Copyright © 2003–2005 by Mu Zhu University of Waterloo Mu Zhu

LAGO: A Computationally Efficient Method for Statistical Detection

Waterloo

י רי י

Agenda

- 1. The statistical detection problem.
- 2. Average precision.
- 3. Drug discovery and high throughput screening.
- 4. LAGO.
- 5. Radial basis function (RBF) networks.
- 6. Support vector machines (SVMs).
- 7. Results.

-4-

၊ ဟ ၊

each other; $h_P(t)$ is an ideal curve produced by a perfect algorithm; $h_R(t)$ corresponds to the case of random detection.

Figure 3: Illustration of some hit curves. Note that $h_A(t)$ and $h_B(t)$ cross

The Hit Curve

LAGO

I ං -

-7 -

The Average Precision
Let
$$h(t)$$
 be the hit curve; let
 $r(t) = \frac{h(t)}{\pi}$ and $p(t) = \frac{h(t)}{t}$.
Then,
Average Precision $= \int p(t)dr(t)$. (1)
In practice, $h(t)$ takes values only at a finite number of points $t_i = i/n$,
 $i = 1, 2, ..., n$. Hence, the integral (1) is replaced with a finite sum
 $\int p(t)dr(t) = \sum_{i=1}^{n} p(t_i)\Delta r(t_i)$ (2)
where $\Delta r(t_i) = r(t_i) - r(t_{i-1})$.

AP(A) = AP(B) =	τC	4	ಲು	2	1	Item (i)	
$\sum_{i=1}^{i=1}\sum_{5}^{5}p($	0	Р	0	1	Ц	Hit	/
$t_i)\Delta r(t_i)$ $t_i)\Delta r(t_i)$	3/5	3/4	2/3	2/2	1/1	$p(t_i)$	Algorith
$ \begin{array}{c} \vdots \\ \vdots \\ \end{array} = \\ \hline \\ 1 \\ 1 \\ + \\ \end{array} \begin{array}{c} \vdots \\ 1 \\ 1 \\ \vdots \\ 1 \\ \end{array} \begin{array}{c} \vdots \\ 1 \\ 1 \\ \vdots \\ 1 \\ \end{array} $	0	1/3	0	1/3	1/3	$\Delta r(t_i)$	mA
	<u> </u>	1	0	0	1	Hit	/
$\begin{array}{c} 5 \\ \hline 5 \\ \hline 3 \\ \hline \end{array} \\ \times \\ \hline 1 \\ \hline 3 \\ \hline \end{array} \\ \times \\ \hline 1 \\ \hline \end{array} \\ \times \\ \hline 1 \\ 1 \\$	3/5	2/4	1/3	1/2	1/1	$p(t_i)$	Algorith
$\approx 0.92.$ = 0.70.	1/3	1/3	0	0	1/3	$\Delta r(t_i)$	m B
-							

A Simple Example

I 9 -

calculated by GlaxoSmithKline, Inc. Original data from National Cancer Institute (NCI) with predictors

- 1. n = 29,812 chemical compounds, of which only 608 are active against the HIV virus
- 2. d = 6 chemometric descriptors of the molecular structure, known as BCUT numbers
- ယ Using stratified sampling, randomly split of the data to produce a compounds). training set and a test set (each with n = 14,906 and 304 active
- 4. Tuning parameters selected using 5-fold cross-validation on the training set, and compare performance on the test set

transformation of f.

Ņ 1. Given a vector of predictors \mathbf{x} , the posterior probability As far as ranking is concerned, all monotonic transformations of gfor some constant a not depending on \mathbf{x} , which is a monotonic since the function g is of the form are clearly equivalent, so it suffices to focus on the ratio function probability of being relevant should be ranked first. is arguably a good ranking function, i.e., items with a high $g(\mathbf{x}) \equiv P(y=1|\mathbf{x}) = 0$ **Ranking Functions** $f(\mathbf{x}) = \frac{p_1(\mathbf{x})}{1}$ $g(\mathbf{x}) = \frac{af(\mathbf{x})}{af(\mathbf{x}) + 1}$ $p_0(\mathbf{x})$ $\pi_1 p_1(\mathbf{x}) + \pi_0 p_0(\mathbf{x})$ $\pi_1 p_1(\mathbf{x})$ (4) $\underbrace{\Im}$

