
Reinforcement Learning: A Brief Tutorial

Doina Precup
Reasoning and Learning Lab

McGill University

http://www.cs.mcgill.ca/∼dprecup

With thanks to Rich Sutton

Outline

• The reinforcement learning problem

• Markov Decision Processes

• What to learn: policies and value functions

• Dynamic programming methods

• Temporal-difference learning methods

• Some interesting, open research problems

September 2005 2 Reinforcement learning: A brief tutorial

The General Problem: Control Learning

Consider learning to choose actions, e.g.,

• Robot learning to dock on battery charger

• Choosing actions to optimize factory output

• Playing Backgammon, Go, Poker, ...

• Choosing medical tests and treatments for a patient with a

chronic illness

• Conversation

• Portofolio management

• Flying a helicopter

• Queue / router control

All of these are sequential decision making problems

September 2005 3 Reinforcement learning: A brief tutorial

Reinforcement Learning Problem

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state

• At each discrete time t, the agent (learning system) observes

state st ∈ S and chooses action at ∈ A

• Then it receives an immediate reward rt+1 and the state

changes to st+1

September 2005 4 Reinforcement learning: A brief tutorial

Example: Backgammon (Tesauro, 1992-1995)

white pieces move
 counterclockwise

1 2 3 4 5 6 7 8 9 10 11 12

18 17 16 15 14 13192021222324

 black pieces
move clockwise

• The states are board positions in which the agent can move

• The actions are the possible moves

• Reward is 0 until the end of the game, when it is ±1 depending

on whether the agent wins or loses

September 2005 5 Reinforcement learning: A brief tutorial

Key Features of RL

• The learner is not told what actions to take, instead it find finds

out what to do by trial-and-error search

• The environment is stochastic

• The reward may be delayed, so the learner may need to

sacrifice short-term gains for greater long-term gains

• The learner has to balance the need to explore its environment

and the need to exploit its current knowledge

September 2005 6 Reinforcement learning: A brief tutorial

The Power of Learning from Experience

• Expert examples are expensive and scarce

• Experience is cheap and plentiful!

September 2005 7 Reinforcement learning: A brief tutorial

Markov Decision Processes (MDPs)

• Set of states S

• Set of actions A(s) available in each state s

• Markov assumption: st+1 and rt+1 depend only on st, at and

not on anything that happened before t

• Rewards:

r
a

ss′ = E
˘

rt+1|st = s, at = a, st+1 = s
′
¯

• Transition probabilities

p
a

ss′ = P
`

st+1 = s
′|st = s, at = a

´

September 2005 8 Reinforcement learning: A brief tutorial

Agent’s Learning Task

Execute actions in environment, observe results, and learn policy

(strategy, way of behaving) π : S ×A→ [0, 1],

π(s, a) = P (at = a|st = s)

If the policy is deterministic, we will write it more simply as

π : S → A, with π(s) = a giving the action chosen in state s.

• Note that the target function is π : S → A but we have

no training examples of form 〈s, a〉

Training examples are of form 〈〈s, a〉, r, s′, . . . 〉

• Reinforcement learning methods specify how the agent should

change the policy as a function of the rewards received over

time

September 2005 9 Reinforcement learning: A brief tutorial

The Objective: Maximize Long-Term Return

Suppose the sequence of rewards received after time step t is

rt+1, rt+2 We want to maximize the expected return E{Rt}

for every time step t

• Episodic tasks: the interaction with the environment takes place
in episodes (e.g. games, trips through a maze etc)

Rt = rt+1 + rt+2 + · · ·+ rT

where T is the time when a terminal state is reached

September 2005 10 Reinforcement learning: A brief tutorial

The Objective: Maximize Long-Term Return

Suppose the sequence of rewards received after time step t is

rt+1, rt+2 We want to maximize the expected return E{Rt}

for every time step t

• Discounted continuing tasks :

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =

∞
X

k=1

γt+k−1rt+k

where γ is a discount factor for later rewards (between 0 and 1,

usually close to 1)

The discount factor is sometimes viewed as an ”inflation rate” or

”probability of dying”

September 2005 11 Reinforcement learning: A brief tutorial

The Objective: Maximize Long-Term Return

Suppose the sequence of rewards received after time step t is

rt+1, rt+2 We want to maximize the expected return E{Rt}

for every time step t

• Average-reward tasks:

