
Unlearning for Better Mixing

Olivier Breuleux, Yoshua Bengio, and Pascal Vincent
Dept. IRO, Université de Montréal

breuleux@gmail.com, yoshua.bengio@umontreal.ca,
vincentp@iro.umontreal.ca

Technical Report 1349, November 5, 2009, Dept. IRO, U. Montreal

Abstract

Two learning algorithms were recently proposed – Herding and Fast Per-
sistent Contrastive Divergence (FPCD) – which share the following interesting
characteristic: they exploit changes in the model parameters while sampling in or-
der to escape modes and mix better, during the sampling process that is part of the
learning algorithm. We first justify such approaches as ways to escape modes while
approximately keeping the same asymptotic distribution of the Markov chain. We
then extend FPCD using an idea borrowed from Herding in order to obtain a pure
sampling algorithm and show empirically that this FPCD-sampler yields substan-
tially better samples than Gibbs sampling. Because these algorithms entangle the
model and the sampling algorithm and we want to evaluate both (but particularly
how well the sampling schemes mix), it is not always easy to evaluate them, so we
propose a “black-box” approach based on how well and how quickly the samples
generated by a model “cover” the test set examples. We empirically study these
algorithms and variations with this perspective and these new evaluation tools in
order to better understand their strengths and limitations.

1 Introduction
Undirected graphical models such as Markov random fields (MRF) and variants of
Boltzmann machines are equipped with stochastic sampling procedures that are nor-
mally considered independently of the model itself, characterized by its parameters.
Here, we study the models structured like the Restricted Boltzmann Machines (RBM) (Hin-
ton et al., 2006), i.e., with a set of visible (observed) variables, a set of hidden variables,
and an energy function that only contains terms for (hidden,visible) pairs. Recent
work on training algorithms for the RBM - the Fast Persistent Contrastive Divergence
(FPCD) algorithm (Tieleman & Hinton, 2009) - is creating new interactions between
learning and sampling by allowing two sets of weights (parameters): slow weights rep-
resent the model, while fast ’dynamic’ weights (added on top of slow weights with
a fast weight decay towards 0 and a large learning rate) are used during learning to
help the sampling procedure better explore the modes of the distribution while learn-
ing. Herding is another very recently proposed algorithm (Welling, 2009b; Welling,

1

2009a) in which learning and sampling seem entangled. Herding can be obtained by
considering the zero-temperature limit of a Markov random field, i.e. where sampling
is replaced by minimization (of the energy). A Herding algorithm defines a dynamical
system in which samples and weights evolve deterministically, producing a stream of
samples whose statistics match those of the training samples under some hypotheses
which can be guaranteed at a computational cost. These algorithms underscore several
core principles which may be generalized to pure generative procedures for MRFs (and
RBM models in particular) in order to improve mixing, which we define as the rate at
which a stream of samples covers its underlying equilibrium distribution. We find that
mixing is very poor for Gibbs sampling, the method that is typically used to draw sam-
ples during or after training, and therefore there is much room for improvement using
the proposed new methods. Another important issue which we will address is how to
evaluate sample quality and mixing quantitatively.

2 RBMs, CD, PCD, FPCD, and Herding

Although many of the ideas presented here should apply to more general MRFs, we
restrict our attention here to RBMs with binary units, applied to binary or binarized
data. RBMs and Herding can be defined from the following energy function, where x
represents a vector of input or visible units and h represents a vector of latent or hidden
units, with overall state s = (x,h):

Energy(s) = −

∑
i

bjhj +
∑

i

cixi +
∑
ij

Wijxihj

 (1)

where parameters are θ = (b, c,W). The observed data likelihood is P (x) ∝∑
h e
−Energy(x,h). Following the Boltzmann Machine (Hinton et al., 1984) terminol-

ogy, the gradient of the negative log-likelihood, which we aim to minimize, can be
decomposed into a “positive phase” part (where x is clamped to the observed data
vector) and a “negative phase” part (where an x− is sampled from the model itself):

