-Likelihood of each algorithm for
p = 10−3. Learning rate is optimized based on perfor-
mance after 500, 000 updates. Bad mixing causes all
three models to settle on small learning rates, resulting
in slower convergence than TMCMC. All models use
10 hidden units. FPCD’s fast learning rate was opti-
mized to 0.01. (b) Log-Likelihood of a model trained
with CD, with a learning rate of 10−3. Bad mixing also
causes learning to break down when modes are further
apart, however it does so somewhat more gracefully
than with PCD.

We then optimize the learning rates of each algorithm,
such that the likelihood is optimal after 500, 000 up-
dates. Results are shown in Figure 6(a). Algorithms
with poor mixing settle on a smaller learning rate of
10−4, in order to operate within their stable regime.
This results in much slower convergence, when com-
pared to TMCMC with a learning rate of 0.001. With
enough training time (and potentially smaller learning
rate), PCD should theoretically converge to the max-
imal value. Our results seem to reflect this for PCD
and FPCD, although the same cannot be said for CD.

It is somewhat surprising that FPCD would behave so
poorly on this dataset. Since it was designed to im-
prove mixing one would expect it to behave similarly
to TMCMC. It would appear that for this dataset,
FPCD’s over-representation of “spurious” inter-mode

 151

Desjardins, Courville, Bengio, Vincent, Delalleau

samples has a significant impact on learning perfor-
mance. Observations of section 4.1 may help to shed
light on the issue however.

Figure 7: Likelihood of model trained on toy dataset,
using the tempered algorithm. We vary both the
number of chains and number of Gibbs steps in
{1, 2, 4, 6, 8, 10}. Experiments were subject to a wall-
time of 1 hour.

In our last toy experiment, we attempt to answer the
following question. Given a fixed amount of ressources,
should one increase the number of parallel chains or in-
crease the number of intermediate Gibbs steps? Using
a tempered model, we optimized training likelihood
for a variety of configurations, given a wall-time of 1
hour. The results of Fig. 7, show that while increasing
k is initially advantageous, the gain in statistical per-
formance is eventually offset by its high computational
cost. On the other hand, tempering only requires four
chains to achieve maximal performance.

4.3 ESTIMATING LIKELIHOOD ON
MNIST

While computing the exact likelihood under the
trained model is intractable for RBMs, it is however
relatively easy to generate samples from it. We thus
set out to compute a quantitative measure based on
the “quality” of the samples generated by each model.
More specifically, we want a numerical measure of how
close the sample generation by a particular trained
RBM is to the “true” but unknown distribution which
produced the training samples D. This allows us to
evaluate how well each training procedure is able to
capture the training distribution.

The measure we consider is the average log probabil-
ity of a hold out test set Dtest under a non-parametric
Parzen Windows density estimation p̂σ,Ds based on the
samples Ds generated by a given model, trained with
a training set D. The test set Dtest has n samples
x(1), . . . , x(n) that originate from the same unknown
distribution as the data D used for training. Simi-
larly Ds has n� samples s(0), . . . , s(n�) generated using
a given (model + sampling-procedure).

Formally our sample generation quality measure is:

�(Dtest,Ds) =
1
n

n�

k=1

log p̂σ,Ds(x
(k)) (5)

where p̂σ,Ds(x(k)) is the density evaluated at point
x(k) obtained with a non-parametric kernel density
estimator based on Ds with hyperparameter σ. i.e.
p̂σ,Ds(x) = 1

n�

�n�

k=1 K(x; s(j)). We will use, as cus-
tomary, a simple isotropic Gaussian kernel with stan-
dard deviation σ, i.e. K = Ns(j),σ.

The procedure is as follows: (1) we find an optimal
σ by performing a grid search trying to maximize the
log probability of test samples Dtest under p̂σ,D. This
value is then kept fixed. (2) we generate Ds using
the desired sampling procedure and a trained model,
with n� = 10, 000. (3) we then compute �(Dtest,Ds) as
defined in Eq. 5. We repeat steps one and two for all
models and sampling procedures under consideration.

Table 1 reports the generation quality measure ob-
tained for CD-1, PCD-1, FPCD-1 and TMCMC. The
tempered model was trained using 50 parallel chains
and a single Gibbs steps. Each weight update is thus
more expensive than with the other methods. We
consider three sampling algorithms: a standard Gibbs
sampler whose chain is initialized either from random
or from a test example and parallel tempering. Model
selection was performed by optimizing the hyperpa-
rameters based on the likelihood score. Hyperparam-
eters are thus selected such that the trained model is
compatible with the sampling procedure.

