What's Behind BLAST

Gene Myers, Director MPI for Cell Biology and Genetics Dresden, DE

FILTERE

Approximate String Search

Given a string A of length n, a query Q of length $p \ll n$, an alignment scoring function δ , and a threshold d:

Find all substrings of A, say M, s.t. $\delta(Q,M) \leq d$?

δ here = Simple Levenstein (unit cost mismatch, insert, & delete)

...xxxxxxxaacgt-gcattacxxxxxxx...
aatgtggc-ttac

A 3-match (absolute) A 25%-match (relative)

• March '88: The Lister Hill Meeting & Galil's 2 questions

The Beginning

"Workshop for Algorithms in Molecular Genetics" March 26-28, 1988

S. Altschul W. Goad G. Landau J. Maisel T. Smith M. Zuker D. Sankoff W. Miller

W. Fitch

- T. Hunkapillar
- E. Lander
- H. Martinez
- R. Staden
- A. Mukherjee
- P. Sellers
- G. Myers

Z. Galil

- S. Karlin
- D. Lipman
- C. Sanders
- J. Turner
- M. Waterman
- E. Ukkonen

Galil's 2 Questions

"Workshop for Algorithms in Molecular Genetics" March 26-28, 1988

Zvi gave a talk about suffix trees:

Q1: Can one get rid of the annoying dependence on alphabet size Σ ?

⇒ Manber & Myers, "Suffix Arrays" 1990

Q2: Can one use an index to get faster approximate search?

• March '88: The Lister Hill Meeting & Galil's 2 questions

- March '88: The Lister Hill Meeting & Galil's 2 questions
- June '88: Seed & Extend

APM Filters

A filter is an algorithm that eliminates a lot of that which isn't desired.

	100% Sn	< 100% Sn			
100% Sp	Exact		Filter	Exact	
< 100% Sp	Filter	Heuristic			

If fast & specific then can improve speed of an exact algorithm.

Approximate match filter ideas:

- Look for exact matches to k-mers of the query (in an index) (Pearson & Lipman FASTA, Chang & Lawler, O(dn/lg p))
- Instead look for k-mers that are a small distance away, e.g. I or 2 diff's, from a k-mer of the query, i.e. the neighborhood

 $\mathcal{N}_{d}(w) = \{ v : v \text{ and } w \text{ are } \leq d \text{ differences apart } \}$

 $|\mathcal{N}_{d}(k)| \lesssim {\binom{k}{d}}(2\Sigma)^{d}$

The Power of Neighborhoods

Consider looking for a 9%-match of 40 symbols ($\Rightarrow \leq 3$ differences or 3-match):

If divide "query" into 4 10-mers then at least one must match exactly:

 \Rightarrow Get a hit every Σ^{10} / 4 symbols (e.g. 2.5 \cdot 10⁵ for DNA)

If divide into 2 20-mers then at least one of the \mathcal{N}_1 strings must match exactly:

 \Rightarrow Get a hit every Σ^{20} / 2 $\mathcal{N}_1(20)$ symbols (e.g. 10^{12} / 2 \cdot 160 = 3.12 \cdot 10⁹ for DNA)

10,000 times more specific ! (but 80x more lookups)

"Seed & Extend"

The "seed" matches (either exact or from a neighborhood) are in effect defining areas within the edit graph of Q vs A where the alignment of an ε-match could be:

 $Q = s_1 s_2 s_3 s_4$

"Seed & Extend"

The "seed" matches (either exact or from a neighborhood) are in effect defining areas within the edit graph of Q vs A where the alignment of an ε-match could be:

 $\mathbf{Q} = \mathbf{S}_1 \mathbf{S}_2 \mathbf{S}_3 \mathbf{S}_4$

"Seed & Extend"

The "seed" matches (either exact or from a neighborhood) are in effect defining areas within the edit graph of Q vs A where the alignment of an ε-match could be:

Spend O(pdh + pz) time where

h(k) = the number of seed "k-hits" vs. z(k) = neighborhood size "k-words"

Both z and h are functions of k and the optimal k is "slightly bigger" than $\log_{\Sigma} n$

- March '88: The Lister Hill Meeting & Galil's 2 questions
- June '88: Seed & Extend

- March '88: The Lister Hill Meeting & Galil's 2 questions
- June '88: Seed & Extend
- May '89: The TRW Chip & The Cigarette Break
- Fall '89: Blast is Born