∂ − logP (x)
∂θ

= +
∑
h

P (h|x)
∂Energy(x,h)

∂θ
(2)

−
∑

x−,h−

P (x−,h−)
∂Energy(x−,h−)

∂θ

The structure of RBMs is such that the positive phase contribution of the gradient
can be computed exactly and efficiently. The negative phase contribution is trickier and
requires estimating the relevant statistics using samples (x−,h−) (we will call these
negative samples) from the model’s distribution. Supposing that one such sample is
obtained, an estimator ĝ of the gradient g can be computed and an update of the model’s

2

parameters is performed by stochastic gradient descent θ ← θ + εĝ as follows:

W ← W + ε(x′E[h|x]− x−
′
E[h−|x−]) (3)

b ← b+ ε(E[h|x]− E[h−|x−])
c ← c+ ε(x− x−)

where ε is a learning rate and E[h|x] (resp. E[h−|x−]) may be computed directly and
efficiently from the observed sample(s) x (resp. negative phase sample x−).

The major difference between CD (for Contrastive Divergence), PCD (for Persis-
tent CD), FPCD (for fast PCD) and Herding (and thus their respective contributions)
is how the negative samples are obtained - besides this, they all use the same update
mechanism.

The Contrastive Divergence (CD) training algorithm (Hinton, 1999; Hinton, 2002;
Hinton et al., 2006) obtains these samples by iterating one or more steps of a block
Gibbs chain initialized on an observed example x. A disadvantage of the CD approach
is that the negative samples will often lie in the immediate vicinity of the positive
samples, which can not only allow many spurious modes elsewhere but also create
energy barriers around the training examples that makes Gibbs sampling work very
poorly as soon as it ventures outside of the wells corresponding to training examples
(and this is particularly evident when starting the Gibbs chain from a random state
rather than from a real data point).

To solve this problem, the Persistent Contrastive Divergence (PCD) training algo-
rithm (Tieleman, 2008) (see also earlier theoretical analysis by Younes (1998)) esti-
mates the negative phase contribution of the gradient by sampling continuously from
a unique Gibbs chain initialized at the very beginning, but whose transition probabili-
ties slowly change as a result of parameter updates. Effectively, this means that at each
time step we run one iteration of a block Gibbs chain initialized at h−t−1 to conditionally
sample x−t from, and then h−t from x−t .

In Fast PCD (FCPD) (Tieleman & Hinton, 2009), improvements over PCD are ob-
tained by decoupling the parameters used in the positive and negative phases. One
maintains two sets of parameters, the (“slow”) model parameters θ and “fast” param-
eters θF , and we use their sum θ− = θ + θF for the negative phase Markov chain
stochastic updates. These fast parameters are updated from the same PCD gradient es-
timator ĝ, but with a larger learning rate εF for θF , and θF is strongly decayed towards
0 with a kind of “weight decay”,

θF ← αθF + εF ĝ,

with α = 0.95 being a good standard choice, according to Tieleman and Hinton
(2009). FPCD is equivalent to PCD when εF = 0.

In Herding (Welling, 2009b; Welling, 2009a), the MRF is taken to its 0-temperature
limit (i.e. P (x,h) ∝ exp(−Energy(x,h)/T) with T → 0) so that we proceed like in
PCD but sampling is replaced by deterministic updates, e.g.,

hj
− | x− = argmaxvP(hj = v|x−). (4)

3

In addition, the update is performed with a learning rate of 1 (Welling (2009a) argues
that changing the learning rate only changes the scale of the resulting dynamical sys-
tem). The equivalent of convergence of the MCMC is replaced by exact minimization
of the energy, and is approximated by a heuristic hill-climbing procedure, alternatively
updating h− as per eq. 4 and then x− deterministically as per

xi
− | h− = argmaxvP(xi = v|h−). (5)

That procedure is guaranteed to converge to a fixed point and Herding thus defines a
deterministic dynamical system.

