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The Detection Problem

Collection
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Figure 1: Ilustration of a typical detection operation. A small fraction
7 of the entire collection C is of interest (relevant). An algorithm detects

a fraction t from C, out of which h(t) is relevant.
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The Typical Paradigm

Training Data

New Data

Supervised Learning

Ranking
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Results

Figure 2: Illustration of the typical modelling and prediction process.
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\ The Hit Curve /
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Figure 3: Illustration of some hit curves. Note that ha(t) and hp(t) cross

each other; hp(t) is an ideal curve produced by a perfect algorithm; hr(t)

@wwmmwosmm to the case of random detection. \
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The Average Precision

Let h(t) be the hit curve; let

r(t) = % and p(t) = %
Then,
Average Precision = \ p(t)dr(t). (1)

In practice, h(t) takes values only at a finite number of points ¢, = i/n,

i=1,2,...,n. Hence, the integral (1) is replaced with a finite sum

n

\ p(H)dr(t) = plt:) Ar(t:) (2)

=1

where Ar(t;) =r(t;) —r(ti—1).

. \
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\ A Simple Example /

Algorithm A Algorithm B
Item (i) | Hit p(t;) Ar(t;) | Hit  p(t:;) Ar(t:)
1 1 1/1  1/3 1 1/1 1/3
2 1 2/2 1/3 0 1/2 0
3 0 2/3 0 0 1/3 0
4 1 3/4 1/3 1 2/4  1/3
5 0 3/5 0 1 3/5  1/3
> 1 2 3\ 1
AP(A) = WESD}S -~ T + 5+ Nv X =~ 0.92.
> 1 2 3\ 1
AP(B) = @.MHMRSD%; — Aw +7+ wv x 5 = 0.70.

LAGO Copyright © 2003—2005 by Mu Zhu -8 -



-

.

High Throughput Screening (HTS)

00000000000
00000000000
0000 0000
0000 I._.m....
00000000000

Chemical
library

Compounds

Computational
chemistry

...H><

Figure 4: Illustration of the high throughput screening process.
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Drug Discovery Data

Original data from National Cancer Institute (NCI) with predictors
calculated by GlaxoSmithKline, Inc.

1. n = 29,812 chemical compounds, of which only 608 are active
against the HIV virus.

2. d = 6 chemometric descriptors of the molecular structure, known as
BCUT numbers.

3. Using stratified sampling, randomly split of the data to produce a
training set and a test set (each with n = 14,906 and 304 active

compounds).

4. Tuning parameters selected using 5-fold cross-validation on the

training set, and compare performance on the test set.

. \
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Ranking Functions /

Given a vector of predictors x, the posterior probability

o) = Ply = 1) = —— TP )

is arguably a good ranking function, i.e., items with a high
probability of being relevant should be ranked first.

As far as ranking is concerned, all monotonic transformations of g

are clearly equivalent, so it suffices to focus on the ratio function

_ pi(x)
.\,AANV T Do Avnv A%v
since the function g is of the form
_af(x)
.QANV | Q\NANV |_| H_.

for some constant a not depending on x, which is a monotonic

transformation of f. \
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A2.

Two Assumptions

For all practical purposes the density function p;(x) can be assumed

to have bounded local support, possibly over a number of
disconnected regions, Sy C R? ~=1,2,...,T, in which case the

support of p1 can be written as
r
S=|J8, cRr”
v=1

For every observation x; € C'1, there are at least a certain number
observations, say m, from C in its immediate local neighborhood;
moreover, the density function po(x) in that neighborhood can be

assumed to be relatively flat in comparison with p;(x).

~

of
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In order to build a predictive model for
statistical detection problems,
it suffices to

estimate p;(x) alone and

adjust p1(x) locally depending on py(x) nearby.

LAGO
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Assume 2 € R is a scalar.

Generalize to x € R? for d > 1.
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LAGO

Step 1: Estimating p,

Use an adaptive bandwidth kernel estimator:

pr(@) = — 3 K(wsai,m). (5)

yi=1

For each x; € (1, choose r; adaptively to be the average distance

between x; and its K-nearest neighbors from Cj, i.e.,

1
ri = o > e —wyl. (6)

w5 mZARNJNV

The notation N(x;, K) is used to refer to the set that contains the
K-nearest class-0 neighbors of ;. The number K is a tuning

parameter to be selected empirically, e.g., with cross-validation.

