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Abstract
We present a series of theoretical arguments supporting the claim that a large class of modern learning algorithms
based on local kernels are sensitive to the curse of dimensionality. These include local manifold learning algorithms
such as Isomap and LLE, support vector classifiers with Gaussian or other local kernels, and graph-based semi-
supervised learning algorithms using a local similarity function. These algorithms are shown to be local in the sense
that crucial properties of the learned function at x depend mostly on the neighbors of x in the training set. This makes
them sensitive to the curse of dimensionality, well studied for classical non-parametric statistical learning. There
is a large class of data distributions for which non-local solutions could be expressed compactly and potentially be
learned with few examples, but which will require a large number of local bases and therefore a large number of
training examples when using a local learning algorithm.

1 Introduction

A very large fraction of the recent work in statistical machine learning has been focused on so-called kernel ma-
chines, which are non-parametric learning algorithms in which the learned function is expressed in terms of a linear
combination of kernel functions applied on the training examples:

f(x) = b +

n
∑

i=1

αiK(x, xi) (1)

where optionally a bias term b is added, D = {x1, . . . , xn} are training examples (without the labels, in the case of
supervised learning), the αi’s are scalars chosen by the learning algorithm using labels {y1, . . . , yn}, and K(·, ·) is
the kernel function, a symmetric function (generally expected to be positive definite). We refer to the n × n matrix
M with entries Mij = K(xi, xj) as the Gram matrix. A typical kernel function is the Gaussian kernel,

K(u, v) = e−
1

σ2 ||u−v||2 , (2)
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with hyper-parameter σ (the width) controlling how local the kernel is. The Gaussian kernel is part of a larger
family of kernels which we call local kernels and discuss in section 5.

Examples of kernel-based nonlinear manifold learning algorithms include Locally Linear Embedding (LLE)
(Roweis and Saul, 2000), Isomap (Tenenbaum, de Silva and Langford, 2000), kernel Principal Component Analy-
sis (PCA) (Schölkopf, Smola and Müller, 1998), Laplacian Eigenmaps (Belkin and Niyogi, 2003), and Manifold
Charting (Brand, 2003). This framework also includes spectral clustering algorithms (see (Weiss, 1999) for more
references). For these algorithms, f represents the embedding function, which maps an example x to one of
the coordinates of its low-dimensional representation embedding (and a separate set of αi’s is used for each di-
mension of the embedding). As shown in (Bengio et al., 2004), the αi correspond to entries in an eigenvector
of the Gram matrix, divided by the corresponding eigenvalue (following the Nyström formula (Nyström, 1928;
Baker, 1977; Williams and Seeger, 2000)). Note that these algorithms employ a special kind of kernel which is
data-dependent (Bengio et al., 2004), but the arguments presented in sections 5, 6 and 8 also apply.

Among the statistical classifiers most widely studied in the recent years is the Support Vector Machine (SVM)
(Boser, Guyon and Vapnik, 1992; Cortes and Vapnik, 1995; Schölkopf, Burges and Smola, 1999), in which f above
is the discriminant function of a binary classifier, i.e. the decision function is given by the sign of f . Since this is
a supervised learning algorithm, the training data includes a set of +1 or -1 class labels {y1, . . . , yn} for training
examples. Results in section 4 apply to SVMs and other kernel machines with Gaussian kernels, and a more general
conjecture is developed in section 8 based on the local-derivative notion introduced in section 6.

Another class of kernel algorithms that is discussed here are the non-parametric graph-based semi-supervised al-
gorithms of the type described in recently proposed papers (Zhu, Ghahramani and Lafferty, 2003; Zhou et al., 2004;
Belkin, Matveeva and Niyogi, 2004; Delalleau, Bengio and Le Roux, 2005). They can be intuitively understood as
performing some kind of smoothing or label propagation on the empirical graph defined by the examples (nodes)
and a similarity function (e.g. a kernel) between pairs of examples. The results in section 7 are specifically tailored
to such algorithms, and show that the number of required labeled examples grows linearly with a measure of the
amount of local variation of the predictor required to reach a given error level.

The basic ideas behind the arguments presented in this paper are simple. One class of arguments relies on
showing that some important property of f(x) is mostly determined by the neighbors of x in the training set. If
one imagines tiling the space with such neighborhoods, the required number of neighborhoods (hence of training
examples) could grow exponentially with the dimensionality of the data (or of the manifold on which they live).
One issue in this respect is the size of these neighborhoods, and we get inspiration from the classical bias-variance
trade-off argument for classical non-parametric models: if we make the regions smaller, bias is reduced (more
complex functions can be represented) but variance is increased (not enough data are used to determine the value
of f(x) around x, so f(x) becomes less stable).

Another class of arguments considers “apparently complicated” target functions, in the sense that they vary a lot
across space, although there might exist simple and compact representations for them that could not be discovered
using a purely local representation (eq. 1). For these arguments one attempts to find lower bounds on the number
of examples required in order to learn the target function. These arguments show that whatever the method used to
estimate the αi’s, one must have a large number of them in order to approximate the function at a given set of points
(larger than the size of the training set), i.e. in order to get meaningful generalization.

In general, what one should keep in mind is that what matters is not the dimension of the data or of the manifold
near which they are found, but rather the “apparent complexity” of the function that we are trying to learn (or
one that would yield an acceptable error level). By “apparent complexity” we mean a measure of the number of
“variations” of that function. One way to formalize this notion, used in Proposition 7.1, is the number of regions
with constant sign of the predictor.
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2 The Curse of Dimensionality for Classical Non-Parametric Models

The curse of dimensionality has been coined by Bellman (Bellman, 1961) in the context of control problems but it
has been used rightfully to describe the poor generalization performance of local non-parametric estimators as the
dimensionality increases.

