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Abstract

Several unsupervised learning algorithms based on an eigendecomposition pro-
vide either an embedding or a clustering only for given training points, with no
straightforward extension for out-of-sample examples short of recomputing eigen-
vectors. This paper provides algorithms for such an extension for Local Linear
Embedding (LLE), Isomap, Laplacian Eigenmaps, Multi-Dimensional Scaling (all
algorithms which provide lower-dimensional embedding for dimensionality reduc-
tion) as well as for Spectral Clustering (which performs non-Gaussian clustering).
These extensions stem from a unified framework in which these algorithms are
seen as learning eigenfunctions of a kernel. LLE and Isomap pose special chal-
lenges as the kernel is training-data dependent. Numerical experiments on real
data show that the generalizations performed have a level of error comparable to
the variability of the embedding algorithms to the choice of training data.

1 Introduction

In the last few years, many unsupervised learning algorithms have been proposed which
share the use of an eigendecomposition for obtaining a lower-dimensional embedding
of the data that characterizes a non-linear manifold near which the data would lie: Local
Linear Embedding (LLE) (Roweis and Saul, 2000), Isomap (Tenenbaum, de Silva and
Langford, 2000) and Laplacian Eigenmaps (Belkin and Niyogi, 2003). There are also
many variants of Spectral Clustering (Weiss, 1999; Ng, Jordan and Weiss, 2002), in
which such an embedding is an intermediate step before obtaining a clustering of the
data that can capture flat, elongated and even curved clusters. The two tasks (manifold
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learning and clustering) are linked because the clusters that spectral clustering manages
to capture can be arbitrary curved manifolds (as long as there is enough data to locally
capture the curvature of the manifold).

2 Common Framework

In this paper we consider five types of unsupervised learning algorithms that can be
cast in the same framework, based on the computation of an embedding for the training
points obtained from the principal eigenvectors of a symmetric matrix.

Algorithm 1
1. Start from a data set D = {x1, . . . , xn} with n points in some space. Construct

a n × n “neighborhood” or similarity matrix M . Let us denote KD(., .) (or K for
shorthand) the two-argument function (sometimes dependent on D) which produces
M by Mij = KD(xi, xj).

2. Optionally transform M , yielding a “normalized” matrix M̃ . Equivalently, this
corresponds to applying a symmetric two-argument function K̃D to each pair of exam-
ples (xi, xj) to obtain M̃ij .

3. Compute the m largest eigenvalues λ′j and eigenvectors vj of M̃ . Only positive
eigenvalues should be considered.

4. The embedding of each example xi is the vector yi with yij the i-th element of
the j-th principal eigenvector vj of M̃ . Alternatively (MDS and Isomap), the embed-

ding is ei, with eij =
√

λ′jyij . If the first m eigenvalues are positive, then ei.ej is the

best approximation of M̃ using only m coordinates, in the squared error sense.
In the following, we consider the specializations of Algorithm 1 for different un-

supervised learning algorithms. LetSi be thei-th row sum of the affinity matrixM :

Si =
∑

j

Mij . (1)

We say that two points(a, b) arek-nearest-neighbors of each otherif a is among the
k nearest neighbors ofb in D ∪ {a} or vice-versa.

2.1 Multi-Dimensional Scaling

Multi-Dimensional Scaling (MDS) starts from a notion of distance or affinityK that is
computed between each pair of training examples. We consider here metric MDS (Cox
and Cox, 1994). For the normalization step 2 in Algorithm 1, these distances are con-
verted to equivalent dot products using the “double-centering” formula:

M̃ij = −1
2
(Mij −

1
n

Si −
1
n

Sj +
1
n2

SiSj). (2)

The embeddingeik of examplexi is given by
√

λkvik wherev.k is thek-th eigenvector
of M̃ . Note that ifMij = ||yi − yj ||2 thenM̃ij = (yi − ȳ).(yj − ȳ), a centered
dot-product, wherēy is the average value ofyi.
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2.2 Spectral Clustering