~

/
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Original Inspiration

Figure 5: The ancient Chinese game of Go is a game in which each player
tries to claim as many territories as possible on the board. Image taken

from http://go.arad.ro/Introducere.html.
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~

Step 2: Local Adjustment of p;

View the kernel density estimate (5) as a mixture and adjust each

mixture component (centered at x;) accordingly.

Estimate po locally around every z; € C1, say po(x;xi), and divide it
into KC(x; x;,r;). Assumption A2 implies that we can simply
estimate po(x;x;) locally as a constant, say c¢;. Hence, we obtain

2 1 K(z;zi,17)

fl@)=— 3 - (7)

n1 C;
yi=1

as an estimate of the ranking function f(x).

Copyright © 2003—2005 by Mu Zhu
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An Idealized Situation

Instead of saying po(x;x;) ~ ¢;, we shall explicitly assume that, for every
x; € C1, there exist i.i.d. observations w1, wa, ..., w,, from Cy that can be

taken to be uniformly distributed on the interval [x; — 1/2¢;, z; + 1/2¢;].

Theorem 1 Let xo be a fivred observation from class 1. Suppose
Wi, W2, ..., Wn are i.1.d. observations from class 0 that are uniformly
distributed around xo, say on the interval [xo — 1/2co, x0 + 1/2¢o]. If 10

18 the average distance between xo and its K nearest neighbors from class
0 (K <m), then we have

K+1
R;3@|_| Hvﬁo.

E(ro) =

. \
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~

Implications of the Theorem

Can assume there are at least m observations from Cy distributed

approrimately uniformly around every x; € C}.
For K < m, can conclude r; is approximately proportional to 1/c;.

Since r; is already computed, there is no need to estimate c;; we

simply use
~ 1
fla)y=—>"ri K(z;zi,mi). (8)

ni
y;i=1

Copyright © 2003—2005 by Mu Zhu - 19 -
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A Short Summary

1. Estimation of p;:

2. Adjustment of p; according to po nearby:

flz) =+ S K@i ri) f(z) = :WH > v K (w5 ai,mi).

Q.
y;=1 ’ i=1

U
LAGO = “Locally Adjusted GO-kernel density estimator.”

- \
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~

Extension to R?

For every training observation in class 1, x; € C1, compute a specific
bandwidth vector r; = (741,742, ..., 75a)" , where r;; is the average
distance between x; and its K-nearest class-0 neighbors in the jth

dimension.

. T . .
For every new observation x = (x1,x2,...,24)" where a prediction is

required, score and rank x according to:

d

ixVHPMU L] 7K (g5 205, m45) ¢ 5 (9)

n1 :
yi=1 \J=

which uses the Naive Bayes principle (Hastie et al. 2001, Section
6.6.3).

/
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Gaussian

Some Kernel Functions

Triangular Uniform
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Radial Basis Function Networks

A radial basis function (RBF) network has the form:

F(x) =) BilC(x; ),
1=1

an RBF network we must specify the centers p; and the radii r; for

1=1,2,...,n.

.

where IC(x; p,r) is a kernel function centered at location g with radius

(or bandwidth) vector r = (r1,72,...,74)" . Clearly, in order to construct

(10)

/
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\ General Parameterization

P1 fy

f1
B-effect: height

Po’

. a—effect; radius |/

ratio function f(x).

.

Figure 6: Illustration. Left: Density functions po and p;. Right:

The
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Parameterizing the a- and (-Effects

e Take a kernel function belonging to a location-scale family:

Lk

xr — I;
\w\.s \w\.s

Can explicitly parameterize the a- and (-effects as follows:

r 1 T — X; r_ T — X; T — x;
P le(En) o o(ISR) = (Eon
ar; ar; ar; ar;

e In constructing the LAGO model, we have in effect argued that
B=0 (or 8" =1).

)

/
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The LAGO Model

e For relatively large K, can usually obtain a model with very similar

performance by setting a > 1 and using a much smaller K.

e Hence by keeping a, can restrict ourselves to a much narrower range

when selecting K by cross-validation.

e The final form of the LAGO model is:

d

F(x) = — > S I rik (@ssmig, arig) ¢ (11)

ni -

y;=1 \j=1

with two tuning parameters, K and a.