2.1 The Bias-Variance Dilemma

This problem has often been studied by considering the classical bias-variance analyses of statistical estimators. To
keep the analysis simple, one usually only computes the conditional bias and conditional variance, in the case of
supervised learning, i.e. given the xi’s of the training set, and integrating only over the yi’s. Bias of the estimator
is the expected difference between the estimator and the target function, while variance of the estimator is the
expected squared difference between the estimator and its expected value (in both cases the expectations are over
the training set or over the yi’s only). The expected mean squared error of the estimator can be shown to be equal
to the sum of variance and squared bias (plus the irreducible component of variation of Y given X , i.e. noise).

Two classical non-parametric estimators are worth discussing here. The first one is the k-nearest-neighbor
estimator. It can be cast as a kernel machine (eq. 1) when K is allowed to be data-dependent: αi = yi and K(x, xi)
is 1/k if xi is one of the k nearest neigbors of x in D, 0 otherwise. The second one is the Nadaraya-Watson
estimator (also known as the Parzen windows estimator), in which again αi = yi and K(x, xi) is a normalized
kernel (i.e. also data-dependent), e.g.

K(x, xi) =
K(x, xi)

∑n
i=1 K(x, xi)

.

Since both estimators have the same form, much of the analysis can be shared. Let t(x) be the target function
that we are trying to learn, with E[Y |X = x] = t(x). The conditional bias is simply

conditional bias(x) = E[Y |X = x] −
n
∑

i=1

E[Y |X = xi]K(x, xi). (3)

Clearly, the more local the kernel (i.e. K(x, xi) is nearly 0 except for xi very close to x), the smaller the bias (note
that we consider here kernels K such that

∑

i K(x, xi) = 1). Assuming that V ar[yi|xi] = v does not depend on
xi the conditional variance of the estimator is

conditional variance(x) = v

n
∑

i=1

K(x, xi)
2.

For example, with the k-nearest neighbor estimator,

conditional variance(x) =
v

k
.

Clearly, the way to reduce variance is to decrease the kernel’s locality (e.g. increase σ in a Gaussian kernel or k in
a k-nearest neighbor estimator), which increases the effective number of examples used to obtain a prediction at x.
But this also increases bias, by making the prediction smoother (possibly too smooth). Since total error involves
the sum of squared bias and variance, one should choose the kernel hyper-parameter (e.g. k or σ) to strike the best
balance (hence the bias-variance dilemma (Geman, Bienenstock and Doursat, 1992)).
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2.2 Dimensionality and Rate of Convergence

A nice property of classical non-parametric estimators is that one can prove their convergence to the target function
as n → ∞, i.e. these are consistent estimators. Considering the above simplified exposition on bias and variance,
one obtains consistency by appropriately varying the hyper-parameter that controls the locality of the estimator as
n increases. Basically, the kernel should be allowed to become more and more local, so that bias goes to zero, but
the “effective number of examples” involved in the estimator at x,

1
∑n

i=1 K(x, xi)2

(equal to k for the k-nearest neighbor estimator) should increase as n increases, so that variance is also driven to
0. For example one obtains this condition with limn→∞ k = ∞ and limn→∞

k
n = 0 for the k-nearest neighbor.

Clearly the first condition is sufficient for variance to go to 0 and the second is sufficient for the bias to go to 0
(since k

n is proportional to the volume of space around x which contains the k nearest neighbors). Similarly, for
the Nadarya-Watson estimator with bandwidth σ, consistency is obtained if limn→∞ σ = 0 and limn→∞ nσ = ∞
(in addition to regularity conditions on the kernel). See (Härdle et al., 2004) for a recent and easily accessible
exposition (web version available).

The bias is due to smoothing the target function over the volume covered by the effective neighbors (consider
eq. 3). As the intrinsic dimensionality of the data increases (the number of dimensions that they actually span
locally), bias increases. Since that volume increases exponentially with dimension, the effect of the bias quickly
becomes very severe. To see this, consider the classical example of the [0, 1]d hypercube in R

d with uniformly
distributed data in the hypercube. To hold a fraction p of the data in a sub-cube of it, that sub-cube must have sides
of length p1/d. As d → ∞, p1/d → 1, i.e. we are averaging over distances that cover almost the whole span of the
data, just to keep variance constant (by keeping the effective number of neighbors constant).

When the input examples are not considered fixed the calculations of bias and variance are more complex, but
similar conclusions are reached. For example, for a wide class of such kernel estimators, the unconditional variance
and squared bias can be shown to be written as follows (Härdle et al., 2004):

expected error =
C1

nσd
+ C2σ

4,

with C1 and C2 not depending on n nor d. Hence an optimal bandwidth is chosen proportional to n
−1

4+d , and
the resulting generalization error (not counting the noise) converges in n−4/(4+d), which becomes very slow for
large d. Consider for example the increase in number of examples required to get the same level of error, in 1
dimension versus d dimensions. If n1 is the number of examples required to get a level of error e, to get the same
level of error in d dimensions requires on the order of n

(4+d)/5
1 examples, i.e. the required number of examples

is exponential in d. However, if the data distribution is concentrated on a lower dimensional manifold, it is the
manifold dimension that matters. Indeed, for data on a smooth lower-dimensional manifold, the only dimension
that say a k-nearest neighbor classifier sees is the dimension of the manifold, since it only uses the Euclidean
distances between the near neighbors, and if they lie on such a manifold then the local Euclidean distances approach
the local geodesic distances on the manifold (Tenenbaum, de Silva and Langford, 2000).