Spectral clustering (Weiss, 1999) can yield impressively good results where traditional
clustering looking for “round blobs” in the data, such as K-means, would fail miser-
ably. It is based on two main steps: first embedding the data points in a space in which
clusters are more “obvious” (using the eigenvectors of a Gram matrix), and then apply-
ing a classical clustering algorithm such as K-means, e.g. as in (Ng, Jordan and Weiss,
2002). Before applying K-means, it has been found useful as discussed in (Weiss,
1999) to normalize the coordinates of each point to have unit norm, i.e. to project the
embedded points on the unit sphere, mapping thej-th coordinate of the embeddingyi

of thei-th example (i.e. thei-th element of thej-th eigenvector) byyij

||yi|| . The affinity
matrixM is formed using a kernel such as the Gaussian kernel. Several normalization
steps have been proposed. Among the most successful ones, as advocated in (Weiss,
1999; Ng, Jordan and Weiss, 2002), is the following:

M̃ij =
Mij√
SiSj

. (3)

To obtainm clusters, the firstm principal eigenvectors of̃M are computed and K-
means applied on the resulting unit-norm coordinates.

2.3 Laplacian Eigenmaps

Laplacian Eigenmaps is a recently proposed dimensionality reduction procedure (Belkin
and Niyogi, 2003) that has been proposed forsemi-supervised learning. The authors
use an approximation of the Laplacian operator such as the Gaussian kernel or the ma-
trix whose element(i, j) is 1 if xi andxj are k-nearest-neighbors and 0 otherwise.
Instead of solving an ordinary eigenproblem, the following generalized eigenproblem
is solved:

(S −M)yi = λiSyi (4)

with eigenvaluesλi, eigenvectorsyi andS defined in eq. (1). The smallest eigenvalue
is left out and the eigenvectors corresponding to the other small eigenvalues are used
for the embedding. This is the same embedding that is computed with the spectral clus-
tering algorithm from Shi and Malik (1997) . As noted in (Weiss, 1999) (Normalization
Lemma 1), an equivalent result (up to a componentwise scaling of the embedding) can
be obtained by considering the principal eigenvectorsvk of the normalized matrix de-
fined in eq. (3).

2.4 Isomap

Isomap (Tenenbaum, de Silva and Langford, 2000) generalizes MDS to non-linear
manifolds. They are based on replacing Euclidean distance by an approximation of the
geodesic distance on the manifold. We define thegeodesic distance with respect to a
data setD, a distanced(u, v) and a neighborhoodk as follows:

D̃(a, b) = min
p

∑
i

d(pi, pi+1) (5)
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wherep is a sequence of points of lengthl ≥ 2 with p1 = a, pl = b, pi ∈ D ∀i ∈
{2, . . . , l − 1} and (pi,pi+1) are k-nearest-neighbors. The lengthl is free in the min-
imization. The Isomap algorithm obtains the normalized matrixM̃ from which the
embedding is derived by transforming the raw pairwise distances matrix as follows:
(1) compute the matrixMij = D̃2(xi, xj) of squared geodesic distances with respect
to the dataD and (2) apply to this matrix the distance-to-dot-product transformation
(eq. (2)), as for MDS. Like for MDS, the embedding iseik =

√
λkvik rather than

yik = vik.

2.5 LLE

The Local Linear Embedding (LLE) algorithm (Roweis and Saul, 2000) looks for an
embedding that preserves the local geometry in the neighborhood of each data point.
First, a sparse matrix of local predictive weightsWij is computed, such that

∑
j Wij =

1, Wij = 0 if xj is not a k-nearest-neighbor ofxi and
∑

j(Wijxj −xi)2 is minimized.
Then the matrix

M = (I −W )′(I −W ) (6)

is formed (possibly with the addition of a small diagonal term for regularization.) The
embedding is obtained from the lowest eigenvectors ofM , except for the smallest
eigenvector which is uninteresting because it is(1, 1, . . . 1), with eigenvalue 0. Note
that the lowest eigenvectors ofM are the largest eigenvectors of̃M = I − M to fit
Algorithm 1. The embedding is given byyik = vik.

3 From Eigenvectors to Eigenfunctions

To obtain an embedding for a new data point, we propose to use the Nyström for-
mula (Baker, 1977), which has been used successfully to speed-up kernel methods
computations by focussing the heavier computations (the eigendecomposition) on a
subset of examples. The use of this formula can be justified by considering the con-
vergence of eigenvectors and eigenvalues, as the number of examples increases (Baker,
1977; Williams and Seeger, 2000; Shawe-Taylor and Williams, 2003). (Williams and
Seeger, 2000) also noted that the Nystrom formula is equivalent to the kernel PCA
projection (Scḧolkopf, Smola and M̈uller, 1998).

