Mesures de similarité

Matrices de substitutions

- La structure des protéines déterminent leur fonction.
- Des séquences assez différentes peuvent se replier en la même structure, et donc assurer la même fonction.
- Des « substitutions » d'acides aminés qui préservent la même structure ne devraient pas être trop nuisibles à la fonction de la protéine.
- Par exemple, 6 aa sont hydrophobes. Ils préfèrent être à l'intérieur de la structure pour évider d'être en contact avec l'eau. Et donc une substitution d'un aa hydrophobe pour un autre dans la même classe est plus acceptable qu'une subs. à l'extérieur de cette classe.
- Il est important de définir des matrices de substitutions appropriées. Deux classes de matrices sont utilisées: PAM et BLOSUM.

Matrices PAM

- PAM: "Point Accepted Mutations".
- Probabilité d'une substitution d'un AA en un autre.
- Ensemble de matrices utilisées pour évaluer un alignement de séquences de protéines.
- Introduites par Margaret Dayhoff en 1978.

	G	A	v	L	I	P	S	T	D	E	N	0	K	R	Н	F	Y	W	М	С	В	Z	Х	*	
G	5																								G
A	1	2																							A
V	-1	0	4																						V
L	-4	-2	2	6																					L
Ι	-3	-1	4	2	5																				I
P	0	1	-1	-3	-2	6							D	Λ				56							P
S	1	1	-1	-3	-1	1	2							H	IV		4								S
T	0	1	0	-2	0	0	1	3																	T
D	1	0	-2	-4	-2	-1	0	0	4																D
E	0	0	-2	-3	-2	-1	0	0	3	4															E
N	0	0	-2	-3	-2	0	1	0	2	1	2														N
Q	-1	0	-2	-2	-2	0	-1	-1	2	2	1	4													Q
K	-2	-1	-2	-3	-2	-1	0	0	0	0	1	1	5												K
R	-3	-2	-2	-3	-2	0	0	-1	-1	-1	0	1	3	6											R
Н	-2	-1	-2	-2	-2	0	-1	-1	1	1	2	3	0	2	6										H
F	-5	-3	-1	2	1	-5	-3	-3	-6	-5	-3	-5	-5	-4	-2	9									F
Y	-5	-3	-2	-1	-1	-5	-3	-3	-4	-4	-2	-4	-4	-4	0	7	10								Y
W	-7	-6	-6	-2	-5	-6	-2	-5	-7	-7	-4	-5	-3	-2	-3	0	0	17							W
M	-3	-1	2	4	2	-2	-2	-1	-3	-2	-2	-1	0	0	-2	0	-2	-4	6						M
C	-3	-2	-2	-6	-2	-3	0	-2	-5	-5	-4	-5	-5	-4	-3	-4	0	-8	-5	12					C
В	0	0	-2	-3	-2	-1	0	0	3	3	2	1	1	-1	1	-4	-3	-5	-2	-4	3				В
Z	0	0	-2	-3	-2	0	0	-1	3	3	1	3	0	0	2	-5	-4	-6	-2	-5	2	3			Z
X	-1	0	-1	-1	-1	-1	0	0	-1	-1	0	-1	-1	-1	-1	-2	-2	-4	-1	-3	-1	-1	-1		X
#	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8	1	#
	G	A	V	L	Ι	P	S	T	D	E	N	Q	K	R	Н	F	Y	W	M	C	В	Z	X	#	

Unité PAM

 Unité de mesure du taux de divergence entre 2 séquences d'AA. Représente une distance d'évolution.

Définition: S₁, S₂ divergent d'1 unité PAM si la suite de substitutions qui a converti S₁ en S₂ est telle qu'en moyenne, une seule mutation est survenue tous les 100 AA.

Exp.: S₁ diverge de 5 PAM de S₂

- Mutations acceptées: celles incorporées dans la protéine et transmises. Soit sans effet, soit bénéfique à l'organisme.
- Pas de correspondance absolue entre unités PAM et divergence de séquences. Plusieurs mut. peuvent être survenues à la même pos.

Divergence d'AA ≤ unités PAM

Exemple: Deux seq. qui divergent de 100 PAM ne sont pas différentes à chaque pos.

En fait, deux seq. qui divergent de 200 PAM sont susceptibles de contenir 25% d'identité de seq.