3 Summary of the results

In the following sections, we will see that:
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• In the case of a Gaussian kernel machine classifier, if there exists a line in R
d that intersects m times with the

decision surface S (and is not included in S), one needs at least dm
2 e Gaussians (of same width) to learn S.

• At least 2d−1 examples are required to represent the d-bit parity (the function from {0, 1}d to {−1, 1} which
is 1 iff the sum of the bits is even), when using Gaussians with fixed σ centered on data points.

• Many graph-based semi-supervised learning algorithms cannot learn a number of regions with constant label
higher than the number of labeled examples.

• When the test example x is far from all the xi, a predictor given by eq. 1 with a local kernel either converges
to a constant or a nearest neighbor classifier. Neither of these are good in high dimension.

• When using so-called local-derivative kernels, ∂f(x)
∂x is constrained to be approximately a linear combination

of the vectors (x − xi) with xi a near neighbor of x. In high dimension (when the number of effective
neighbors is significantly smaller than the dimension), this is a very strong constraint (either on the shape of
the manifold or of the decision surface).

• When there are examples with ||x− xi|| near σ (which is likely to happen for “good” values of σ, i.e. neither
too small nor too big), with x on the decision surface, changes in x small w.r.t. σ yield only small changes in
the normal vector of the decision surface. The above statement is one about bias: within a ball of radius σ,
the decision surface is constrained to be smooth (small changes in x yield small changes in the shape of the
surface).

• In the case of a Gaussian kernel classifier, when σ increases the decision surface becomes subject to specific
smoothness constraints. More generally, we present an argument supporting the conjecture that any learning
algorithm with a local property, such as the local-derivative property ( ∂f

∂x depends mostly on examples in a
ball around x) and local smoothness of the learned function (e.g., within that ball) will be subject to the curse
of dimensionality.

These statements highlight some important limitations of kernel methods, that one must keep in mind when applying
such learning algorithms.

4 Minimum Number of Bases Required for Complex Functions

4.1 Limitations of Learning with Gaussians

In (Schmitt, 2002) tight bounds are established for the number of zeros of univariate radial basis function networks
under certain parameter conditions. In particular, it is shown that for a fixed Gaussian width σ, a function

f : R → R

of the form

f(x) = b +
k
∑

i=1

αi exp

(

−
‖x − xi‖2

σ2

)

(4)

cannot have more than 2k zeros (if there is at least one non-zero αi). Consider now the more general case of a
multivariate decision function f : R

d → R written as in eq. 4. For any u ∈ R
d and any w ∈ R

d such that ‖w‖ = 1,
the function g : R → R defined by

g(α) = f(u + αw)
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can be written in the form

g(α) = b +

k
∑

i=1

βi exp

(

−
|α − αi|

2

σ2

)

where u + αiw is the projection of xi on the line Du,w = {u + αw,α ∈ R}. Thanks to the above result
from (Schmitt, 2002) we can then conclude that g has at most 2k zeros, i.e. that Du,w crosses the decision sur-
face at most 2k times (as long as there is a non-zero coefficient in the resulting Gaussian expansion, otherwise g
may be constant and equal to 0).
Corollary 4.1. Let S be a decision surface in R

d to be learned with an affine combination of Gaussians with unique
width as in eq. 4. If there exists a line in R

d that intersects m times with S (and is not included in S), then one
needs at least dm

2 e Gaussians to learn S.

decision surface

Class −1

Class 1

Figure 1: The dotted line crosses the decision surface 19 times: one thus needs at least
10 Gaussians to learn it with an affine combination of Gaussians with same width.

Example 4.2. Consider the decision surface shown in figure 1, which is a sinusoidal function. One may take
advantage of the global regularity to learn it with few parameters (thus requiring few examples), but with an affine
combination of Gaussians, corollary 4.1 implies one would need at least dm

2 e = 10 Gaussians. For more complex
tasks in higher dimension, the “complexity” of the decision surface could quickly make learning impractical when
using such a local kernel method.
Remark 4.3. Of course, one only seeks to approximate the decision surface S, and does not necessarily need to
learn it perfectly: corollary 4.1 says nothing about the existence of an easier-to-learn decision surface approxi-
mating S. For instance, in the example of figure 1, the dotted line could turn out to be a good enough estimated
decision surface if most samples were far from the true decision surface, and this line can be obtained with only
two Gaussians.
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4.2 Learning the d-Bits Parity Function

The d-bits parity function is the function

parity : (b1, . . . , bd) ∈ {0, 1}d 7→

{

1 if
∑d

i=1 bi is even
−1 otherwise

We will show that learning this apparently simple function with Gaussians centered on points in {0, 1}d is difficult,
in the sense that it requires a number of Gaussians exponential in d (for a fixed Gaussian width). We will use the
following notations:

Xd = {0, 1}d = {x1, x2, . . . , x2d}

H0
d = {(b1, . . . , bd) ∈ Xd | bd = 0} (5)

H1
d = {(b1, . . . , bd) ∈ Xd | bd = 1}

Kσ(x, y) = exp

(

−
‖x − y‖2

σ2

)

We say that a decision function f : R
d → R solves the parity problem if sign(f(xi)) = parity(xi) for all i in

{1, . . . , 2d}.

Lemma 4.4. Let f(x) =
∑2d

i=1 αiKσ(xi, x) be a linear combination of Gaussians with same width σ centered on
points xi ∈ Xd. If f solves the parity problem, then αiparity(xi) > 0 for all i.