3 The Rates FPCD Sampler
Both FPCD and Herding introduce new ideas for sampling, albeit they do so differently.
FPCD can be understood by observing that the mixing of a chain which is periodically
interrupted by updates, as would be the case during learning, is better than that of a
model whose parameters are unchanging. Fast parameters allow us to make sure that
the chain that we sample from always changes in a way that promotes mixing, while the
true parameters may change more slowly in order to satisfy training convergence crite-
ria. Although the distribution for the negative phase is not the same as the one defined
by the RBM as a model, the strategy works. Herding, on the other hand, cannot work
at all with a point estimate of parameters because all chains converge deterministically
to a fixed point. The model may only be defined through a dynamical system involving
a trajectory over parameters as well as over states. Yet, that system was shown to de-
fine a distribution whose sufficient statistics1 match those of the training set. Together,
the ideas put forward by FPCD and Herding lead us to ponder if a dynamical system
could be defined whose distribution would closely match that of a point estimate of an
RBM’s parameters.

The “samples” obtained from the original Herding algorithm are those x− visited
by the negative phase Markov chain along the trajectory of the Herding dynamical
system while it “learns”. Note how sampling using that system requires keeping around
(and using) the training set. Welling (2009a) proposes an approximation based on a
set of “rates”, which are averages of the positive phase sufficient statistics. The Rates-
Herding samples are then obtained by replacing the positive phase contributions (which
depend on the training examples and on the current parameters) by these rates statistics.

We may observe that there is nothing in the rates idea which is specific to Herd-
ing. By combining the rates idea as well as the fast weights of FPCD, we propose a
new sampling algorithm that we call the Rates-FPCD sampler. Here, a variant of the
FPCD algorithm is used but purely for sampling, and the positive phase contributions
are changed to relevant aggregate statistics on the training set, instead of requiring
training set examples themselves. Furthermore, since this is a sampling algorithm, it
may be used to sample from any RBM trained with any method: the slow parame-
ters θ are thus initialized to the parameters of an already trained model and are kept
unchanged, while the fast parameters θF are updated in the sampling procedure. Algo-
rithm RatesFPCDSample gives the pseudo-code.

1the sufficient statistics of the MRF, i.e., averages of x, h, and x′h.

4

RatesFPCDSample(θ,θF,k,εF,α,θ̃,x−)
Sample from an RBM with parameters θ = (W, b, c) (trained beforehand using CD,
PCD, FPCD or Herding), performing k Gibbs steps between each FPCD update with
negative phase learning rate εF and weight decay α. Uses the rates θ̃ = (W̃ , b̃, c̃) with
W̃ = E[x′h], b̃ = E[h], and c̃ = E[x] estimated with (x,h) pairs with x from the
training set and h ∼ P (h|x; θ). The caller must also remember the previous state
in the chain, i.e. the previous sample x− (in our experiments, x−0 is initialized to a
training example) and the previous fast parameters θF = (WF , bF , cF), both of which
are updated here.

for i=1 to k do
h− ∼ P (h|x−; θ + θF)
x− ∼ P (x|h−; θ + θF)

end for
WF ← αWF + εF (W̃ − x−′h−)
bF ← αbF + εF (b̃− h−)
cF ← αcF + εF (c̃− x−)
return x−

Note that the rates-based sampling algorithm for Herding of Welling (2009a) (called
here Rates-Herding) is a special case of this algorithm where α = 1 (but we could also
try it with α < 1) and instead of a fixed number of MCMC steps k, we usually allow
the deterministic updates to converge to a fixed point (which takes less than 15 steps
on average in all of our experiments, but this depends on the dataset).

