Setting the Stage: Complementary Priors and Variational Bounds

Yee Whye Teh
Gatsby Unit, UCL

Geoffrey E. Hinton
Toronto

Simon Osindero
Toronto

December 6, 2007
Deep Learning Workshop
NIPS
Deep Belief Networks

- Say we have a layered directed graphical model.
- Can we do efficient inference in this model?
- Just from the structure of the graphical model: no.
Deep Belief Networks

- Say we have a layered directed graphical model.
- Can we do efficient inference in this model?
- Just from the structure of the graphical model: no.
- But perhaps there are settings of the conditional probabilities in the model allowing for efficient inference...
A **Markov chain** is a sequence of variables X_1, X_2, \ldots with the Markov property

$$p(X_t | X_1, \ldots, X_{t-1}) = p(X_t | X_{t-1})$$

A Markov chain is **stationary** if the transition probabilities do not depend on time

$$p(X_t = x' | X_{t-1} = x) = T(x \rightarrow x')$$

$T(x \rightarrow x')$ is called the **transition matrix**.

If a Markov chain is **ergodic** it has a unique equilibrium distribution

$$p_t(X_t = x) \rightarrow p_\infty(X = x) \text{ as } t \rightarrow \infty$$
Markov Chains

Most Markov chains used in practice satisfy detailed balance

\[p_\infty(X) T(X \to X') = p_\infty(X') T(X' \to X) \]

e.g. Gibbs, Metropolis-Hastings, slice sampling...

Such Markov chains are reversible

\[p_\infty(X_1) T(X_1 \to X_2) T(X_2 \to X_3) T(X_3 \to X_4) \]
Markov Chains

- Most Markov chains used in practice satisfy **detailed balance**

\[
p_\infty(X)T(X \rightarrow X') = p_\infty(X')T(X' \rightarrow X)
\]

...e.g. Gibbs, Metropolis-Hastings, slice sampling...

- Such Markov chains are **reversible**

\[
T(X_1 \leftarrow X_2)p_\infty(X_2)T(X_2 \rightarrow X_3)T(X_3 \rightarrow X_4)
\]
Markov Chains

- Most Markov chains used in practice satisfy **detailed balance**

\[p_\infty(X) T(X \rightarrow X') = p_\infty(X') T(X' \rightarrow X) \]

e.g. Gibbs, Metropolis-Hastings, slice sampling...

- Such Markov chains are **reversible**

\[T(X_1 \leftarrow X_2) T(X_2 \leftarrow X_3) p_\infty(X_3) T(X_3 \rightarrow X_4) \]
Most Markov chains used in practice satisfy detailed balance

\[p_\infty(X) T(X \rightarrow X') = p_\infty(X') T(X' \rightarrow X) \]

e.g. Gibbs, Metropolis-Hastings, slice sampling...

Such Markov chains are reversible

\[T(X_1 \leftarrow X_2) T(X_2 \leftarrow X_3) T(X_3 \leftarrow X_4) p_\infty(X_4) \]
Most Markov chains used in practice satisfy **detailed balance**

\[p_\infty(X) T(X \rightarrow X') = p_\infty(X') T(X' \rightarrow X) \]

e.g. Gibbs, Metropolis-Hastings, slice sampling...

Such Markov chains are **reversible**

\[T(X_1 \leftarrow X_2) T(X_2 \leftarrow X_3) T(X_3 \leftarrow X_4)p_\infty(X_4) \]

This is the basic idea of **complementary priors.**
Complementary Priors

- Say we have a layered directed graphical model.
- Can we do efficient inference in this model?

Note: X_i is a vector of variables in layer i. This is just the Markov chain unrolled. Detailed balance and the time reversal of the Markov chain comes to our rescue!
Complementary Priors

- Say we have a layered directed graphical model.
- Can we do efficient inference in this model?
- Consider the following conditional probabilities:

\[
p(X_L) = p_\infty(X_L) \\
p(X_i | X_{i+1}) = T(X_{i+1} \rightarrow X_i) \quad \text{for } i = 1 \ldots L
\]

Note: \(X_i\) is a vector of variables in layer \(i\).
- This is just the Markov chain unrolled.
- Detailed balance and the time reversal of the Markov chain comes to our rescue!
Complementary Priors

We can reverse the arcs in the model:

\[
p(X_1 \ldots, X_L) = p_\infty(X_L) \prod_{i=L-1}^{1} T(X_{i+1} \rightarrow X_i)
\]
Complementary Priors