LAGO Copyright © 2003—2005 by Mu Zhu - 26 -



\ Separating Hyperplanes /

e Given x; € R a hyperplane in R? is characterized by
f(x)=B"x+ o =0.

e Given y; € {—1,+1} (two classes), a hyperplane is a separating
hyperplane if there exists ¢ > 0 such that

yi(BTxi 4+ B0) > ¢ Vi
e A hyperplane can be reparameterized by scaling, e.g.,

B'x+ 8o =0 isthesameas s(8 x4+ F)=0.

e A separating hyperplane satisfying

yi(B i + o) >1 Vi

(i.e., scaled so that ¢ = 1) is sometimes called a canonical separating

/ hyperplane (Cristianini and Shawe-Taylor 2000). \
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Separating Hyperplanes and Margins
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Figure 7: Two separating hyperplanes, one with a larger margin than the

~
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The Support Vector Machine

e It can be calculated that a canonical separating hyperplane has

margin equal to —s— .
m@ __m__

e The support vector machine (SVM) finds a “best” (maximal
margin) canonical separating hyperplane to separate the two classes
(labelled 41 and —1) by solving

10
min M:E__ +<@.HMH@

st. & >0 and (B xi+00)>1—-¢& Vi

LAGO
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ASVM for Unbalanced Classes

min (B +m Y &t 3 &

y;=1 y;=0

st. & >0 and @@.b@ﬂuﬁ. + Bo) > 1-¢& Vi,

where v9 = ywo and y1 = yws.

Let wo and w; be class weights; extend the optimization problem to be:

. \
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SVM: Characterizing the Solution

e The solution for 3 is characterized by

B = MU O3 YiXi

€SV

where &; > 0 (i = 1,2, ...,n) are solutions to the dual optimization

problem and SV, the set of “support vectors” with &; > 0 strictly

positive.

e This means the resulting hyperplane can be written as

A ~T ~ R R
fx)=8"x+P0= ) duyix{x+ o =0.

1eSV

LAGO
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SVMs and RBF Networks

e Can replace the inner product x! x with a kernel function IC(x; %)

to get a nonlinear decision boundary:
fx) =) a@wik(x;x;)+ fo = 0.
ieSV
The boundary is linear in the space of h(x) where h(-) is such that
K(u;v) = (h(u), h(v)) is the inner product in the space of h(x).

e Hence SVM can be viewed as an automatic way of constructing an
RBF network (Scholkopf et al. 1997).

~

/
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\ Performance Results: Drug Discovery Data /

Average Precision
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Figure 8: The average precision of all algorithms evaluated on the test
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Performance Results: ANOVA Set-up

Let pur, s, pa, uu, ur and pug be the average result of K-NN, SVM,
ASVM, and LAGO using the uniform kernel, the triangular kernel and

the Gaussian kernel, respectively.

Contrast Expression Estimate
Cntrl UT — WG 0.0027
Cntr2 UG — A 0.0339
Cntr3 pha — s 0.0230
Cntr4 pus — (e + pu)/2 0.0157
Cntrb BU — UK 0.0014

~
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Performance Results: ANOVA Summary

~

Source SS (x107%) df MS (x107%) Fo  P-Value

Methods 233.504 5} 46.701 64.307  <0.0001
Cntrl 0.140 1 0.140 0.193 0.6664
Cntr2 22.916 1 22.916 31.556 <0.0001
Cntr 10.58 1 10.58 14.505  0.0017
Cntr4 6.531 1 6.531 8.994 0.0090
Cntrd 0.036 1 0.036 0.050 0.8258

Splits 18.877 3 6.292 8.664 0.0014

Error 10.893 15 0.726

Total 263.274 23

Copyright © 2003—2005 by Mu Zhu
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Hit Curves:
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Main Conclusions

(Triangle LAGO ~ Gaussian LAGO) >~
>~ ASVM > SVM >
> (Uniform LAGO ~ KNN).

Computationally, ASVM is extremely expensive.

LAGO Copyright © 2003—2005 by Mu Zhu
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The Number of SVs

SVM ASVM
Co Ch Co C1
Split 1 11531 294 5927 291
Split 2 11419 303 3472 284
Split 3 11556 293 | 11706 290
Split 4 1863 293 6755 281
Total Possible | 14602 304 | 14602 304

LAGO Copyright © 2003—2005 by Mu Zhu
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\ Empirical Evidence: 3 =10 /

Contour of AP: Split 1 Contour of AP: Split 2

/mmmcﬁm 10: Choosing « and 3 (while fixing K = 5) using 5-fold CV. \
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