Proof. We prove this lemma by induction on d. If d = 1 there are only 2 points. Obviously one Gaussian is not
enough to classify correctly x1 and x2, so both α1 and α2 are non-zero, and α1α2 < 0 (otherwise f is of constant
sign). Without loss of generality, assume parity(x1) = 1 and parity(x2) = −1. Then f(x1) > 0 > f(x2), which
implies α1(1−Kσ(x1, x2)) > α2(1−Kσ(x1, x2)) and α1 > α2 since Kσ(x1, x2)) < 1. Thus α1 > 0 and α2 < 0,
i.e. αiparity(xi) > 0 for i ∈ {1, 2}.
Suppose now lemma 4.4 is true for d = d′ − 1, and consider the case d = d′. We denote by x0

i the points in H0
d

and by α0
i their coefficient in the expansion of f (see eq. 5 for the definition of H0

d ). For x0
i ∈ H0

d , we denote by
x1

i ∈ H1
d its projection on H1

d (obtained by setting its last bit to 1), whose coefficient in f is α1
i . For any x ∈ H0

d

and x1
j ∈ H1

d we have:

Kσ(x1
j , x) = exp

(

−
‖x1

j − x‖2

σ2

)

= exp

(

−
1

σ2

)

exp

(

−
‖x0

j − x‖2

σ2

)

= γKσ(x0
j , x)

where γ = exp
(

− 1
σ2

)

∈ (0, 1). Thus f(x) for x ∈ H0
d can be written

f(x) =
∑

x0
i
∈H0

d

α0
i Kσ(x0

i , x) +
∑

x1
j
∈H1

d

α1
jγKσ(x0

j , x)

=
∑

x0
i
∈H0

d

(

α0
i + γα1

i

)

Kσ(x0
i , x)
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Since H0
d is isomorphic to Xd−1, the restriction of f to H0

d implicitely defines a function over Xd−1 that solves the
parity problem (because the last bit in H0

d is 0, the parity is not modified). Using our induction hypothesis, we have
that for all x0

i ∈ H0
d :

(

α0
i + γα1

i

)

parity(x0
i ) > 0. (6)

A similar reasoning can be made if we switch the roles of H0
d and H1

d . One has to be careful that the parity is
modified between H1

d and its mapping to Xd−1 (because the last bit in H1
d is 1). Thus we obtain that the restriction

of (−f) to H1
d defines a function over Xd−1 that solves the parity problem, and the induction hypothesis tells us

that for all x1
j ∈ H1

d :
(

−
(

α1
j + γα0

j

)) (

−parity(x1
j )
)

> 0. (7)

and the two negative signs cancel out. Now consider any x0
i ∈ H0

d and its projection x1
i ∈ H1

d . Without loss of
generality, assume parity(x0

i ) = 1 (and thus parity(x1
i ) = −1). Using eq. 6 and 7 we obtain:

α0
i + γα1

i > 0

α1
i + γα0

i < 0

It is obvious that for these two equations to be simultaneously verified, we need α0
i and α1

i to be non-zero and of
opposite sign. Moreover, α0

i + γα1
i > 0 > α1

i + γα0
i ⇒ α0

i > α1
i , which implies α0

i > 0 and α1
i < 0, i.e.

α0
i parity(x0

i ) > 0 and α1
i parity(x1

i ) > 0. Since this is true for all x0
i in H0

d , we have proved lemma 4.4.

Theorem 4.5. Let f(x) = b+
∑2d

i=1 αiKσ(xi, x) be an affine combination of Gaussians with same width σ centered
on points xi ∈ Xd. If f solves the parity problem, then there are at least 2d−1 non-zero coefficients αi.

Proof. We begin with two preliminary results. First, given any xi ∈ Xd, the number of points in Xd that differ
from xi by exactly k bits is

(

d
k

)

. Thus,

∑

xj∈Xd

Kσ(xi, xj) =

d
∑

k=0

(

d

k

)

exp

(

−
k2

σ2

)

= cσ. (8)

Second, it is possible to find a linear combination (i.e. without bias) of Gaussians g such that g(xi) = f(xi) for all
xi ∈ Xd. Indeed, let

g(x) = f(x) − b +
∑

xj∈Xd

βjKσ(xj , x). (9)

g verifies g(xi) = f(xi) iff
∑

xj∈Xd
βjKσ(xj , xi) = b, i.e. the vector β satisfies the linear system Mσβ = b1,

where Mσ is the kernel matrix whose element (i, j) is Kσ(xi, xj) and 1 is a vector of ones. It is well known that
Mσ is invertible as long as the xi are all different, which is the case here (Micchelli, 1986). Thus β = bM−1

σ 1 is
the only solution to the system.

We now proceed to the proof of the theorem. By contradiction, suppose f(x) = b +
∑2d

i=1 αiKσ(xi, x) solves
the parity problem with less than 2d−1 non-zero coefficients αi. Then there exist two points xs and xt in Xd

such that αs = αt = 0 and parity(xs) = 1 = −parity(xt). Consider the function g defined as in eq. 9 with
β = bM−1

σ 1. Since g(xi) = f(xi) for all xi ∈ Xd, g solves the parity problem with a linear combination of
Gaussians centered points in Xd. Thus, applying lemma 4.4, we have in particular that βsparity(xs) > 0 and
βtparity(xt) > 0 (because αs = αt = 0), so that βsβt < 0. But, because of eq. 8, Mσ1 = cσ1, which means 1

is an eigenvector of Mσ with eigenvalue cσ > 0. Consequently, 1 is also an eigenvector of M−1
σ with eigenvalue

c−1
σ > 0, and β = bM−1

σ 1 = bc−1
σ 1, which is in contradiction with βsβt < 0: f must have at least 2d−1 non-zero

coefficients.
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Remark 4.6. The bound in theorem 4.5 is tight, since it is possible to solve the parity problem with exactly 2d−1