- 11 -

Two Assumptions

A1. For all practical purposes the density function $p_1(\mathbf{x})$ can be assumed disconnected regions, $S_{\gamma} \subset \mathbb{R}^d$, $\gamma = 1, 2, ..., \Gamma$, in which case the support of p_1 can be written as to have bounded local support, possibly over a number of

$$\mathcal{S} = igcup_{\gamma=1}^{\Gamma} \mathcal{S}_{\gamma} \subset \mathbb{R}^{c}$$

A2. For every observation $\mathbf{x}_i \in C_1$, there are at least a certain number of assumed to be relatively flat in comparison with $p_1(\mathbf{x})$. moreover, the density function $p_0(\mathbf{x})$ in that neighborhood can be observations, say m, from C_0 in its immediate local neighborhood;

	In order to build a predictive model for
	statistical detection problems, it suffices to
€¥	estimate $p_1(\mathbf{x})$ alone and
	<u>adjust</u> $p_1(\mathbf{x})$ locally depending on $p_0(\mathbf{x})$ nearby.

LAGO

Generalize to $\mathbf{x} \in \mathbb{R}^d$ for d > 1.

 \Leftarrow

Assume $x \in \mathbb{R}$ is a scalar.

- 14 -

parameter to be selected empirically, e.g., with cross-validation. The notation $N(x_i, K)$ is used to refer to the set that contains the K-nearest class-0 neighbors of x_i . The number K is a tuning

Step 1: Estimating p_1

1. Use an adaptive bandwidth kernel estimator:

 $\hat{p}_1(x) = \frac{1}{n_1} \sum_{y_i=1} \mathcal{K}\left(x; x_i, r_i\right).$

2. For each $x_i \in C_1$, choose r_i adaptively to be the average distance

between x_i and its K-nearest neighbors from C_0 , i.e.,

 $r_i = \frac{1}{K} \sum_{w_j \in N(x_i, K)} |x_i - w_j|.$

6

 $(\overline{\mathfrak{O}})$

Figure 5: The ancient Chinese game of Go is a game in which each player from http://go.arad.ro/Introducere.html. tries to claim as many territories as possible on the board. Image taken

LAGO

- 16 -

Step 2: Local Adjustment of p_1

- 1. View the kernel density estimate (5) as a mixture and adjust each mixture component (centered at x_i) accordingly.
- 2. Estimate p_0 locally around every $x_i \in C_1$, say $p_0(x; x_i)$, and divide it into $\mathcal{K}(x; x_i, r_i)$. Assumption A2 implies that we can simply estimate $p_0(x; x_i)$ locally as a constant, say c_i . Hence, we obtain

$$(x) = \frac{1}{n_1} \sum_{y_i=1} \frac{\mathcal{K}(x; x_i, r_i)}{c_i}$$
(7)

as an estimate of the ranking function f(x).

An Idealized Situation

 $x_i \in C_1$, there exist i.i.d. observations $w_1, w_2, ..., w_m$ from C_0 that can be taken to be uniformly distributed on the interval $[x_i - 1/2c_i, x_i + 1/2c_i]$. Instead of saying $p_0(x; x_i) \approx c_i$, we shall explicitly assume that, for every

0 (K < m), then we have is the average distance between x_0 and its K nearest neighbors from class distributed around x_0 , say on the interval $[x_0 - 1/2c_0, x_0 + 1/2c_0]$. If r_0 $w_1, w_2, ..., w_m$ are *i.i.d.* observations from class 0 that are uniformly **Theorem 1** Let x_0 be a fixed observation from class 1. Suppose

$$E(r_0) = \frac{K+1}{4(m+1)c_0}$$

Implications of the Theorem

- approximately uniformly around every $x_i \in C_1$. Can assume there are at least m observations from C_0 distributed
- For K < m, can conclude r_i is approximately proportional to $1/c_i$.
- simply use Since r_i is already computed, there is no need to estimate c_i ; we

$$(x) = \frac{1}{n_1} \sum_{y_i=1} r_i \, \mathcal{K}(x; x_i, r_i) \,. \tag{8}$$

Copyright © 2003–2005 by Mu Zhu

A Short Summary
1. Estimation of
$$p_1$$
:
 $\hat{p}_1(x) = \frac{1}{n_1} \sum_{y_i=1} \mathcal{K}(x; x_i, r_i)$.
 $\hat{p}_1(x) = \frac{1}{n_1} \sum_{y_i=1} \mathcal{K}(x; x_i, r_i)$ nearby:
 $\hat{f}(x) = \frac{1}{n_1} \sum_{y_i=1} \frac{\mathcal{K}(x; x_i, r_i)}{c_i} \implies \hat{f}(x) = \frac{1}{n_1} \sum_{y_i=1} r_i \mathcal{K}(x; x_i, r_i)$.
 $\downarrow \downarrow$
LAGO = "Locally Adjusted GO-kernel density estimator."