Rt = lim
T→∞

1

T
(rt+1 + rt+2 + · · ·+ rT)

September 2005 12 Reinforcement learning: A brief tutorial

Example: Pole Balancing

Avoid failure: pole falling beyond a given angle, or cart hitting the

end of the track

• Episodic task formulation: reward = +1 for each step before

failure

⇒ return = number of steps before failure

• Continuing task formulation: reward = -1 upon failure, 0

otherwise, γ < 1

⇒ return = −γk if there are k steps before failure

September 2005 13 Reinforcement learning: A brief tutorial

Example: Pole Balancing

Avoid failure: pole falling beyond a given angle, or cart hitting the

end of the track

• Episodic task formulation: reward = +1 for each step before

failure

⇒ return = number of steps before failure

• Discounted continuing task formulation: reward = -1 upon

failure, 0 otherwise, γ < 1

⇒ return = −γk if there are k steps before failure

September 2005 14 Reinforcement learning: A brief tutorial

Value Functions

The value of state s under policy π is the expected return when
starting from s and choosing actions according to π:

V π(s) = Eπ{Rt | st = s} = Eπ

(

∞
X

k=1

γk−1rt+k | st = s

)

Analogously, the value of taking action a in state s under policy π is:

Qπ(s, a) = Eπ

(

∞
X

k=1

γk−1rt+k | st = s, at = a

)

Value functions define a partial order over policies

π ≥ π′ ⇐⇒ V π(s) ≥ V π
′

(s),∀s ∈ S

September 2005 15 Reinforcement learning: A brief tutorial

Optimal Policies and Optimal Value Functions

• In an MDP, there is a a unique optimal value function:

V ∗(s) = max
π

V π(s)

This result was proved by Bellman in the 1950s

• There is also at least one deterministic optimal policy:

π
∗ = arg max

π
V

π

It is obtained by greedily choosing the action with the best value

at each state

• Note that value functions are measures of long-term

performance, so the greedy choice is not myopic

September 2005 16 Reinforcement learning: A brief tutorial

Markov Decision Processes

• A general framework for non-linear optimal control, extensively

studied since the 1950s

• In optimal control

– Specializes to Ricati equations for linear systems

– Hamilton-Jacobi-Bellman equations for continuous-time

• In operations research

– Planning, scheduling, logistics, inventory control

– Sequential design of experiments

– Finance, marketing, queuing and telecommunications

• In artificial intelligence (last 15 years)

– Probabilistic planning

• Dynamic programming is the dominant solution method

September 2005 17 Reinforcement learning: A brief tutorial

Bellman Equations
Values can be written in terms of successor values

E.g. V
π(s) = Eπ

˘

rt+1 + γrt+2 + γ
2
rt+3 + · · · | st = s

¯

= Eπ{rt+1 + γV (st+1) | st = s}

=
X

a∈A

π(s, a)
X

s′∈S

p
a

ss′

`

r
a

ss′ + γV
π(s′)

´

This is a system of linear equations whose unique solution is V π .

Bellman optimality equations for the value of the optimal policy:

V
∗(s) = max

a∈A

X

s′∈S

p
a

ss′

`

r
a

ss′ + γV
∗(s′)

´

This produces a nonlinear system, but still with a unique solution

September 2005 18 Reinforcement learning: A brief tutorial

Dynamic Programming

Main idea: turn Bellman equations into an update rules.

For instance, value iteration approximates the optimal value function

by doing repeated sweeps through the states:

1. Start with some initial guess, e.g. V0

2. Repeat:

Vk+1(s)← max
a∈A

X

s′∈S

p
a

ss′

`

r
a

ss′ + γVk(s′)
´

3. Stop when the maximum change between two iterations is

smaller than a desired threshold (the values stop changing)

In the limit of k →∞, Vk → V ∗, and any of the maximizing actions

will be optimal.

September 2005 19 Reinforcement learning: A brief tutorial

Illustration: Rooms Example

Four actions, fail 30% of the time

No rewards until the goal is reached, γ = 0.9.