As shown in Table 1, the tempered models have a sig-
nificantly higher likelihood than all the other train-
ing algorithms, regardless of sampling procedure. It
is interesting to note that in this case, sampling with
tempered MCMC did not result in a higher likelihood.
This may indicate that the parameter σ should be op-
timized independently for each model p̂σ,Ds(x). We
leave this as future work. Also interesting to note:
sampling CD or PCD-trained models with tempered
MCMC results in a worse performance than with stan-
dard Gibbs sampling. This is definitely more pro-
nounced in the case of CD and highlights the issues
raised in section 4.1. As for PCD, this again confirms
that mixing eventually breaks down during learning,
after which negative particles fail to explore the energy
landscape properly. Using tempered MCMC during
training seems to avoid all these pitfalls.

5 CONCLUSION

We presented a new learning algorithm to train Re-
stricted Boltzmann Machines, relying on the strengths
of a more advanced sampling scheme than the ones

 152

Parallel Tempering for Training of Restricted Boltzmann Machines

Table 1: Log probability of test set samples under a non-parametric Parzen window estimator based on generated
samples from models obtained with different training procedures. For reference the measure obtained on the
training set is 239.88 ± 2.30 (± indicated standard error). As can be seen the TMCMC trained model largely
dominates.

Sampling procedure
Training procedure TMCMC GIBBS (RANDOM) GIBBS (TEST)

TMCMC 208.26 210.72 209.83
FPCD 180.41 174.87 175.92
PCD 80.06 127.95 139.36
CD -1978.67 -854.08 37.18

typically used until now. The tempered MCMC sam-
pling technique allows for better mixing of the underly-
ing chain used to generate samples from the model. We
have shown that this results in better generative mod-
els, from qualitative and quantitative observations on
real and simulated datasets. We have also shown that
the use of tempering affords a higher reliability and
increased robustness to learning rates and number of
unsupervised training epochs. Future work should in-
vestigate how TMCMC can compete with its competi-
tors, on real world datasets, when equal computation
time is allocated to each procedure. More experiments
are also required to assess the impact of this method
on classification, especially in the context of deep ar-
chitectures. Amongst other questions, we would like to
determine if and under which conditions a better gen-
erative model translates to an increase in classification
performance.

References

Bengio, Y. (2009). Learning deep architectures for AI.
Foundations and Trends in Machine Learning, 2, 1–127.
Also published as a book. Now Publishers, 2009.

Bengio, Y., & Delalleau, O. (2009). Justifying and gener-
alizing contrastive divergence. Neural Computation, 21,
1601–1621.

Carreira-Perpiñan, M. A., & Hinton, G. E. (2005). On
contrastive divergence learning. AISTATS’2005 (pp. 33–
40). Savannah Hotel, Barbados: Society for Artificial
Intelligence and Statistics.

Freund, Y., & Haussler, D. (1994). Unsupervised learning
of distributions on binary vectors using two layer net-
works (Technical Report UCSC-CRL-94-25). University
of California, Santa Cruz.

Hinton, G. E. (1999). Products of experts. Proceedings
of the Ninth International Conference on Artificial Neu-
ral Networks (ICANN) (pp. 1–6). Edinburgh, Scotland:
IEE.

Hinton, G. E. (2002). Training products of experts by min-
imizing contrastive divergence. Neural Computation, 14,
1771–1800.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learn-
ing algorithm for deep belief nets. Neural Computation,
18, 1527–1554.

Iba, Y. (2001). Extended ensemble monte carlo. Interna-
tional Journal of Modern Physics, C12, 623–656.

Le Roux, N., & Bengio, Y. (2008). Representational power
of restricted Boltzmann machines and deep belief net-
works. Neural Computation, 20, 1631–1649.

Neal, R. M. (1994). Sampling from multimodal distri-
butions using tempered transitions (Technical Report
9421). Dept. of Statistics, University of Toronto.

Salakhutdinov, R. (2010). Learning in Markov random
fields using tempered transitions. Advances in Neural
Information Processing Systems 22 (NIPS’09).

Smolensky, P. (1986). Information processing in dynami-
cal systems: Foundations of harmony theory. In D. E.
Rumelhart and J. L. McClelland (Eds.), Parallel dis-
tributed processing, vol. 1, chapter 6, 194–281. Cam-
bridge: MIT Press.

Tieleman, T. (2008). Training restricted boltzmann ma-
chines using approximations to the likelihood gradient.
ICML 2008 (pp. 1064–1071). Helsinki, Finland: ACM.

Tieleman, T., & Hinton, G. (2009). Using fast weights to
improve persistent contrastive divergence. ICML 2009
(pp. 1033–1040). ACM.

Welling, M., Rosen-Zvi, M., & Hinton, G. E. (2005). Ex-
ponential family harmoniums with an application to in-
formation retrieval. NIPS 17. MIT Press.

Younes, L. (1998). On the convergence of markovian
stochastic algorithms with rapidly decreasing ergodicity
rates. Stochastics and Stochastics Models (pp. 177–228).