- We can reverse the arcs in the model:

\[p(X_1 \ldots, X_L) = p_\infty(X_L) \prod_{i=L-1}^{1} T(X_{i+1} \rightarrow X_i) \]

\[= p_\infty(X_1) \prod_{i=2}^{L} T(X_i \rightarrow X_{i+1}) \]

- Now inference is trivial!
- To obtain a sample from the posterior given observations we just run the Markov chain upwards.
- The complementary prior is simply the equilibrium distribution of the Markov chain.
Boltzmann Machines

- A **Boltzmann machine** is a pairwise Markov random field with binary variables

 \[
 p_{BM}(x_1 \ldots x_n) = \frac{1}{Z} e^{\sum_{ij} W_{ij} x_i x_j + \sum_i b_i x_i}
 \]

- It is an exponential family with natural parameters \(\{ W_{ij}, b_i \} \), and sufficient statistics \(\{ E[x_i x_j], E[x_i] \} \) for all \(i, j \).
Boltzmann Machines

\[p_{BM}(x_1 \ldots x_n) = \frac{1}{\mathcal{Z}} e^{\sum_{ij} W_{ij} x_i x_j + \sum_i b_i x_i} \]

Gibbs sampling in a Boltzmann machine:

\[p(x_i = 1 | x_{-i}) = \sigma \left(\sum_j W_{ij} x_j + b_i \right) \]

\[\sigma(y) = \frac{1}{1 + \exp(-y)} \]
A Restricted Boltzmann machine (RBM) is simply a Boltzmann machine with a bipartite structure.

In an RBM we can do blocked Gibbs sampling, alternating between the layers.

\[
p(x_1 = 1 | y_1) = \sigma (Wy_1 + b)
\]

\[
p(y_1 = 1 | x_1) = \sigma (W^T x_1 + c)
\]
We use blocked Gibbs in an RBM as our Markov chain to define a directed graphical model, and use the RBM for the top layer of variables\(^1\),

\[
p(X_{L1} \ldots X_{Ln}) = p_{RBM}(x_{L1} \ldots x_{Ln})
\]

\[
p(y_k: = 1|x_{k+1:}) = \sigma (W^\top x_{k+1:} + c)
\]

\[
p(x_k: = 1|y_k:) = \sigma (Wy_k: + b)
\]

This is a **sigmoid belief network** with tied parameters.

\(^1\)Because of the bipartite structure of the RBM the layers alternate between the \(x\)'s and \(y\)'s, but the unrolling and complementary prior argument still holds.
Sigmoid Belief Networks

- We use blocked Gibbs in an RBM as our Markov chain to define a directed graphical model, and use the RBM for the top layer of variables\(^1\),

\[
p(X_{L1} \ldots X_{Ln}) = p_{RBM}(x_{L1} \ldots x_{Ln})
\]

\[
p(y_{k:} = 1|x_{k+1:}) = \sigma(W^\top x_{k+1:} + c)
\]

\[
p(x_{k:} = 1|y_{k:}) = \sigma(Wy_{k:} + b)
\]

- This is a sigmoid belief network with tied parameters.

- Inference just involves reversing all the arcs.

\(^1\)Because of the bipartite structure of the RBM the layers alternate between the \(x\)'s and \(y\)'s, but the unrolling and complementary prior argument still holds.
Stagewise Variational Bound

Say we trained a RBM on a dataset \(\{ x^{(1)}, \ldots, x^{(D)} \} \), obtaining a set of weights \(W_{\text{train}} \) (also includes the biases).

The variational lower bound is exact when \(q(y|x) = p(y|x) \):

\[
\log p(x) = E_{\log q(y|x)} [\log p(x, y) - \log q(y|x)]
\]
Stagewise Variational Bound

Say we trained a RBM on a dataset \(\{ x^{(1)}, \ldots, x^{(D)} \} \), obtaining a set of weights \(W_{\text{train}} \) (also includes the biases).