Extension to \mathbb{R}^d

- 1. For every training observation in class 1, $\mathbf{x}_i \in C_1$, compute a specific dimension. distance between \mathbf{x}_i and its K-nearest class-0 neighbors in the *j*th bandwidth vector $\mathbf{r}_i = (r_{i1}, r_{i2}, ..., r_{id})^T$, where r_{ij} is the average
- ? ? For every new observation $\mathbf{x} = (x_1, x_2, ..., x_d)^T$ where a prediction is required, score and rank \mathbf{x} according to:

$$\mathbf{(\mathbf{x})} = \frac{1}{n_1} \sum_{y_i=1} \left\{ \prod_{j=1}^d r_{ij} \mathcal{K}\left(x_j; x_{ij}, r_{ij}\right) \right\}, \qquad (9)$$

6.6.3).which uses the Naive Bayes principle (Hastie *et al.* 2001, Section

Radial Basis Function Networks

A radial basis function (RBF) network has the form:

$$\mathbf{x}^{n}(\mathbf{x}) = \sum_{i=1}^{n} \beta_{i} \mathcal{K}(\mathbf{x}; \boldsymbol{\mu}_{i}, \mathbf{r}_{i}), \qquad (10)$$

i = 1, 2, ..., n.an RBF network we must specify the centers μ_i and the radii \mathbf{r}_i for (or bandwidth) vector $\mathbf{r} = (r_1, r_2, ..., r_d)^T$. Clearly, in order to construct where $\mathcal{K}(\mathbf{x}; \boldsymbol{\mu}, \mathbf{r})$ is a kernel function centered at location $\boldsymbol{\mu}$ with radius

LAGO

- 24 -

The LAGO Model

- performance by setting $\alpha > 1$ and using a much smaller K. For relatively large K, can usually obtain a model with very similar
- Hence by keeping α , can restrict ourselves to a much narrower range when selecting K by cross-validation.
- The final form of the LAGO model is:

$$f(\mathbf{x}) = \frac{1}{n_1} \sum_{y_i=1} \left\{ \prod_{j=1}^d r_{ij} \mathcal{K}\left(x_j; x_{ij}, \alpha r_{ij}\right) \right\}, \qquad ($$

with two tuning parameters, K and α .

(11)

hyperplane (Cristianini and Shawe-Taylor 2000)

(i.e., scaled so that c = 1) is sometimes called a canonical separating

 $y_i(\boldsymbol{\beta}^T \mathbf{x}_i + \boldsymbol{\beta}_0) \geq 1 \quad \forall i$

Given $\mathbf{x}_i \in \mathbb{R}^d$, a hyperplane in \mathbb{R}^d is characterized by

Separating Hyperplanes

Given $y_i \in \{-1, +1\}$ (two classes), a hyperplane is a separating

 $f(\mathbf{x}) = \boldsymbol{\beta}^T \mathbf{x} + \boldsymbol{\beta}_0 = 0.$

hyperplane if there exists c > 0 such that

A hyperplane can be reparameterized by scaling, e.g.,

 $y_i(\boldsymbol{\beta}^T \mathbf{x}_i + \boldsymbol{\beta}_0) \geq c$

 $\forall i.$

 $\beta^{I} \mathbf{x} + \beta_{0} = 0$ is the same as

 $s(eta^T \mathbf{x} + eta_0) = 0.$

A separating hyperplane satisfying

The Support Vector Machine

- margin equal to $\frac{1}{\|\beta\|}$. It can be calculated that a canonical separating hyperplane has
- The support vector machine (SVM) finds a "best" (maximal (labelled +1 and -1) by solving margin) canonical separating hyperplane to separate the two classes

$$\min \quad \frac{1}{2} \|\beta\|^2 + \gamma \sum_{i=1}^n \xi_i$$

$$\boldsymbol{\xi}_i \geq 0 \quad ext{and} \quad y_i(oldsymbol{eta}^T \mathbf{x}_i + eta_0) \geq 1 - \xi_i \quad orall i$$

s.t.

