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Markov Decision Processes(MDP)

De�nition

An MDP is a tuple (S ,A,T , γ,R)

S is a �nite set of states

A is a �nite set of actions

T : S × A× S → [0, 1] is the transition probability function

γ ∈ [0, 1) is the discount factor

R : S → R is the reward function
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Bellman Equations

De�nition

A policy is a map π : S → A

De�nition

The value of a policy π under a reward function R

V π(s) = R(s) + γ
∑

s′ T (s, π(s), s ′)V π(s ′)

De�nition

The Q-function of a policy π under a reward function R

Qπ(s, a) = R(s) + γ
∑

s′ T (s, a, s ′)V π(s ′)
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Motivation

Problem

Learn the reward function of an underlying Markov Decision

Process given

1 behaviour of an expert

2 dynamics of the system
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Tasks

Reward Learning

Estimate the reward function as accurately as possible

1 modelling opponents in competitive games

2 preference elicitation

Apprenticeship Learning

Use observations of expert behaviour to decide own behaviour

1 policy learning

2 better generalization of tasks
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Bayesian Inference

evidence is used to infer the probability that a hypothesis may

be true

given a hypothesis H and evidence E , we de�ne:

De�nition

Prior probability P(H)

De�nition

Posterior probability P(H|E ) = P(E |H)P(H)
P(H)
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Main Idea

the hypothesis: is the reward function that explains the agent's

behaviour

the evidence: observations about expert behaviour

the evidence is used to infer the probability that a hypothesis

may be true(i.e. the posterior distribution of the rewards, from

a prior distribution)

important how to choose the prior:

uniform distribution, if there is no information given
Laplacian or Gaussian, if most states have negligible rewards
Beta, if the MDP is a planning-type problem (most states have
low rewards, but a few, goal states have high rewards)
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Reward Learning

learn a reward function

De�nition

Error loss function :L(R,R) =‖ R − R ‖2, where:
R is the actual reward

R is the estimated reward

if R is drawn from the posterior distribution, then L(R,R) is

minimized by setting R to the mean of the posterior

use a maxiumum a posteriori estimator (MAP) as the

estimator
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Apprenticeship Learning

want to learn a policy (i.e. how to act), given expert behaviour

De�nition

Class of policy loss functions :L(R, π) =‖ V ∗(R)− V π(R) ‖p,
where:

V ∗ is the vector of optimal values for each state, under the

optimal policy π for R

want to �nd a π that minimizes the policy loss over the

posterior distribution for R

direct minimization is hard; instead, �nd optimal policy π for

the mean reward function
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PolicyWalk Sampling Algorithm

generate samples from the prior distribution (of rewards)

the sample mean is the estimate of the true mean of the

distribution
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Reward Loss
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Posterior Distributions
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Conclusions

reward function can be learned by posing the problem as a

Bayesian larning task

algorithm yields a probability distribution over reward functions

that is close to the true one

policy learning is possible
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