Blast = Seed & Extend

Seeds are neighborhoods of <u>all</u> k-mers of query under weighted Levenstein (e.g. PAM120)

Find seeds with a deterministic finite automaton accepting all neighborhood words (⇒O(n))

Extend is just weighted Hamming but stop when score drops too much

A heuristic

"blast" was inspired by "slam" = sublinear approximate match

- March '88: The Lister Hill Meeting & Galil's 2 questions
- June '88: Seed & Extend
- May '89: The TRW Chip & The Cigarette Break
- Fall '89: Blast is Born

- March '88: The Lister Hill Meeting & Galil's 2 questions
- June '88: Seed & Extend
- May '89: The TRW Chip & The Cigarette Break
- Fall '89: Blast is Born
- Fall '89: The Splitting Lemma

The Splitting Lemma

Lemma: If w ε-matches v then either (a) w₀ has an ε-match to a prefix (call it v₀) of v, or (b) w₁ has an ε-match to a suffix (call it v₁) of v.

W

The Splitting Lemma

Lemma: If w ε -matches v then $\exists \alpha$ s.t. \forall prefixes β of α , (1) w_{β} has an ε -match to a substring (call it v_{β}) of v, and (2) v_{β 0} is a prefix of v_{β} (if β 0 is a prefix of α), and (3) v_{β 1} is a suffix of v_{β} (if β 1 is a prefix of α).

- March '88: The Lister Hill Meeting & Galil's 2 questions
- June '88: Seed & Extend
- May '89: The TRW Chip & The Cigarette Break
- Fall '89: Blast is Born
- Fall '89: The Splitting Lemma

- March '88: The Lister Hill Meeting & Galil's 2 questions
- June '88: Seed & Extend
- May '89: The TRW Chip & The Cigarette Break
- Fall '89: Blast is Born
- Fall '89: The Splitting Lemma
- Fall '89: Seed & Extend by Doubling

Doubling Extension

Use $\log_{\Sigma} n$ as the seed size !

Lemma: Any ϵ -match of Q has an ϵ -match to at least one seed segment of size $\log_{\Sigma} n$

Use the splitting lemma to split Q to seeds of size $\log_{\Sigma} n$, and instead of extending all at once, extend by doubling using the splitting lemma.

Time for each extension telescopes hyper-geometrically and so is dominated by the first term:

 $O(P/log_{\Sigma}n \cdot h \cdot log_{\Sigma}n \cdot \epsilon log_{\Sigma}n) = O(dhlog_{\Sigma}n)$

- March '88: The Lister Hill Meeting & Galil's 2 questions
- June '88: Seed & Extend
- May '89: The TRW Chip & The Cigarette Break
- Fall '89: Blast is Born
- Fall '89: The Splitting Lemma
- Fall '89: Seed & Extend by Doubling

- March '88: The Lister Hill Meeting & Galil's 2 questions
- June '88: Seed & Extend
- May '89: The TRW Chip & The Cigarette Break
- Fall '89: Blast is Born
- Fall '89: The Splitting Lemma
- Fall '89: Seed & Extend by Doubling
- Spr '90: Generating Condensed Neighborhoods

Generating (Condensed) Neighborhoods

 $\mathcal{N}_{d}(w) = \{ v : v \text{ and } w \text{ are } \leq d \text{ differences apart and} \\ v \text{ is not a proper prefix of another word in } N_{d}(w) \}$

 $\mathcal{N}_1(abbaa) = \{ aabaa, aabbaa, aabbaa, abaaa, abaaa, ababaa, abbaa, abbaa, abbaaa, abbaaa, abbaaa, abbaaa, abbaaa, abbaaa, abbbaa, abbbaa, abbbaaa, babbaaa, bbaaa, bbbaaa \}$

It suffices to find the words in the condensed neighborhood.