4 Temporarily Unlearning the Current State to Escape
Modes

Let us focus for now only on the sampling procedure, and consider a generic MCMC
with transition probability matrix A, i.e., the state st at step t in the chain is obtained
from the state st−1 at step t − 1 by sampling from the multinomial P (st|st−1 = j)
with P (st = i|st−1 = j) = Aij . If we sample s0 from distribution p0, then the
marginal distribution at step t is pt = Atp0, and the asymptotic distribution (if the
chain converges)

p∞ = Ap∞, (6)

the eigenvector of A with eigenvalue 1.
Now let us say we want to speed-up mixing by escaping more rapidly from modes

of pt, i.e., if we want faster convergence and faster coverage of the different modes
of the asymptotic distribution. A reasonable idea is to change A so that it does not
return to states it visited recently (and in particular, the last one visited). To reduce the
probability of staying in the same state, imagine that we remove probability mass λ
from P (st = i|st−1 = i) and redistribute it to other values of st. This gives rise to a

5

new stochastic matrix

Ã =
A− λI
1− λ

(7)

Note that we must have λ ≤ miniAii. It is then interesting to observe that the new
chain based on Ã converges to the same asymptotic distribution as A, since

Ãp∞ =
Ap∞ − λp∞

1− λ
= p∞. (8)

As first noted in Tieleman and Hinton (2009), FPCD probably works well because the
negative phase samples temporarily change the energy landscape so as to decrease the
probability of those very configurations that were sampled in the chain, increasing the
chances of quickly escaping a mode as soon as it is visited. We surmise that the fast
mixing observed with Herding (see section 6.2 for empirical evidence) also occurs for
the same reason: changing the parameters while mixing so that the configurations just
visited in the chain get a smaller probability. We call that effect an unlearning effect
because we want to (at least temporarily) unlearn to generate the configurations just
visited in the chain. Note however that in both cases of FPCD and Herding, and unlike
in the above theoretical Ã chain, the changes do not only affect the sampled configura-
tion (nor just the probability of staying in it given one is in it), but other configurations
and other conditional probabilities as well, through the intricate parametrization of the
stochastic matrix A induced by the RBM structure combined with block Gibbs sam-
pling. We do not want to eliminate this parametrization because it is also what gives rise
to generalization in the model. So FPCD and Herding are at least approximately try-
ing to maintain the same asymptotic distribution while achieving faster mixing (as we
will see experimentally). This approximation may come at a price, which is observed
by visualizing samples: although mixing is faster, “spurious” samples that typically
are intermediate configurations between the modes visited may occur at higher rates
(although rather rarely in practice in our experiments).

With this perspective, it can be seen that FPCD brings something more than Herd-
ing (and PCD with a large learning rate, for that matter): it acts a bit more conserva-
tively by making the effect of unlearning parameters temporary, with an exponentially
decaying factor (α in RatesFPCDSample()). Basically, the (Rates-)FPCD update
does not affect the model, only the chain, and the effect of each negative sample x−

disappears exponentially fast. It is not clear, however, that this effect is necessary in
order for fidelity to the distribution to be preserved, because for a well-trained model,
the expected value of the negative phase contributions should be equal or very close to
the rates (this is in fact our learning criterion) and thus the expected value of the fast
parameters would be zero.

It is also interesting to consider yet another sampling algorithm where the rates
are effectively set to zero (which we will call the Sample Penalization sampling algo-
rithm). This draws a closer parallel to the example with Ã where we simply penalize
the transition of a state to itself. Assuming that a sufficient weight decay is applied to
the fast parameters θF , the effective parameters θ− for the negative phase and thus the
distribution that we effectively sample from might stay sufficiently close to the original
while improving mixing to prove useful. However, note that unlike Rates-FPCD, Sam-

6

ple Penalization creates a distortion of the parameters that is not zero-mean, favoring
smaller weights, or equivalently higher temperature or more noise in the chain.

5 Indirect Sampling Likelihood for Estimating the Qual-
ity of Samples from a Purely Generative Model

While an RBM clearly defines a probability distribution over all state vectors, the cost
of evaluating objectively how good that distribution is, typically by evaluating the log-
likelihood of a set of test examples under that distribution, is usually prohibitive if
not impossible. In addition to this, the Herding algorithm confounds the sampling
procedure with the “model”, and in fact the only way we know to define the “model”
is through the distribution of samples obtained. Finally, we would like ways to assess
how well different sampling methods work, for the same underlying trained model.
We can visualize a sequence of samples to get a qualitative picture of the quality of the
samples (i.e. the model) and of the mixing (i.e. how fast we cover the main modes of
the distribution), but this is subjective and probably unfit for model selection. Indeed,
visualization of the samples can be biased towards generative models that overfit, since
simply spewing out the training examples would be visually pleasing. To evaluate
quantitatively the quality of a generative model’s distribution as well as the quality
of the sampling procedure used, we propose a new method, called Indirect Sampling
Likelihood (ISL), that basically aims to compare the generated samples to the examples
in a test set. Assume that our generative model has been trained with a training set T .
The basic idea is the following:

1. Generate samples S from our trained generative model.

2. Use either S (generated samples only) or S∪T (training plus generated samples)
to train a density model P for which the likelihood can be computed tractably.

3. Compute and return the likelihood of the test set under P .

In practice, we chose to use a non-parametric kernel density estimator for P , which
can be seen as a mixture model with one component per training example xi, and
a hyper-parameter that controls how much probability mass is transferred from xi to
some set of neighbors. Because our experiments are with d-dimensional binary vectors,
our kernel probability (i.e. each component of the mixture) is a factorized Bernoulli:

P(y) =
1
N

N∑
i=1

d∏
j=1

β1yj=xij (1− β)1yj 6=xij (9)

where N is the number of generated samples. When the hyper-parameter β is 1, P
is the empirical distribution associated with the samples {xi}. Decreasing β smooths
the distribution, and when β = 1

2 , the distribution is so smoothed out as to obtain the
uniform distribution over binary vectors. β is chosen (from a grid) to optimize likeli-
hood on the generated samples. Since P(y) is a summation, it is easy to accumulate

7

terms for each y as samples are generated and thus we can compute a precise plot of
the average of logP(y) versus the number of samples |S| at little extra cost.

An intuitive way to understand ISL when P is a local non-parametric model as
above is that it provides a measure of coverage of the test set. For each test example
that is “far” from the generated samples, we will pay a fixed high price (roughly pro-
portional to −d log(1 − β) here). Thus ISL is a coherent way to “count” the number
of test examples that are “near” (or “far”) from the generated samples. Note that as
long as N is smaller than the number of training examples for the generative model,
we would not expect the ISL with generated samples only to be better than the likeli-
hood obtained by trainingP with T only (which is what a grossly overfitting generative
model would achieve), since T is already coming from the right distribution, whereas
S is not. Hence when using generated samples only, and S is small, overfitting models
would be favored. However, with training plus generated samples, they would not be.
On the other hand, with generated samples only, we get a clearer picture of the qual-
ity of the mixing process when looking at the curve of ISL in terms of the number of
generated samples. Indeed, when |S| is small, if the generative model does not mix
well, then the ISL (with generated samples only) will raise much slower due to poor
mixing, because many test examples will end up far from any of the generated samples.
In fact, we find that the slope of ISL in terms of |S| is a good indicator of the quality of
mixing (otherwise evaluated by visual inspection of the samples). When |S| is large,
the curve’s asymptote would indicate the overall quality of the generative model.

6 Experimental Results
We used two datasets for which it made sense to binarize the data and for which vi-
sualizing samples helped us understand qualitatively the properties and quality of the
learned model and the sampling procedure: the USPS digits images and the MNIST
digit images. The USPS dataset has 16×16 pixel digit images. 6291 are used for
training, 1000 for hyper-parameter selection, and 2007 for testing. The MNIST dataset
has 28×28 pixel images; 50000 for training, 10000 for hyper-parameter selection, and
10000 for testing (only 2000 were used to generate the ISL curves to reduce computa-
tion time).