Iteration #1 Iteration #2 Iteration #3

September 2005 20 Reinforcement learning: A brief tutorial

Policy Iteration

1. Start with an initial policy π0

2. Repeat:

(a) Compute V πi using policy evaluation

(b) Compute a new policy πi+1 that is greedy with respect to

V πi

until V πi = V πi+1

September 2005 21 Reinforcement learning: A brief tutorial

Generalized Policy Iteration

Any combination of policy evaluation and policy improvement steps,

even if they are not complete

π V

evaluation

improvement

V →V
π

π→greedy(V)

Vπ

September 2005 22 Reinforcement learning: A brief tutorial

Model-Based Reinforcement Learning

• Usually, the model of the environment (rewards and transition

probabilities) is unknown

• Instead, the learner observes transitions in the environment and

learns an approximate model r̂a

ss′
, p̂a

ss′

Note that this is a classical machine learning problem!

• Pretend the approximate model is correct and use it to compute

the value function as above

• Very useful approach if the models have intrinsic value, can be

applied to new tasks (e.g. in robotics)

September 2005 23 Reinforcement learning: A brief tutorial

Asynchronous Dynamic Programming

• Updating all states in every sweep may be infeasible for very

large environments

• Some states might be more important than others

• A more efficient idea: repeatedly pick states at random, and

apply a backup, until some convergence criterion is met

• Often states are selected along trajectories experienced by the

agent

• This procedure will naturally emphasize states that are visited

more often, and hence are more important

September 2005 24 Reinforcement learning: A brief tutorial

Dynamic Programming Summary

• In the worst case, scales polynomially in |S| and |A|

• Linear programming solution methods for MDPs also exist, and

have better worst-case bounds, but usually scale worse in

practice

• Dynamic programming is routinely applied to problems with

millions of states

• However, if the model of the environment is unknown,

computing it based on simulations may be difficult

September 2005 25 Reinforcement learning: A brief tutorial

The Curse of Dimensionality

• The number of states grows exponentially with the number of

state variables (the dimensionality of the problem)

• To solve large problems:

– We need to sample the states

– Values have to be generalized to unseen states using

function approximation

September 2005 26 Reinforcement learning: A brief tutorial

Reinforcement Learning: Using Experience instead of Dynam ics

Consider a trajectory, with actions selected according to policy π:

The Bellman equation is: V π(st) = Eπ [rt+1 + γV π(st+1)|st]

which suggests the dynamic programming update:

V (st)← Eπ [rt+1 + γV (st+1)|st]

In general, we do not know this expected value. But, by choosing

an action according to π, we obtain an unbiased sample of it,

rt+1 + γV (st+1)

In RL, we make an update towards the sample value, e.g. half-way

V (st)←
1

2
V (st) +

1

2
(rt+1 + γV (st+1)

September 2005 27 Reinforcement learning: A brief tutorial

Temporal-Difference (TD) Learning (Sutton, 1988)

We want to update the prediction for the value function based on its

change from one moment to the next, called temporal difference

• Tabular TD(0):

V (st)← V (st)+α (rt+1 + γV (st+1)− V (st)) ∀t = 0, 1, 2, . . .

where α ∈ (0, 1) is a step-size or learning rate parameter

• Gradient-descent TD(0):

If V is represented using a parametric function approximator,

e.g. a neural network, with parameter θ:

θ ← θ+α (rt+1 + γVθ(st+1)− Vθ(st))∇θVθ(st), ∀t = 0, 1, 2, . . .

September 2005 28 Reinforcement learning: A brief tutorial

Eligibility Traces (TD(λ))

δtet et
et

et

Time

st
st+1

st-1

st-2

st-3

• On every time step t, we compute the TD error:

δt = rt+1 + γV (st+1)− V (st)

• Shout δt backwards to past states

• The strength of your voice decreases with temporal distance by

γλ, where λ ∈ [0, 1] is a parameter

September 2005 29 Reinforcement learning: A brief tutorial

Example: TD-Gammon

Vt+1− Vt

hidden units (40-80)

backgammon position (198 input units)

predicted probability
of winning, Vt

TD error,

.

.

.

• Start with random network

• Play millions of games against itself

• Value function is learned from this experience using TD learning

• This approach obtained the best player among people and

computers

• Note that classical dynamic programming is not feasible for this

problem!

September 2005 30 Reinforcement learning: A brief tutorial

RL Algorithms for Control

• TD-learning (as above) is used to compute values for a given

policy π

• Control methods aim to find the optimal policy

• In this case, the behavior policy will have to balance two

important tasks:

– Explore the environment in order to get information

– Exploit the existing knowledge, by taking the action that

currently seems best

September 2005 31 Reinforcement learning: A brief tutorial

Exploration

• In order to obtain the optimal solution, the agent must try all

actions

• ǫ-soft policies ensure that each action has at least probability ǫ

of being tried at every step

• Softmax exploration makes action probabilities conditional on

the values of different actions

• More sophisticated methods offer exploration bonuses, in order

to make the data acquisiton more efficient

• This is an area of on-going research...