If we start from a data setD, obtain an embedding for its elements, and add more
and more data, the embedding for the points inD converges (for eigenvalues that are
unique). (Shawe-Taylor and Williams, 2003) give bounds on the convergence error.
In the limit, each eigenvector converges to an eigenfunction for the linear operator
defined below. It means that thei-th element of thek-th eigenvector converges to the
application of thek-th eigenfunction toxi.

Consider a Hilbert spaceHp of functions with the following inner product:

〈f, g〉p =
∫

f(x)g(x)p(x)dx
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with a density functionp(x). The kernelK can be associated with a linear operatorKp

in Hp:

(Kpf)(x) =
∫

K(x, y)f(y)p(y)dy. (7)

We don’t know the generating densityp but we can approximate the above inner prod-
uct and linear operator by those defined with the empirical distributionp̂. An “empir-
ical” Hilbert spaceHp̂ is thus defined using the empirical distributionp̂ instead ofp.
Note that the proposition below can be appliedeven if the kernel is not positive semi-
definite, although the embedding algorithms we have studied are restricted to using the
principal coordinates associated with positive eigenvalues.

Proposition 1
Let K̃(a, b) be a kernel function, not necessarily positive semi-definite, with a dis-

crete spectrum, that gives rise to a symmetric matrixM̃ with entriesM̃ij = K̃(xi, xj)
upon a datasetD = {x1, . . . , xn}. Let (vk, λk) be an (eigenvector,eigenvalue) pair
that solvesM̃vk = λkvk. Let (fk, λ′k) be an (eigenfunction,eigenvalue) pair that
solvesK̃p̂fk = λ′kfk with p̂ the empirical distribution overD. Letek(x) = yk(x)

√
λk

or yk(x) denote the embedding associated with a new pointx. Then

λ′k =
1
n

λk (8)

fk(x) =
√

n

λk

n∑
i=1

vikK̃(x, xi) (9)

fk(xi) =
√

nvik (10)

yk(x) =
fk(x)√

n
=

1
λk

n∑
i=1

vikK̃(x, xi) (11)

yk(xi) = yik, ek(xi) = eik (12)

If K̃(x, y) = φ(x).φ(y) and 1
n

∑
i φ(xi) = 0 then forλk > 0, ek(x) is the kernel PCA

projection with kernelK̃.
See (Bengio et al., 2003) for a proof and further justifications of the above formulae.

The generalized embedding for Isomap and MDS isek(x) =
√

λkyk(x) whereas the
one for spectral clustering, Laplacian eigenmaps and LLE isyk(x).

4 Extending to new Points

Using Proposition 1, one obtains a natural extension of all the unsupervised learning
algorithms of section2 that can be mapped to Algorithm 1, provided we can write down
a continuous kernel functioñK that gives rise to the matrix̃M onD. We consider each
of them in turn below.

OnceK̃ is defined, it can be used in the equation (12) of Proposition 1 (optionally
multiplied by

√
λk) in order to generalize the embedding to a new data pointx.
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4.1 Extending MDS

For MDS, a normalized kernel can be defined as follows, using a continuous version of
the double-centering eq. (2):

K̃(a, b) = −1
2
(d2(a, b)− Ex[d2(x, b)]− Ex′ [d2(a, x′)] + Ex,x′ [d2(x, x′)]) (13)

whered(a, b) is the original distance function and the expectations are taken over the
empirical dataD. An extension of metric MDS to new points has already been pro-
posed in (Gower, 1968), in which one solves exactly for the coordinates of the new
point that are consistent with its distances to the training points, which in general re-
quires adding a new dimension. Ifd2(xi, xj) = ||xi − xj ||2, the extension of MDS to
a new pointx using eq.12 yields the projection ofx on the principal components of
D, sinceK̃(xi, xj) = (xi − E[x]).(xj − E[x]) (where expectation is overD).

4.2 Extending Spectral Clustering and Laplacian Eigenmaps

Both the version of Spectral Clustering and Laplacian Eigenmaps described above are
based on an initial kernelK, such as the Gaussian or nearest-neighbor kernel. An
equivalent continuous normalized kernel is:

K̃(a, b) =
1
n

K(a, b)√
Ex[K(a, x)]Ex′ [K(b, x′)]

where the expectations are taken over the empirical dataD.