Matrices PAM

- Différentes matrices PAM pour comparer des seq. d'AA qui divergent d'un nb spécifique d'unités PAM: 120 PAM, 250 PAM...
- Signification: La case (i,j) d'une mat. n PAM contient la fréquence avec laquelle l'AA Ai est remplacé par l'AA Aj dans les seq. qui divergent de n unités PAM
- Méthode idéale de const. d'une mat. n PAM:
 - Considérer un ensemble de seq qui divergent de n unités PAM
 - Aligner les seq. 2 à 2
 - Compter le nb. d'alignements Ai, Aj, pour chaque Ai, Aj.
 Diviser par le nb total d'appariements - > f(i,j)
 - Case (i,j) de la mat. Contient log [f(i,j)/ f(i)f(j)] où f(i) fréquence de Ai et f(j) freq. de Aj

- Méthode précédente nécessite d'aligner correctement les séquences. Alignement pour avoir la matrice, et matrice pour avoir l'alignement???
- Méthode de Dayhoff (1979):
 - Pour des seq. très similaires (moins de 15% de différence),
 principalement la méthode idéale
 - → M: Matrice 1 PAM.
 - Séquences plus divergentes: Mⁿ(i,j): probabilité que A_i se transforme en A_j en n unités PAM
 Case (i,j) de la matrice n PAM:
 log [f(i) Mⁿ(i,j) / f(i)f(j)] = log [Mⁿ(i,j) / f(j)]
- Dans la pratique, on essaye plusieurs matrices PAM différentes. PAM 250 est la plus utilisée.

De PAM à BLOSUM

- Les matrices N PAM sont obtenues par extrapolation de la matrice 1PAM obtenue pour des protéines très proches.
- Pas appropriées pour la comparaison de séquences de protéines très divergentes
- BLOSUM (Heinikoff and Heinikoff 1992), Block Substitution Matrix: Basée sur des block, i.e. régions conservées d'alignements de protéines: substitutions observées.

PROSITE et BLOCKS

 PROSITE: Dictionnaire de sites de protéines. Lié à Swiss-Prot.

Motifs représenté par une exp. reg. ou par une matrice consensus

Exemple: G[GN] [SGA]GxRx[SGA]Cx(2)[IV]

BLOCKS: Dérivé de PROSITE. Dictionnaire de séquences conservées.

BLOCK: Petit intervalle très conservé d'un alignement. Similarité de séquence, mais pas nécessairement similarité de fonction.

II. Matrices BLOSUM

- Dérivées de BLOCKS. Ensemble de blocs de n colonnes et k lignes
- Matrice BLOSUM: Nb de fois que Ai, Aj se trouvent appariés, divisé par le nb de fois qu'ils seraient appariés dans des seq. aléatoires.

```
Pour tous A_i, A_j, n(i,j) nb d'appariements (Ai,Aj); f(i): freq. de Ai; f(j): freq. de Aj e(i,j) = n \binom{k}{2} f(i) f(j) s(i,j) = log [n(i,j) / e(i,j)]
```

II. BLOSUM (suite)

- Caractéristique: Élimine la redondance dans les blocs.
- Matrice BLOSUM x (généralement entre 50 et 80): Pour tout couple de lignes contenant plus de x% de similarité, en garder une seule.
- La plus utilisée est BLOSUM 62

```
A Ala 4
                    Matrice BLOSUM 62
R Arg -1
N Asn -2
D Asp -2
        -2
C Cys 0
        -3
0 Gln -1
                                     Score positif pour les identités,
E Glu -1
                                     et négatif pour les mismatchs
G Gly 0
H His -2
I Ile -1 -3
           -3 -3 -1 -3
L Leu -1 -2
K Lys -1
                      1
                         1 -2
               -1
M Met -1 -1 -2
              -3 -1
                      0
                        -2
                      -3 -3
F Phe -2 -3
           -3
               -3
               -1 -3 -1
                             0
                      0
                          0
               -1 -1 -1 -1 -2 -2 -1 -1 -1
                           -2
              -3 -2 -1 -2
                            -3
                                2
                                   -1 -1 -2
                                                 3
                                    3
    Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
     A
        R
                     0
                         Е
                            G
                               н
                                   Ι
                                     L
                                        K
                                             M
                                                F
                                                    P
                                                       S
                                                          Т
```