- But how do you do that efficiently, including finding them in the index? ...
- ... Compute rows of dynamic programming matrix as one traverses the trie of all strings over Σ

Only need ±1 band !

efficiently discover these.

also possible

Lemma: Neighborhoods and their hits in A can be generated in O(zd+h) time where $z = |\mathcal{N}_d(w)|$

- March '88: The Lister Hill Meeting & Galil's 2 questions
- June '88: Seed & Extend
- May '89: The TRW Chip & The Cigarette Break
- Fall '89: Blast is Born
- Fall '89: The Splitting Lemma
- Fall '89: Seed & Extend by Doubling
- Spr '90: Generating Condensed Neighborhoods

- March '88: The Lister Hill Meeting & Galil's 2 questions
- June '88: Seed & Extend
- May '89: The TRW Chip & The Cigarette Break
- Fall '89: Blast is Born
- Fall '89: The Splitting Lemma
- Fall '89: Seed & Extend by Doubling
- Spr '90: Generating Condensed Neighborhoods
- Fall '90: Finale: Complexity

Complexity

How big is $\overline{\mathcal{N}}_{d}(\mathbf{k})$?

Developed recurrence for non-redundant edit scripts:

(a) DI = S
(b) DS = SD
(c) IS = SI
(d) ID = Φ

Lemma:

$$\begin{split} \mathbf{S}(\mathbf{k},\mathbf{d}) &= \mathbf{S}(\mathbf{k}\text{-}1,\mathbf{d}) + (\Sigma\text{-}1)\mathbf{S}(\mathbf{k}\text{-}1,\mathbf{d}\text{-}1) + (\Sigma\text{-}1)\sum_{j=0}^{d-1}\Sigma^{j}\mathbf{S}(\mathbf{k}\text{-}1,\mathbf{d}\text{-}1) \\ &+ (\Sigma\text{-}1)^{2}\sum_{j=0}^{d-2}\Sigma^{j}\mathbf{S}(\mathbf{k}\text{-}2,\mathbf{d}\text{-}2\text{-}j) + \sum_{j=0}^{d-1}\mathbf{S}(\mathbf{k}\text{-}2\text{-}j,\mathbf{d}\text{-}1\text{-}j) \end{split}$$

 $\overline{\mathcal{N}}_{d}(k) \leq S(k,d) + \sum_{j=1}^{d} \Sigma^{j} S(k-1,d-j)$

Complexity

So how big is it? Lemma: $\mathcal{N}_{\varepsilon}(k) \leq 1.708 \ \alpha(\varepsilon)^k$ where $\alpha(\epsilon) = \sum_{pow(\epsilon)}^{pow(\epsilon)}$ and pow(ϵ) = log_{Σ} ($\frac{c(\epsilon)+1}{c(\epsilon)-1}$) + ϵ log_{Σ} $c(\epsilon)$ + ϵ and $c(\epsilon) = \epsilon^{-1} + (1 + \epsilon^{-2})^{.5}$ Also $Pr(w \text{ in } \overline{\mathcal{N}}_{\epsilon}(k)) = O(1 / \beta(\epsilon)^k)$ where $\beta(\epsilon) = \Sigma^{1-pow(\epsilon)}$

Figure 4: Plot of $pow(\varepsilon)$ and Sample Bounding Lines

Complexity

So how big is it? Lemma: $\widehat{\mathcal{N}}_{\varepsilon}(k) = O(\alpha^{k})$ where $\alpha = \Sigma^{pow(\varepsilon)}$ $Pr(w \text{ in } \widehat{\mathcal{N}}_{\varepsilon}(k)) = O(1 / \beta^{k})$ where $\beta = \Sigma^{1-pow(\varepsilon)}$

Starts at Σ (ϵ =0) and shrinks
"Effective alphabet size"

And when $k = \log_{\Sigma} n$?

 $\overline{\mathcal{N}}_{\epsilon}(k) = O(n^{pow(\epsilon)})$ and $Pr(w \text{ in } \overline{\mathcal{N}}_{\epsilon}(k)) = O(n^{pow(\epsilon)-1})$

The Result

Theorem: Given

- (a) A is effectively Bernouilli,
- (b) a simple O(n) space, precomputed index of A, and
- (c) there are h d-matches of a query Q to A

then they can be found in $O(d \cdot n^{pow(\epsilon)} \cdot \log n + pd \cdot h)$ expected-time.

N = 1,000,000 and $|\Sigma| = 4$ N = 4,000,000 and $|\Sigma| = 20$

Figure 10: Timing Plots for Queries of Length P = 80

To my knowledge no one has improved on this in the last 20 years ! ?

Algorithmica 12, 4-5 (1994)

(submitted 1991!)

Les Treilles, May 1990