LAGO

- 30 -

SVM: Characterizing the Solution

• The solution for β is characterized by

$$\hat{oldsymbol{eta}} = \sum_{i \in SV} \hat{lpha}_i y_i \mathbf{x}_i,$$

positive. problem and SV, the set of "support vectors" with $\hat{\alpha}_i > 0$ strictly where $\hat{\alpha}_i \geq 0$ (i = 1, 2, ..., n) are solutions to the dual optimization

This means the resulting hyperplane can be written as

$$\hat{f}(\mathbf{x}) = \hat{oldsymbol{eta}}^T \mathbf{x} + \hat{eta}_0 = \sum_{i \in SV} \hat{lpha}_i y_i \mathbf{x}_i^T \mathbf{x} + \hat{eta}_0 = 0$$

SVMs and RBF Networks

Can replace the inner product $\mathbf{x}_i^T \mathbf{x}$ with a kernel function $\mathcal{K}(\mathbf{x}; \mathbf{x}_i)$ to get a nonlinear decision boundary:

$$\hat{f}(\mathbf{x}) = \sum_{i \in SV} \hat{lpha}_i y_i \mathcal{K}(\mathbf{x};\mathbf{x}_i) + \hat{eta}_0 = 0.$$

 $\mathcal{K}(\mathbf{u};\mathbf{v}) = \langle h(\mathbf{u}), h(\mathbf{v}) \rangle$ is the inner product in the space of $h(\mathbf{x})$. The boundary is linear in the space of $h(\mathbf{x})$ where $h(\cdot)$ is such that

Hence SVM can be viewed as an automatic way of constructing an RBF network (Schölkopf et al. 1997).

Performance Results: ANOVA Set-up

the Gaussian kernel, respectively. Let $\mu_K, \mu_S, \mu_A, \mu_U, \mu_T$ and μ_G be the average result of K-NN, SVM, ASVM, and LAGO using the uniform kernel, the triangular kernel and

Cntr5	Cntr4	Cntr3	Cntr2	Cntr1	Contrast
$\mu_U - \mu_K$	$\mu_S - (\mu_K + \mu_U)/2$	$\mu_A-\mu_S$	$\mu_G - \mu_A$	$\mu_T-\mu_G$	Expression
0.0014	0.0157	0.0230	0.0339	0.0027	Estimate

LAGO

- 34 -

LAGO

			23	263.274	Total
		0.726	15	10.893	Error
0.0014	8.664	6.292	ಲ	18.877	Splits
0.8258	0.050	0.036	1	0.036	Cntr5
0.0090	8.994	6.531	1	6.531	Cntr4
0.0017	14.505	10.534	1	10.534	Cntr3
< 0.0001	31.556	22.916	1	22.916	Cntr2
0.6664	0.193	0.140	1	0.140	Cntr1
< 0.0001	64.307	46.701	CT	233.504	Methods
P-Value	F_{0}	MS (×10 ⁻⁴)	df	SS (×10 ⁻⁴)	Source

Performance Results: ANOVA Summary

- 36 -

		€g	
Computationally, ASVM i	Triangle LAGO ~ Gaussia ≻ A	Main (
s extremely expensive.	an LAGO) ≻ SVM ≻ SVM ≻ ≻ (Uniform LAGO ~ KNN).	Conclusions	

Total Possible 14602	Split 4 1865	Split 3 11556	Split 2 11419	Split 1 11531	C_0	S
2 304	3 293	3293) 303	294	C_1	VM
14602	6755	11706	3472	5927	C_0	ASV
304	281	290	284	291	C_1	M_I

The Number of SVs

- 39 -

References

- Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Cambridge University Press. Vector Machines and Other Kernel-based Learning Methods.
- Hastie, T. J., Tibshirani, R. J., and Friedman, J. H. (2001). The Prediction. Springer-Verlag. Elements of Statistical Learning: Data-Mining, Inference and
- Schölkopf, B., Sung, K. K., Burges, C. J. C., Girosi, F., Niyogi, P., Poggio, T., and Vapnik, V. (1997). Comparing support vector machines with gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing, 45(11), 2758–2765.
- Zhu, M., Su, W., and Chipman, H. A. (2005). LAGO: A computationally efficient approach for statistical detection. Working Paper 2005-01. Waterloo. To appear in *Technometrics*. Department of Statistics and Actuarial Science, University of