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What Are Appearance Patterns?

• General, abstract image 
patterns
– faces, brains, places…



  

Why Learn Appearance Patterns?

• Organizing masses of image data
– Image database indexing (Google, Microsoft)
– Visual mapping

• Detection
– Faces, people, terrorists
– Locations

• Description
– Anatomical study and analysis, i.e. the human 

brain.



  

Why Difficult?
• Factors complicating appearance description:

– Illumination change, geometrical deformation (scale, 
orientation, translation), partial pattern occlusion, 
intra-pattern variability (potentially multi-modal, i.e. 
faces with/without sunglasses), viewpoint change 
(3D object classes).

• Generality, many different pattern types.
• Computational efficiency: detection, matching, 

learning, inference.
• Anatomical description, reference frames.



  

Appearance Modeling: Issues
1) Illumination change.
2) Geometrical deformation.

4) Computational efficiency.
3) General, different pattern types.

5) Partial pattern occlusion.
6) Clutter, background noise.
7) Intra-pattern variability.
8) Multi-modal pattern variability.
9) Viewpoint change.
10) Anatomical reference frames.
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Local Invariant Features
• Idea:

– Consider informative image regions that can be 
robustly detected in the presence of illumination 
change and geometric deformation.

– Interest points, salient regions, etc.
• Literature:

– Moravec 1970s: interest points.
– Harris 1980s: corner detectors.
– Lindeberg 1990s: scale-space theory.
– Lowe, Schmid 1990-2000s: efficient, robust scale-

invariant feature detectors.



  

Local Invariant Features

x
θσGeometry

•Location x
•Orientation θ
•Scale σ

Appearance
•Image intensity information
•I.e. Pixels, edges



  

Local Invariant Features

• Local vs. global features
– Bell 1997: independent components of natural images 

are local features.
– Ullman 2002: global features suboptimal for detection.
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Local Invariant Features

• Advantages:
– Efficient to extract and match:

O( N log(N) ) time complexity.
– Robust to illumination change, geometrical 

deformation, occlusion, background clutter.
– Generally applicable to many different 

pattern types.
– Allow modeling from large datasets with 

minimal manual supervision.



  

Local Invariant Features

• Difficulties:
– Matching different instances of the same 

object class or abstract pattern, i.e. faces.
– Cannot model multi-modal intra-pattern 

variation (faces with/out sunglasses).



  

Local Invariant Features

• Vary with time of 
day, the season.



  

Probabilistic Modeling & Learning

• Idea:
– Model appearance & geometric variability of 

object/pattern classes or categories.
– Learn pattern appearance from image sets.

• Literature:
* Global features

Turk & Pentland 1991, Cootes & Taylor 1998

* 2D invariant feature configurations
Weber & Perona 2000, Fergus & Zisserman 2003, 
Ullman 2004, Crandal & Huttenlocher 2005.

* Geometry free, ‘bag-of-words’
Sivic & Zisserman 2005, Dorko & Schmid 2003.



  

Probabilistic Modeling & Learning

• Limitations of learning approaches
– Inherently 2D in nature, cannot effectively 

represent 3D object/scene appearance over 
viewpoint change.

– Do not address learning of multi-model 
appearance patterns.

– Do not relate features to meaningful frames of 
reference, i.e. for anatomical study.
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Object Class Invariant Model

• Consider features relative to a reference 
frame that is:
1) Uniquely defined in each pattern/object class 

instance.
2) Invariant to the geometrical transform arising 

from the imaging process (projective, 
orthographic, …).

• The object class invariant.



  

OCI Model: Components
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OCI Model: Formulation

• Features independent given OCI
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OCI Model: Formulation

• Focus on feature/OCI term p(mi|o)
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OCI Model: Learning

• Supervised learning:
– Approximately labeled OCI

• Large, unknown number of model features
– EM or KMeans do not apply

• Robust clustering
– Feature geometry relative to OCI
– Feature appearance



  

OCI Model: Learning
• Feature Geometry Clustering

– Clustered according error in predicting 
OCI geometry.

• Feature Appearance Clustering
– Appearance distribution variance 

maximizes distinctiveness, i.e. ratio of 
geometrically consistent/inconsistent 
correspondences.

• Redundancy
– Discard redundant features.
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OCI Model: Learning
Feature space: appearance & geometry

1) Geometric clustering: Identify 
features that, when matched, agree on 
location of OCI (Thresg).