4.3 Extending Isomap

Isomap is a bit more challenging than the previous algorithms because we must be
careful in how we define the geodesic distance. It must be done in such a way that the
test point is not required in computing the geodesic distance between training points,
otherwise we would have to recompute all the geodesic distances. A reasonable solu-
tion is to use the definition of̃D(a, b) in eq. (5), which only uses the training points
in the intermediate points on the path froma to b. We obtain a normalized kernel by
applying the continuous double-centering from eq. (13) to D̃2:

K̃(a, b) = −1
2
(D̃2(a, b)−Ex[D̃2(x, b)]−Ex′ [D̃2(a, x′)]+ Ex,x′ [D̃2(x, x′)]). (14)

An m-dimensional manifold embedded inRd is isometric if there is a bijective
mappingc between points inm-dimensional Euclidean space and points on the mani-
fold (with d coordinates) such that the geodesic distance on the manifold (inRd) equals
the Euclidean distance of the corresponding points inRm.

A formula has already been proposed (de Silva and Tenenbaum, 2003) to approxi-
mate Isomap using only a subset of the examples (the “landmark” points) to compute
the eigenvectors. Using the notation of this paper, that formula is

ek(x) =
1

2
√

λk

∑
i

vik(Ex′ [D̃2(x′, xi)]− D̃2(xi, x)). (15)

6



whereEx′ is an average over the data set. The formula is applied to obtain an embed-
ding for the non-landmark examples.

Corollary 2
The embedding proposed in Proposition 1 for Isomap (ek(x)) is equal to formula15

(Landmark Isomap) wheñK(x, y) is defined as in eq.14.
Proof: the proof relies on a property of the Gram matrix for Isomap (and MDS),

i.e. that
∑

i Mij = 0, by construction. Therefore(1, 1, . . . 1) is an eigenvector with
eigenvalue 0, and all the other eigenvectorsvk have the property

∑
i vik = 0 because of

orthogonality with(1, 1, . . . 1). Writing (Ex′ [D̃2(x′, xi)]− D̃2(x, xi)) = K̃(x, xi) +
1
2 (Ex′,x′′ [D̃2(x′, x′′)] − Ex′ [D̃2(x, x′)]) yields for eq.15 1

2
√

λk
((

∑
i vikK̃(x, xi)) +

1
2 (Ex′,x′′ [D̃2(x′, x′′)]− Ex′ [D̃2(x, x′)])

∑
i vik where the last sum is 0, which makes

eq.15equal toek(x).
Corollary 3
If the dataD and the test pointx come from a convex region on anm-dimensional

isometric manifold then, as the number of examplesn → ∞, the extension of Isomap
to a new pointx using eq. (12) (times

√
λk) yields the projection ofx on the principal

components of the corresponding low-dimensional data points.
Sketch of the proof: using the main theorem in (de Silva and Tenenbaum, 2003),

the geodesic distances estimated byD̃ converge to the geodesic distances on the un-
derlying manifold. In that casẽK converges to a dot product of centered data, and
applying Proposition 1 we obtain the result.

4.4 Extending LLE

The extension of LLE is the most challenging one because it does not fit as well the
framework of Algorithm 1: theM matrix for LLE does not have a clear interpretation
in terms of distance or dot product, and adding a new point would seem to require
re-computing all the weights.

To directly associate a kernel function to the mappingM in eq. (6) would yield a
kernelK(x, y) with a singularity atx = y (to account for the identity matrix). Instead
we consider the matrix̃M = I −M , which has the same eigenvectors (therefore the
same embedding is obtained) but eigenvalues1 − λ instead ofλ (so we care about
the largest eigenvalues, not the smallest ones). To obtain a kernel that generatesM̃
we must first associate a functionw(a, b) to the matrixW of regression weights such
that we obtainWij = w(xi, xj). We first define a localk × k Gram matrix around an
arbitrary pointx:

C(x)ij = (x− xn(i))(x− xn(j))′1xn(i)∈N (x)1xn(j)∈N (x)

whereN (x) is the subset ofk elements fromD that are thek nearest neighbors ofx
andn(i) is the index of thei-th such neighbor ofx. Then we definew(a, b) as follows:

w(a, b) = 1b=xn(j)∈N (a)

∑
q C−1(x)jq∑
pq C−1(x)pq

.