Gaussians and a bias, for instance by using a negative bias and putting a positive weight on each example satisfying
parity(x) = 1.
Remark 4.7. When trained to learn the parity function, a SVM may learn a function that looks like the opposite of
the parity on test points (while still performing optimally on training points). For instance, a SVM trained with 4000
unique points from X15 achieves a 90% error rate on 20000 different test samples (with σ = 0.5). This is because
a bit less than 90% of these test samples are at distance 1 from their nearest neighbor in the training set. With this
value of σ, the SVM output is similar to nearest neighbor classification, which is wrong when the nearest neighbor
is at distance 1. However, this observation cannot in general be used to build a model for parity with Gaussians
(by taking the opposite of the SVM output): indeed, this approach would work here because the training samples
are dense enough in X15, but this will not be the case with fewer training data or in higher dimensions. Note that
in all our experiments performed with parity datasets, a SVM had a 50% or more error rate on new points, which
illustrates its inability to generalize for this problem.
Remark 4.8. If the centers of the Gaussians are not restricted anymore to be points in Xd, it is possible to solve
the parity problem with only d + 1 Gaussians and no bias. Indeed, consider f defined by

f(x) =

d
∑

i=0

(−1)iKσ(yi, x)

with

yi =
i

d
1.

For σ small enough, sign(f(yi)) = (−1)i. In addition, for any x ∈ Xd, f(x) = γf(x̂), where x̂ is the projection

of x on the diagonal (the line spanned by 1) and γ = exp
(

−‖x−x̂‖2

σ2

)

∈ (0, 1). Let x = (b1, . . . , bd): its projection

x̂ is given by

x̂ = (x · 1)
1

‖1‖2
=

1

d

(

∑

i

bi

)

1 = y(
P

i
bi)

and therefore sign(f(x)) = sign(f(x̂)) = sign
(

f
(

y(
P

i
bi)

))

= (−1)(
P

i
bi) = parity(x): f solves the parity

problem with a linear combination of d + 1 Gaussians.

5 When a Test Example is Far from Training Examples

The argument presented in this section is mathematically trivial but nonetheless very powerful, especially in high-
dimensional spaces. We consider here functions f as in eq. 1 where K is a local kernel, i.e. is such that for x a test
point and xi a training point

lim
||x−xi||→∞

K(x, xi) → ci (10)

where ci is a constant that does not depend on x. For instance, this is true for the Gaussian kernel (eq. 2)
with ci = 0. This is also true for the data-dependent kernel obtained by the centering step in kernel PCA
(Schölkopf, Smola and Müller, 1998) when the original kernel is the Gaussian kernel, with

ci = −
1

n

∑

k

Kσ(xi, xk) +
1

n2

∑

k,l

Kσ(xk, xl).
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Clearly, from inspection of equations 1 and 10, when x goes farther from the training set, i.e. when

d(D,x) = min
i

||x − xi||

goes to ∞, then f(x) → b +
∑

i αici. In the case of regression the prediction converges to a constant. In the case
of manifold learning with f(x) representing an embedding function, it means all points far from the training set
are mapped to the same low-dimensional coordinates. Note that this convergence to a constant does not hold for
non-local kernels such as those of Isomap or LLE (Bengio et al., 2004).

In the case of classification (e.g. SVMs), there are two distinct cases. If b+
∑

i αici 6= 0, sign(f(x)) converges
to a constant classifier. Otherwise, the result is less obvious and will depend on the kernel used. For instance, with
a Gaussian kernel, it is easy to see that the classification will only depend on the nearest neighbor as long as x is
not too close to a nearest neighbor classifier decision surface (which is more and more likely as x goes farther from
the training set). In all cases we clearly get either a poor high-bias prediction (a constant), or a highly local one
(the nearest neighbor rule, which is also likely to have a high bias when x is far from its nearest neighbor) that
suffers from the curse of dimensionality. Note that when x is a high-dimensional vector, the nearest neighbor is
not much closer than the other examples (the ratio of the distance between the nearest and the farthest converges to
1 (Beyer et al., 1999)), hence it is not very informative. A random test point is therefore not unlikely to be relatively
far from its nearest neighbor in the training set, compared to σ, when σ is chosen to be smaller than the scale of the
training data, so this situation is not a rare one for high-dimensional data.

6 Locality of the Estimator and its Tangent

In this section we consider how the derivative of f(x) w.r.t x (i.e. its “shape”) is influenced by the positions of
training examples xi. We say a kernel is local-derivative if its derivative can be written

∂K(x, xi)

∂x
=
∑

j

βij(x − xj)K
′(x, xj) (11)

where K ′ is either a local kernel verifying eq. 10 with ci = 0 or any kernel that is 0 when xj is not a k nearest
neighbor of x in the training set. From equations 1 and 11, we will see that ∂f/∂x is contained (possibly approxi-
mately) in the span of the vectors (x− xj) with xj a neighbor of x (the notion of neighborhood being defined by k
or by how fast K ′ converges to 0 when ‖x − xj‖ increases).

