Multiscale Conditional Random Fields for Image Labeling

Xuming He, Rich Zemel and Miguel Carreira-Perpinan

We propose an approach to include contextual features for labeling images, in which each pixel is assigned to one of a finite set of labels. The features are incorporated into a probabilistic framework which combines the outputs of several components. Components differ in the information they encode. Some focus on the image-label mapping, while others focus solely on patterns within the label field. Components also differ in their scale, as some focus on fine-resolution patterns while others on coarser, more global structure. A supervised version of the contrastive divergence algorithm is applied to learn these features from labeled image data. We demonstrate performance on two real-world image databases and compare it to Markov random field model.