6.1 Evaluating ISL
In order to evaluate ISL, we compared the log-likelihood assigned to the test set by
density estimation using the samples from several models to its log-likelihood under
the model’s true underlying distribution as calculated analytically. That analytic calcu-
lation was made possible by using a very small number of hidden units (16). We found
ISL to reflect the analytic log-likelihood rather accurately in the sense that although
it did not yield the same values, both systems tended to order models similarly. Fig.
1 shows both analytic and sampling-based negative log-likelihood (NLL) obtained for
several models. Models trained by Herding are not shown since there is no way to
compute an analytic and meaningful log-likelihood for them (a likelihood would corre-
spond to ISL as |S| → ∞). The sampling was performed using Rates-Herding with the

8

same learning rate of 10−2 (this may not be optimal). The analytic NLL is in general
smaller, but it is difficult to assess the relevance of this fact because the true probability
distribution of the models may not be directly comparable with the Parzen estimator
we use for the number of samples we use. What is more relevant is that the general
aspect and order of the curves seem to be preserved and this indicates that ISL might
be a fair way to compare models (at least for a small number of units). There is one ob-
vious exception, which are CD-trained models: their analytic NLL is vastly worse than
that of other models, but they generate samples that are comparatively similar to those
of other models. Note that ISL depends on both the model and the sampling process.
So the discrepancy may be explained by the fact that CD training generates negative
samples that are always close to training examples and thus modes that are very far
from the training samples may incidentally arise and never be penalized. These modes
might be extremely difficult to attain from a starting point that is within the training
set and thus the distribution, seen through iterative sampling, might look better than it
actually is. Worth noting is that this phenomenon does not seem to occur when training
with -1/1 units.

Figure 1: Top left: analytic NLL of USPS’s test set for various models trained with
CD, PCD and FPCD with 0/1 units, with the learning rate on the x-axis. Top right: the
NLL obtained with ISL for the same models. Bottom left: analytic NLL for equivalent
models, using -1/1 units. Bottom right: NLL obtained with ISL for the same models.
Smaller is better.

9

Fig. 2 shows sequences of samples obtained from a single model, initialized to the
same training sample, but using different sampling methods. Visually speaking, the
log-likelihood of the test set under a density defined by these samples seems to be a
fair assessment of the mixing capabilities of the models shown, with Rates-Herding a
distant first and Gibbs a distant last.

6.2 Comparing the Mixing Achieved with Different Samplers
Four classes of sampling methods were evaluated: Rates-FPCD, Rates-Herding, Sam-
ple Penalization and Gibbs sampling, the latter of which is the standard sampling proce-
dure for RBMs. When applicable, the methods are parametrized by a learning rate εF ,
a fast weight decay rate α and the number k of Gibbs iterations between each sample.
These hyper-parameters were selected to maximize ISL, to compare each sampling
method in its best light. To focus on the effect of the sampling method, they are all
tested on the same best model obtained (which was obtained by FPCD training). Fig.
3 plots the ISL with generated samples only of the USPS test set for these sampling
methods, in function of the number of generated samples. It is readily apparent that
Gibbs sampling performs very poorly (note that it often performs much worse). By
correlating the curve’s “bumps” with visual inspection of samples, we find that they
indicate the times at which the chain suddenly switches from a mode to the next. In
contrast, the curves for Rates-FPCD and Rates-Herding are quite smooth and well-
mixing. Furthermore, the performance of the training set itself is eventually surpassed
by a slight margin (we contend that the margin would become wider if more samples
were drawn): -78.5 (Rates-FPCD) versus -80.0 (train set). Note how Rates-Herding
starts out with the fastest rise in ISL (faster mixing) but is quickly surpassed by Rates-
FPCD. As discussed below this may be related to a difference in optimal εF .

The optimal learning rate for the Rates-FPCD method, in the long run, was ob-
served to be lower than the optimal learning rate for the Rates-Herding method by a
factor of 10 to 100 in most cases (note: both in figures 2 and 3, the learning rate is
lower for Rates-FPCD, which partly explains its apparently poorer mixing). In any
case, as one could expect, the mixing rate increases as the learning rate increases, but
so does the frequency of spurious samples. It seems that Rates-Herding is more ro-
bust to larger learning rates, but that advantage subsides as more samples are drawn
and rapid mixing is less of a concern. A tentative explanation for this robustness is
that Herding provides a halting criterion for the number of iterations k between each
produced sample: the chain is run until a fixed point is reached. Presumably, this al-
lows Herding to loop exactly as many times as needed in order to guarantee that only
low-energy samples will be produced. In the long run, however, Rates-FPCD tends to
perform better. This is most observable on MNIST where Rates-FPCD, for a compa-
rable k, scores significantly higher, which suggests that there may be some inherent
limitations to Rates-Herding.