Examples of local-derivative kernels include the Gaussian kernel as well as the kernels for Isomap or LLE. In
the case of the Gaussian kernel, we have

∂Kσ(x, xi)

∂x
= −

2αi

σ2
(x − xi)Kσ(x, xi). (12)

As shown in (Bengio and Monperrus, 2005), in the case of Isomap we obtain a linear combination of vectors (x−xj)
with xj one of the k nearest neighbors of x, where k is an hyper-parameter for the Isomap kernel. Thus it verifies
eq. 11 with K ′(x, xj) = 0 when xj is not a k nearest neighbor of x. The same property holds for the LLE kernel,
where KLLE(x, xi) is the weight of xi in the reconstruction of x by its k nearest neighbors (Bengio et al., 2004).
Indeed, this weight is obtained by the following equation (Saul and Roweis, 2002):

KLLE(x, xi) =

∑k
j=1 G−1

ij
∑k

l,m=1 G−1
lm

(13)
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with G−1 the inverse of the local Gram matrix G

Glm = (x − xl) · (x − xm)

for all pairs (xl, xm) of k nearest neighbors of x in the training set. Because G−1 = |G|−1CT with C the cofactor
matrix of G, eq. 13 can be rewritten as

KLLE(x, xi) =

∑

j sj

∏

l,m(Glm)tjlm

∑

j uj

∏

l,m(Glm)vjlm

and consequently, thanks to the usual derivation rules, its derivative is a linear combination of derivatives of terms
of the form (Glm)t. But

∂(Glm)t

∂x
=

∂((x − xl) · (x − xm))t

∂x

= t(Glm)t−1(x − xl + x − xm)

which implies that the derivative of KLLE(x, xi) w.r.t x is in the span of the vectors (x − xj) with xj a k nearest
neighbor of x, as for Isomap: eq. 11 is verified.

From equations 1 and 11, we obtain that

∂f(x)

∂x
=
∑

i

γiK
′(x, xi)(x − xi). (14)

This equation helps us to understand how changes in x yield changes in f(x) through the different training ex-
amples. In particular, because of the properties of K ′, only the terms involving near neighbors of x have a
significant influence on the result. These neighbors are either defined by the hyper-parameter k or by how fast K ′

converges to 0 (i.e. σ for a Gaussian kernel, see section 6.2 for an example). Note that in the second case, we will
also need the γi to be bounded in order to ensure such a locality property.

To better understand this, we will consider specifically the geometry of manifold learning and the geometry of
decision surfaces.

6.1 Geometry of Tangent Planes

For manifold learning, with fk(x) the k-th embedding coordinate of x, these derivatives together (for k = 1, 2, . . .)
span the tangent plane of the manifold at x. Indeed, ∂fk(x)

∂x is the direction of variation of x which corresponds to

the largest increase in the k-th embedding coordinate. Inspection of eq. 14 shows that ∂fk(x)
∂x is a linear combination

of the vectors (x− xi), with xi a near neighbor of x in the training set, since the other training examples contribute
very little to the sum.

Consequently, the tangent plane of the manifold is approximately in the span of the vectors (x−xi) with xi

a near neighbor of x. If the number of data dimensions is large compared to the number of near neighbors, then this
is a very strong constraint, irrespective of the learning method. Consider for example a distribution whose samples
have an intrinsic dimension of about 100, but where the algorithm uses 5 significant neighbors. Constraining the
tangent plane to be in the span of these 5 near neighbors is a very strong constraint in the local R

100 subspace,
which will result in a high-variance estimator for the manifold.

11



6.2 Geometry of Decision Surfaces

A similar argument can be made for the decision surfaces of kernel classifiers. Consider a point x on the decision
surface, i.e. f(x) = 0. The normal of the decision surface is the vector ∂f(x)

∂x evaluated at x. From eq. 14 we see
that the decision surface normal vector is a linear combination of the vectors (x−xi), with xi a near neighbor
of x. Again, if the intrinsic dimension is large compared to the number of near neighbors, then this is a very strong
constraint, irrespective of the learning method. Like in the unsupervised case, this is likely to yield a high-variance
estimator since only a few points determine a crucial property of the decision surface, i.e. its shape.
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Figure 2: Plot of ze−z2

.

Note that in the above statements, depending on the kernel K ′, we may need to require the γi to be bounded.
Take for instance the classical 1-norm soft margin SVM. The decision surface normal vector can be obtained from
eq. 1 and 12:

∂f(x)

∂x
= −

∑

i

2αi

σ
Kσ(x, xi)

‖xi − x‖

σ

(xi − x)

‖xi − x‖
(15)

i.e. as a linear combination of vectors of norm 1 whose weights depend notably on ze−z2

with z = ‖xi − x‖/σ.
This function is plotted in figure 2, showing that if there are training examples xi such that ‖xi − x‖/σ is less than
2, they will be the main contributors in eq. 15, as long as the coefficients αi are bounded (which is the case for the
1-norm SVM). Consider a change in x small with respect to σ: this change does not affect much the direction nor
the weight of these main contributors, which means the normal vector is almost unchanged. The bottom line is that
the decision surface is constrained to be smooth, in the sense that the normal vector is almost constant in a ball
whose radius is small with respect to σ. This very qualitative statement helps us understand why one usually needs
a small σ to learn complex decision functions while smooth functions can be learned with a bigger σ.

In this specific example of the 1-norm soft margin SVM, it is important to note that we do not want training
examples to be all close to x or all far from x (w.r.t. σ), i.e. σ should not take extreme values. Indeed, it is shown
in (Keerthi and Lin, 2003) that when σ → 0 or σ → ∞ and the regularization parameter C is fixed, the SVM will
assign the entire data space to the majority class (and when σ → ∞ and C ∝ σ2 it converges to a linear SVM).

7 The Curse of Dimensionality for Local Non-Parametric Semi-Supervised
Learning

In this section we focus on algorithms of the type described in recent papers (Zhu, Ghahramani and Lafferty, 2003;
Zhou et al., 2004; Belkin, Matveeva and Niyogi, 2004; Delalleau, Bengio and Le Roux, 2005), which are graph-
based non-parametric semi-supervised learning algorithms. Because the analysis is centered on the decision surface

12



and eq. 1, it also applies to transductive SVMs and Gaussian processes when the kernel is either Gaussian or nor-
malized Gaussian.