Note that the above definition makes
∑

i w(a, xi) = 1 and
∑

i(w(a, b)xi − a)2 min-
imized, as required. Note also that we are using the training points to predict the test
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point x but not vice-versa. Note that for training points we recoverWij = w(xi, xj).
We thus obtained the equivalent kernel

K̃(a, b) = w(a, b) + w(b, a)−
∑

i

w(xi, a)w(xi, b).

When neithera norb are inD, K̃(a, b) = 0. When both are inD we obtainK̃(xi, xj) =
M̃ij . When only one is inD, we obtain respectivelỹK(x, xi) = w(x, xi) or K̃(xi, x) =
w(x, xi).

5 Experiments

We want to evaluate whether the precision of the generalizations suggested in the pre-
vious section is comparable to the intrinsic perturbations of the embedding algorithms.
The perturbation analysis will be achieved by considering splits of the data in three
sets,D = F ∪ R1 ∪ R2 and training either withF ∪ R1 or F ∪ R2, comparing the
embeddings onF . For each algorithm described in section2, we apply the following
procedure:

1. We chooseF ⊂ D with m = |F | samples. The remainingn − m samples
in D/F are split into two equal size subsetsR1 andR2. We train (obtain the
eigenvectors) overF∪R1 andF∪R2. When eigenvalues are close, the estimated
eigenvectors are unstable and can rotate in the subspace they span. Thus we
estimate an affine alignment between the two embeddings using the points in
F , and we calculate the Euclidean distance between the aligned embeddings
obtained for eachsi ∈ F .

2. For each samplesi ∈ F , we also train over{F ∪R1}/{si}. We apply the exten-
sion to out-of-sample points to find the predicted embedding ofsi and calculate
the Euclidean distance between this embedding and the one obtained when train-
ing with F ∪R1, i.e. withsi in the training set.

3. We calculate the mean difference (and its standard error, shown in the figure)
between the distance obtained in step 1 and the one obtained in step 2 for each
samplesi ∈ F , and we repeat this experiment for various sizes ofF .

The results obtained for MDS, Isomap, spectral clustering and LLE are shown in
figure1 for different values ofm. Experiments are done over a database of 698 syn-
thetic face images described by 4096 component that is available athttp://isomap.stanford.edu .
Qualitatively similar results have been obtained over other databases such as Iono-
sphere (http://www.ics.uci.edu/ ˜mlearn/MLSummary.html ) and swis-
sroll (http://www.cs.toronto.edu/ ˜roweis/lle/ ). Each algorithm gen-
erates a two-dimensional embedding of the images, following the experiments reported
for Isomap. The number of neighbors is 10 for Isomap and LLE, and a Gaussian kernel
with a standard deviation of 0.01 is used for spectral clustering / Laplacian eigenmaps.
95% confidence intervals are drawn beside each mean difference of error on the figure.
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As can be expected, the mean difference between the two distances is almost mono-
tonically decreasing as the numberm of overlapping samples grows, mostly because
the training set embedding variability decreases as the number of points exchanged
(n − m) decreases. Furthermore, we find in most cases that the out-of-sample error
is less than or comparable to the training set embedding stability. In fact, the out-of-
sample error is always less than the variability induced on the training set embedding
when more than a few training points are exchanged.
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Figure 1: Training set variability minus out-of-sample error, wrt number of training
set overlapping points. Top left: MDS. Top right: spectral clustering or Laplacian
eigenmaps. Bottom left: Isomap. Bottom right: LLE. Error bars are 95% confidence
intervals.

6 Conclusions

In this paper we have presented an extension to four unsupervised learning algorithms
based on a spectral embedding of the data: MDS, spectral clustering, Laplacian eigen-
maps, Isomap and LLE. This extension allows one to apply a trained model to out-
of-sample points without having to recompute eigenvectors. It introduces a practical
notion of generalization for these algorithms as well as a new method to measure it. The
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experiments on real high-dimensional data show that the average distance between the
out-of-sample and in-sample embeddings is comparable or lower than the variation in
in-sample embedding due to replacing a few points in the training set.
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