Another interesting observation is that the optimal value for the decay rate α for
sampling purposes is 1, meaning that no decay is applied at all and the fast parameters
may roam freely. To apply a decay of 0.95 (see Fig. 4, left) yielded systemically and
significantly worse results, although it is worth noting that such is not the case during
training (α < 1 works better in that case).

10

The Sample Penalization method systemically performed better than Gibbs, but still
significantly worse than the other methods. It can be seen on fig. 2 that its good mixing
is mitigated by a skewing in the distribution: the samples produced by this method,
while recognizable, appear different from the true distribution (they seem larger and
bolder in general and not only on the figure shown). This is unsurprising since the
expectation of the fast parameters under this method is not zero, so on average the
effective parameters used for sampling will deviate of a certain quantity to which our
experiments suggest the model’s distribution is not invariant. It is nonetheless interest-
ing to see that the method does work to a limited extent.

Interestingly, some sampling runs on models trained on the MNIST dataset produce
slightly superior density estimators to that produced by the training set itself, for up to
35,000 samples (which is a significant amount). While this result may be surprising, it
is not impossible. If only one sample may be used to make a Parzen density estima-
tor for a given distribution, that distribution’s mean would most probably yield better
results than any individual sample, even if there is no probability mass on that mean.
If our sampling method produces “prototypical” samples, it may therefore perform
better even for a large number of samples. However, we would expect its advantage
to diminish as the number of samples increases - and indeed, we observe this, all of
our sampling models performing worse than the full training set for an equal number
of samples. Nonetheless, as can also be seen in fig. 2, these “prototypical” samples
seem to cover an impressive amount of variability in the dataset. As more samples are
drawn, the performance of the training set is once again surpassed: with twice as many
samples as the training set, we observe an improvement of up to 2.2% in estimated
log-likelihood.

The sampling for the best models shown is rather slow (20 hours for 100,000 sam-
ples on MNIST), which is to be expected due to their size (1000 hidden units) and the
high k used while sampling. Using a small k, while it degrades the sampling quality,
does not degrade it significantly, can be much faster and does not seem to hinder model
selection when used for that purpose in conjunction with ISL. Furthermore, we may
consider parallel sampling by running several chains with different initializations, so
we believe that a model’s quality may be evaluated very efficiently using our method.

6.3 Training with Herding
Using ISL, we may evaluate quantitatively the quality of the samples produced by
models trained by Herding. This allows us to assess Herding’s sensitivity to various
hyper-parameters and compare it to other learning methods. As proved in Welling
(2009a), Herding is invariant to a scaling of λ of its parameters and learning rate.
It is however not invariant to the relative scaling of these two parameters. Fig. 4
(right) shows Herding’s performance as a function of learning rate, when the weights
are initialized between -1 and 1. Interestingly, the optimal learning rate is not 1, as
previously suggested. 0/1 units are particularly sensitive and perform very badly unless
the learning rate is small. -1/1 units, on the other hand, are much less sensitive and it
is worth noting that they perform systemically better, although we observe that the
gap becomes narrower as the number of hidden units is increased. These findings are
consistent with Welling (2009a) on the same dataset (USPS), who had no luck making

11

the model work on 0/1 units with ε = 1. The same type of learning rate sensitivity is
observed on MNIST, with different minima. Both types of units on MNIST also behave
more similarly than they do on USPS and work poorly with large learning rates.

7 Conclusion and Future Work
In this paper, we set out to evaluate several sampling methods over RBM models whose
objective is to mix well: Rates-Herding and Rates-FPCD, both inspired from Welling
(2009a), and Sample Penalization, a novel method. In order to do this, we defined the
ISL framework based on Parzen density estimation. We showed that within this frame-
work, Rates-Herding and Rates-FPCD produced stable density estimators for several
models which correlated with their true log-likelihood. We also showed these methods
to be significantly better than Gibbs sampling, both qualitatively and quantitatively.
Furthermore, in certain cases we managed to produce sequences of samples which per-
formed better than the whole training set. We used ISL to evaluate models trained using
Herding (a task for which no other quantitative methods exist to our knowledge) and
found it sensitive to the learning rate hyper-parameter.