The graph-based algorithms we consider here can be seen as minimizing the following cost-function, as shown
in (Delalleau, Bengio and Le Roux, 2005):

C(Ŷ ) = ‖Ŷl − Yl‖
2 + µŶ >LŶ + µε‖Ŷ ‖2 (16)

with Ŷ = (ŷ1, . . . , ŷn) the estimated labels on both labeled and unlabeled data, and L the (un-normalized)
graph Laplacian derived from a similarity function W between points such that Wij = W (xi, xj) corresponds
to the weights of the edges in the graph. Here, Ŷl = (ŷ1, . . . , ŷl) is the vector of estimated labels on the l
labeled examples, whose known labels are given by Yl = (y1, . . . , yl), and one may constrain Ŷl = Yl as
in (Zhu, Ghahramani and Lafferty, 2003) by letting µ → 0.

Minimization of the cost criterion of eq. 16 can also be seen as a label propagation algorithm, i.e. labels are
“spread” around labeled examples, with “around” being given by the structure of the graph. An intuitive view of
label propagation suggests that a region of the manifold near a labeled (e.g. positive) example will be entirely
labeled positively, as the example spreads its influence by propagation on the graph representing the underlying
manifold. Thus, the number of regions with constant label should be on the same order as (or less than) the number
of labeled examples. This is easy to see in the case of a sparse weight matrix W . We define a region with constant
label as a connected subset of the graph where all nodes xi have the same estimated label (sign of ŷi), and such
that no other node can be added while keeping these properties. The following proposition then holds (note that it
is also true, but trivial, when W defines a fully connected graph).
Proposition 7.1. After running a label propagation algorithm minimizing the cost of eq. 16, the number of regions
with constant estimated label is less than (or equal to) the number of labeled examples.

Proof. By contradiction, if this proposition is false, then there exists a region with constant estimated label that
does not contain any labeled example. Without loss of generality, consider the case of a positive constant label,
with xl+1, . . . , xl+q the q samples in this region. The part of the cost of eq. 16 depending on their labels is

C(ŷl+1, . . . , ŷl+q) =
µ

2

l+q
∑

i,j=l+1

Wij(ŷi − ŷj)
2

+ µ

l+q
∑

i=l+1





∑

j /∈{l+1,...,l+q}

Wij(ŷi − ŷj)
2





+ µε

l+q
∑

i=l+1

ŷ2
i .

The second term is stricly positive, and because the region we consider is maximal (by definition) all samples xj

outside of the region such that Wij > 0 verify ŷj < 0 (for xi a sample in the region). Since all ŷi are stricly
positive for i ∈ {l + 1, . . . , l + q}, this means this second term can be stricly decreased by setting all ŷi to 0 for
i ∈ {l + 1, . . . , l + q}. This also sets the first and third terms to zero (i.e. their minimum), showing that the set of
labels ŷi are not optimal, which is in contradiction with their definition as the labels that minimize C.

This means that if the class distributions are such that there are many distinct regions with constant labels
(either separated by low-density regions or regions with samples from the other class), we will need at least the
same number of labeled samples as there are such regions (assuming we are using a sparse local kernel such as the
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k-nearest neighbor kernel, or a thresholded Gaussian kernel). But this number could grow exponentially with the
dimension of the manifold(s) on which the data lie, for instance in the case of a labeling function varying highly
along each dimension, even if the label variations are “simple” in a non-local sense, e.g. if they alternate in a
regular fashion.

When the affinity matrix W is not sparse (e.g. Gaussian kernel), obtaining such a result is less obvious. How-
ever, there often exists a sparse approximation of W (for instance, in the case of a Gaussian kernel, one can set to 0
entries below a given threshold or that do not correspond to a k-nearest neighbor relationship). Thus we conjecture
the same kind of result holds for dense weight matrices, if the weighting function is local in the sense that it is close
to zero when applied to a pair of examples far from each other.

8 General Curse of Dimensionality Argument

Can we obtain more general results that would apply to a broader class of learning algorithms, such as transductive
SVMs and Gaussian processes with Gaussian kernel? For this we must first establish the notion that if we choose
the ball N (x) too large the predicted function is constrained to be too smooth. The following proposition supports
this statement.
Proposition 8.1. For the Gaussian kernel classifier, as σ increases and becomes large compared with the diameter
of the data, in the smallest sphere containing the data the decision surface becomes linear if

∑

i αi = 0 (e.g.
for SVMs), or else the normal vector of the decision surface becomes a linear combination of two sphere surface
normal vectors, with each sphere centered on a weighted average of the examples of the corresponding class.

Proof. The decision surface is the set of x such that

f(x) =
∑

i

αie
− 1

2
||x−xi||

2/σ2

= 0.

The normal vector of the decision surface of the Gaussian classifier is therefore

∂f(x)

∂x
= −

∑

i

αi
(x − xi)

σ2
e−

1
2
||x−xi||

2/σ2

.

In the smallest sphere containing the data, ||x − xi|| ≤ ∆, ∆ being the diameter of that sphere. As σ be-
comes large with respect to ∆, it becomes large with respect to all the distances ||x − xi||, and the factors
e−

1
2
||x−xi||

2/σ2

approach 1. For example for σ = 4∆, these factors are in the interval [0.969, 1]. Let us write
βi(x) = αi

σ2 e−
1
2
||x−xi||

2/σ2

, which approaches αi

σ2 . The normal vector can thus be decomposed in three terms

∂f(x)

∂x
= −x

∑

i

βi(x) +
∑

i:αi>0

βi(x)xi −
∑

i:αi<0

(−βi(x))xi. (17)

Let us introduce two weighted averages, corresponding to each of the two classes. Define for k = 1 and k = −1

Sk(x) = k
∑

i:sign(αi)=k

βi(x)

mk(x) = k
∑

i:sign(αi)=k

βi(x)xi

µk(x) =
mk(x)

Sk(x)
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These are centers of mass for each of the two classes, with weights |βi(x)|. The normal vector is thereby written as

∂f(x)

∂x
= −xS1(x) + xS−1(x) + m1(x) − m−1(x)

If
∑

i αi = 0 (as in many SVMs), then S1(x) − S−1(x) approaches 0, so that the first two terms above vanish and
the dominant remainder is the difference vector m1 − m−1, which defines a linear decision surface whose normal
vector is aligned with the difference of two weighted means (one per class).