September 2005 32 Reinforcement learning: A brief tutorial

A Spectrum of Solution Methods

• Value-based RL: use a function approximator to represent the

value function, then use a policy that is based on the current

values

– Sarsa: incremental version of generalized policy iteration

– Q-learning: incremental version of value iteration

• Actor-critic methods: use a function approximator for the value

function and a function approximator to represent the policy

– The value function is the critic, which computes the TD error

signal

– The policy is the actor; its parameters are updated directly

based on the feedback from the critic.

E.g., policy gradient methods

September 2005 33 Reinforcement learning: A brief tutorial

Function Approximation for Value Functions

Many methods from supervised learning have been tried:

• A table where several states are mapped to the same location -

state aggregation

• Gradient-based methods:

– Linear approximators

– Artificial neural networks

– Radial Basis Functions

• Memory-based methods:

– Nearest-neighbor

– Locally weighted regression

• Decision trees

September 2005 34 Reinforcement learning: A brief tutorial

But RL has Special Requirements!

• We need fast, incremental learning (so we can learn during the

interaction)

• As learning progresses, both the input distribution and the

target outputs change!

• So the function approximator must be able to handle

non-stationarity very well.

• As a result, a lot of RL applications use linear or memory-based

approximators.

September 2005 35 Reinforcement learning: A brief tutorial

Sparse, coarse coding

Main idea: we want linear function approximators (because they

have good convergence guarantees) but with lots of features, so

they can represent complex functions

a) Narrow generalization b) Broad generalization c) Asymmetric generalization

• Coarse means that the receptive fields are typically large

• Sparse means that just a few units are active ar any given time

E.g., CMACs, sparse distributed memories etc.

September 2005 36 Reinforcement learning: A brief tutorial

Summary: What RL Algorithms Do

Continual, on-line learning

Many RL methods can be understood as trying to solve the Bellman

optimality equations in an approximate way.

September 2005 37 Reinforcement learning: A brief tutorial

Success Stories

• TD-Gammon (Tesauro, 1992)

• Elevator dispatching (Crites and Barto, 1995): better than industry

standard

• Inventory management (Van Roy et. al): 10-15% improvement over

industry standards

• Job-shop scheduling for NASA space missions (Zhang and Dietterich,

1997)

• Dynamic channel assignment in cellular phones (Singh and Bertsekas,

1994)

• Robotic soccer (Stone et al, Riedmiller et al...)

• Helicopter control (Ng, 2003)

• Modelling neural reward systems (Schultz, Dayan and Montague, 1997)

September 2005 38 Reinforcement learning: A brief tutorial

On-going Research at McGill: Function Approximation

• Theoretical properties

• Learning about many policies simultaneously and efficiently,

from one stream of data; this is called off-policy learning

• How to create a good approximator automatically?

• Practical applications

September 2005 39 Reinforcement learning: A brief tutorial

On-going Research at McGill: Dealing with Partial Observab ility

• In realistic applications, the state of the MDP may not be

perfectly observable.

• Instead, we have noisy sensor readings, or observations

• POMDP model: MDP + a set of observations, and probabilities

of emission from each state

• Unfortunately, since the state is not observable, learning

becomes very difficult (one can use expectation maximization,

but it works poorly in this case)

• We explore:

– Active learning

– Predictive state representations

September 2005 40 Reinforcement learning: A brief tutorial

On-going Research at McGill: Temporal Abstraction

• Planning over courses of actions, called options, rather than just

primitive actions

• The focus is less on optimality and more on modeling the

environment at multiple time scales

• Off-policy learning is crucial for this task

September 2005 41 Reinforcement learning: A brief tutorial

Reference books

• For RL: Sutton & Barto, Reinforcement learning: An introduction

http://www.cs.ualberta.ca/∼sutton/book/the-book.html

• For MDPs: Puterman, Markov Decision Processes

• For theory on RL with function approximation: Bertsekas &

Tsitsiklis, Neuro-dynamic programming

September 2005 42 Reinforcement learning: A brief tutorial