2) Appearance clustering: Determine 
appearance variance (Thresi

a) such that 
ratio of true to false matches is 
maximized.
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Learned
features

OCI Model

New Image

OCI Model: Fitting

• Identify OCI instances in new image
– Probabilistic voting technique.
– Robust hypothesis clustering.

OCI
hypothesis

cluster

OCI localization error 
threshold Thresg

Appearance 
threshold Thresi

a



  

OCI Model: Fitting

• OCI hypothesis cluster quality
– Bayesian decision rule
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Viewpoint-invariant Detection
• Problem:

– Learn a 3D object class appearance 
description in terms of 2D image features.

– Detect 3D object class instances from 
arbitrary viewpoints.

• Difficulties:
– Arbitrary images: clutter, noise, occlusion, 

multimodal variability, and viewpoint 
change.

Detection Over Viewpoint via the Object Class Invariant. 
Toews, Matthew and Arbel, T. 
International Conference on Pattern Recognition, 2006. 



  

Viewpoint-invariant Detection

• Other approaches:
– Battery of single viewpoint detectors.
– Training images sorted according to viewpoint

• Requires tedious manual intervention or special 
purpose hardware.

– Aspect graphs, appearance manifolds
• Do not address occlusion or multimodal 

appearance.



  

Viewpoint-invariant Detection

• Solution:
– OCI invariant to perspective camera 

projection.
– Possible OCIs: line segment, sphere, point.



  

Viewpoint-invariant Detection

• Validation: face detection

`

180 cluttered images, arbitrary 
viewpoints, leave-one-out detection.



  

Overview

• Pattern Appearance Modeling
– Problem statement & issues
– Local invariant features
– Probabilistic modeling

• Our Approach
– Object class invariant model
– Viewpoint invariant detection (faces)
– Anatomical Modeling (brains)

• Future



  

Anatomical Modeling

• Problem:
– Automatically learn an anatomical description from a 

large database of subjects (i.e. MR brain images).
– Which anatomical structures are common or rare in a 

population?
– How do structures vary in appearance and geometry?



  

Anatomical Modeling

• Challenges:
– Learning with minimal manual supervision.
– Robust fitting to new subjects in the presence of inter-

subject variability, occlusion.
– Identify and quantify anatomical structure in a 

meaningful way, i.e. with respect to a 
neuroanatomical reference frame.



  

Anatomical Modeling

• Solution:
– Model appearance and geometry of invariant 

features relative to a standard 
neuroanatomical reference frame.

– OCI invariant to orthographic projection from 
MR scanner.

A Statistical Parts-based Appearance Model of Anatomical Variability. 
Toews, Matthew and Arbel, Tal. 
IEEE Trans. on Medical Imaging, Special Issue on Computational 
Neuroanatomy, In Press, 2006. 
A Statistical Parts-based Appearance Model of Intersubject Variability. 
Toews, Matthew and Collins, Louis D. and Arbel, Tal. 
Int’l Conf. on Medical Image Computing and Computer Aided Intervention, 2006.



  

Anatomical Modeling

• Talairach neuroanatomical reference 
frame (Talairach 1988).
– Mid-sagittal plane, line segment from anterior 

to posterior commissure.
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Model Learning

• Learning
– Sagittal slices 

from 102 
different brains 
(ICBM 152 
dataset).

– Automatic OCI 
labeling via 
approximate 
linear 
registration.
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Model Fitting Error

• Quantitative evaluation
– 50 new testing images
– 25 model parts
– 3 human raters
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Model Fitting Error

• Fitting error is similar to human error by 
target registration error (TRE) measure.
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Model Fitting Error

• Fitting error is similar to human error by 
target registration error (TRE) measure.
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Fitting Stability
• Comparison to global active appearance model 

(AAM) of Cootes & Taylor
– Global AAM is unstable to local unexpected 

appearance change, local perturbation.
– Significant implications wrt. brain analysis techniques 

such as morphometry.
Parts-based Model Active Appearance Model



  

Fitting Stability
• Quantitative comparison

– Compare fitting before and after perturbation
– Measure: original-to-perturbed TRE
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Future Challenges
• New scale-invariant features

– Describe different images characteristics.
– Features in 1D sound, 3D video or volumetric images.

• Learning
– Unsupervised learning of 3D object classes?
– Role of geometry?

• Types of patterns
– How to describe textures (uncountable patterns)?
– Repeating structures?