Without the condition
∑

i αi = 0 we obtain a very specific quadratic decision surface. More precisely, the
normal vector can be rewritten

∂f(x)

∂x
= S1(x)(µ1(x) − x) − S−1(x)(µ−1(x) − x).

We can now interpret the above as follows. As σ increases, µk(x) approaches a fixed center and Sk(x) a fixed
scalar, and the decision surface normal vector is a linear combination of two vectors: the normal vector of the
surface of the sphere centered at µ1 and the normal vector of the surface of the sphere centered at µ−1.

We are now ready to put all these arguments together to argue that the curse of dimensionality plagues a large
class of semi-supervised and supervised learning algorithms.
Conjecture 8.2. Consider a smoothness property S of discriminant functions f . Let P be a data-generating process
from which training sets are sampled from a bounded region Ω. Suppose that P is such that, with N balls covering
Ω with property S in each ball, one cannot build a classifier with generalization error level less than ε. For kernel
machines with

1. the local-derivative property definining balls N (x) around a given test point x,

2. a smooth decision surface within any ball N (x) in the sense that smoothness property S is satisfied within
N (x) (e.g. consider S shown for the Gaussian kernel in Proposition 8.1),

the number of training examples required for achieving error level ε grows linearly with N . N may grow exponen-
tially with the dimension of a manifold near which the density concentrates, on the decision surface.

Supporting argument. The notion of locality provided by the local-derivative property allows us to define a ball
N (x) around each test point x, containing neighbors that have a dominating influence on ∂f(x)

∂x . The smoothness
property S defined in Proposition 8.1 constrains the decision surface to be either linear (case of SVMs) or a partic-
ular quadratic form (the decision surface normal vector is a linear combination of two vectors defined by the center
of mass of examples of each class). If P is as defined above, one must have at least N balls covering Ω, and let k
be the smallest number such that one needs at least k examples in each ball to reach error level ε. The number of
examples thus required is kN . To see that N can be exponential in some dimension, consider the maximum radius
r of all these balls and the radius R of Ω. If the region of the decision surface in which the density is non-negligible
has intrinsic dimension d, then N could be as large as the number of radius r balls that can tile a d-dimensional

manifold of radius R, which is at least
(

R
r

)d
. This completes the argument.

9 Conclusion

The central claim of this paper is that there are fundamental problems with non-parametric local approaches to
learning, due to the curse of dimensionality. Even though learning algorithms such as SVMs behave better in this
respect than classical algorithms such as k-nearest-neighbor classifiers (because they can do something between the
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k-nearest-neighbor and linear classifier), they also suffer from the curse of dimensionality, at least when the kernels
are local.

We have presented a series of theoretical results, some obvious and others less, that illustrate this phenomenon.
They highlight some intrinsic limitations of those local learning algorithms, that can make them fail when applied
on high-dimensional problems where one has to look beyond what happens locally in order to overcome the curse
of dimensionality. However, there is still work to do in order to obtain more general theoretical results that would
show precisely how the generalisation error degrades when the (effective) dimension of the data grows, as can be
done for classical non-parametric algorithms.
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References

Baker, C. (1977). The numerical treatment of integral equations. Clarendon Press, Oxford. 2

Belkin, M., Matveeva, I., and Niyogi, P. (2004). Regularization and semi-supervised learning on large graphs. In
Shawe-Taylor, J. and Singer, Y., editors, COLT’2004. Springer. 2, 12

Belkin, M. and Niyogi, P. (2003). Using manifold structure for partially labeled classification. In Becker, S., Thrun,
S., and Obermayer, K., editors, Advances in Neural Information Processing Systems 15, Cambridge, MA. MIT
Press. 2

Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. Princeton University Press, New Jersey. 3

Bengio, Y., Delalleau, O., Le Roux, N., Paiement, J.-F., Vincent, P., and Ouimet, M. (2004). Learning eigenfunc-
tions links spectral embedding and kernel PCA. Neural Computation, 16(10):2197–2219. 2, 10

Bengio, Y. and Monperrus, M. (2005). Non-local manifold tangent learning. In Saul, L., Weiss, Y., and Bottou, L.,
editors, Advances in Neural Information Processing Systems 17. MIT Press. 10

Beyer, K. S., Goldstein, J., Ramakrishnan, R., and Shaft, U. (1999). When is “nearest neighbor” meaningful? In
Proceeding of the 7th International Conference on Database Theory, pages 217–235. Springer-Verlag. 10

Boser, B., Guyon, I., and Vapnik, V. (1992). A training algorithm for optimal margin classifiers. In Fifth Annual
Workshop on Computational Learning Theory, pages 144–152, Pittsburgh. 2

Brand, M. (2003). Charting a manifold. In Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural
Information Processing Systems 15. MIT Press. 2

Cortes, C. and Vapnik, V. (1995). Support vector networks. Machine Learning, 20:273–297. 2

Delalleau, O., Bengio, Y., and Le Roux, N. (2005). Efficient non-parametric function induction in semi-supervised
learning. In Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics. 2, 12,
13

Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neural
Computation, 4(1):1–58. 3
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