The variational lower bound is exact when \(q(y|x) = p(y|x) \):

\[
\log p(x) = \mathbb{E}_{\log q(y|x)} [\log p(x, y) - \log q(y|x)] \\
= \mathbb{E}_{\log q(y|x)} [\log p(y) + \log p(x|y) - \log q(y|x)]
\]
Stagewise Variational Bound

- Say we trained a RBM on a dataset \(\{ x^{(1)}, \ldots, x^{(D)} \} \), obtaining a set of weights \(W_{\text{train}} \) (also includes the biases).
- The variational lower bound is exact when \(q(y|x) = p(y|x) \):

\[
\log p(x) \\
= E_{\log q(y|x)} [\log p(x, y) - \log q(y|x)] \\
= E_{\log q(y|x)} [\log p(y) + \log p(x|y) - \log q(y|x)] \\
= E_{\log q(y|x)} [\log p_{\text{RBM}}(y) + \log T(y \rightarrow x) - \log q(y|x)]
\]
Stagewise Variational Bound

- Say we trained a RBM on a dataset \(\{x^{(1)}, \ldots, x^{(D)}\} \), obtaining a set of weights \(W_{\text{train}} \) (also includes the biases).
- The variational lower bound is exact when \(q(y|x) = p(y|x) \):

\[
\log p(x) \\
= E_{\log q(y|x)} [\log p(x, y) - \log q(y|x)] \\
= E_{\log q(y|x)} [\log p(y) + \log p(x|y) - \log q(y|x)] \\
= E_{\log q(y|x)} [\log p_{\text{RBM}}(y) + \log T(y \rightarrow x) - \log q(y|x)]
\]

- This is the RBM unrolled once.
Stagewise Variational Bound

\[\log p(x) = E_{\log q(y|x)} [\log p_{RBM}(y) + \log T(y \rightarrow x) - \log q(y|x)] \]

- Note at this point both

\[p_{RBM}(y) = p_{RBM}(y|W_{train}) \]
\[T(y \rightarrow x) = T(y \rightarrow x|W_{train}) \]

are parametrized by the same \(W_{train} \) and the variational bound is tight.
Stagewise Variational Bound

\[
\log p(x) = E_{\log q(y|x)} \left[\log p_{RBM}(y) + \log T(y \rightarrow x) - \log q(y|x) \right]
\]

Note at this point both

\[
p_{RBM}(y) = p_{RBM}(y|W_{\text{train}}) \\
T(y \rightarrow x) = T(y \rightarrow x|W_{\text{train}})
\]

are parametrized by the same \(W_{\text{train}} \) and the variational bound is tight.

If we now continue to optimize only \(p_{RBM}(y|W) \), we will increase this lower bound on the log likelihood.
Stagewise Variational Bound

\[
\log p(x) = E_{\log q(y|x)} [\log p_{RBM}(y) + \log T(y \rightarrow x) - \log q(y|x)]
\]

- Note at this point both

\[
p_{RBM}(y) = p_{RBM}(y|W_{\text{train}}) \\
T(y \rightarrow x) = T(y \rightarrow x|W_{\text{train}})
\]

are parametrized by the same \(W_{\text{train}} \) and the variational bound is tight.

- If we now continue to optimize only \(p_{RBM}(y|W) \), we will increase this lower bound on the log likelihood.

- Note: the “training set” used to train \(p_{RBM}(y|W) \) can be drawn from \(q(y|x^{(d)}) \) with \(x^{(d)} \) a training data point.
Stagewise Variational Bound

▶ At stage k learn an RBM, producing a variational posterior

$$q_k(x_{k+1}|x_k)$$
$$p_k(x_k|x_{k+1})$$

▶ q_k used to “represent” training data points up the stages.

▶ p_k used to “model” data at the previous stage given higher level representations.

▶ Each stage of this process increases a variational lower bound on the log likelihood.
Stagewise Variational Bound

- At stage k learn an RBM, producing a variational posterior

$$q_k(x_{k+1}|x_k)$$
$$p_k(x_k|x_{k+1})$$

- q_k used to “represent” training data points up the stages.

- p_k used to “model” data at the previous stage given higher level representations.

- Each stage of this process increases a variational lower bound on the log likelihood.
Stagewise Variational Bound

- At stage k learn an RBM, producing a variational posterior

 $$q_k(x_{k+1}|x_k)$$
 $$p_k(x_k|x_{k+1})$$

- q_k used to “represent” training data points up the stages.

- p_k used to “model” data at the previous stage given higher level representations.

- Each stage of this process increases a variational lower bound on the log likelihood.
Thank you!
Thank you!
Thank you, Geoff!
Thank you!
Thank you, Geoff!
Happy Birthday, Geoff!