Future work on this topic would involve generalizing our methods to continuous
units (which is non-trivial in the case of Herding), comparing them to established
density estimators such as AIS, evaluating how well our measurements on a model
correlate with that model’s quality as initialization to a deep supervised network, and
investigating prospective uses of samples as ancillary data sources for classification
tasks.

References
Hinton, G. E. (1999). Products of experts. Proceedings of the Ninth International Conference

on Artificial Neural Networks (ICANN) (pp. 1–6). Edinburgh, Scotland: IEE.
Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural

Computation, 14, 1771–1800.
Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets.

Neural Computation, 18, 1527–1554.
Hinton, G. E., Sejnowski, T. J., & Ackley, D. H. (1984). Boltzmann machines: Constraint

satisfaction networks that learn (Technical Report TR-CMU-CS-84-119). Carnegie-Mellon
University, Dept. of Computer Science.

Tieleman, T. (2008). Training restricted boltzmann machines using approximations to the likeli-
hood gradient. Proc. ICML 2008 (pp. 1064–1071). Helsinki, Finland.

Tieleman, T., & Hinton, G. (2009). Using fast weights to improve persistent contrastive diver-
gence. Proc. ICML 2009 (pp. 1033–1040). Montreal, Quebec, Canada.

Welling, M. (2009a). Herding dynamic weights for partially observed random field models.
Proceedings of the 25th Conference in Uncertainty in Artificial Intelligence (UAI’09). Morgan
Kaufmann.

Welling, M. (2009b). Herding dynamic weights to learn. Proc. ICML 2009.
Younes, L. (1998). On the convergence of markovian stochastic algorithms with rapidly decreas-

ing ergodicity rates. Stochastics and Stochastics Models (pp. 177–228).

12

Figure 2: First 100 samples obtained on an FPCD-trained model using various sam-
pling procedures, all initialized using the same training sample: Rates-FPCD (top left),
Rates-Herding (top right), Sample Penalization (bottom left) or Gibbs (bottom right).
Training was on MNIST digits. The ISL (samples only, using these 100 samples) val-
ues for the test set are coherent with this visual assessment: -290.09 for Rates-FPCD,
-257.56 for Rates-Herding, -379.53 for Sample Penalization, -396.78 for Gibbs and -
255.90 for the first 100 samples of the training set (not shown). For all models, k = 15
while sampling.

13

Figure 3: Top: Comparison of different sampling schemes in terms of their sample-
based coverage log-likelihood (ISL) on USPS, with respect to number of samples gen-
erated. All schemes were applied to the same best model found. The sampling schemes
compared are, in order of decreasing final performance: rates-FPCD with k=10 (yel-
low), rates-Herding (cyan), rates-FPCD with k=1 (green), the 7291 samples of the
training and validation sets (blue), rates-FPCD with only negative terms (magenta),
Gibbs (red). Bottom: Same, but on MNIST: rates-FPCD with k=15 (cyan), rates-
Herding (red), rates-FPCD with k=1 (green) and the 68,000 samples of the training
and validation sets (blue). Gibbs and Sample Penalization performed too poorly to be
visible in the window shown. Note: the effective k for rates-Herding is, on average,
8.5 (top) and 14.5 (bottom).

Figure 4: Left: Comparison of ISL for Rates-FPCD sampling with (top, blue, α =
0.95) or without (bottom, green, α = 1) θF weight decay, with different learning
rates. The sampling is applied on the best model found (an FPCD-trained model).
Right: Effect of learning rate on ISL for USPS dataset, for Herding models with 0/1
units (top, green) and -1/1 units (bottom, blue). Weight parameters were initialized
uniformly between -1 and 1 in all cases.

14

