hic sunt dracones here be dragons!

Genetic and phenotypic architecture of complex traits

Number of genes Dominance effects Genetic (mutational) load

Expressivity, pleiotropy, plasticity Interactions – gene/gene, gene/environment Networks – regulatory and phenotypic

Epigenetic inheritance

Complex traits: from Fisher et al

「「「日子田水」を行けたけ」

5:10

「なっていていて

5111

「日本人に「「日」

.

6:0

2.1

あのないのあるのである

5:9

日本の

an ann

11

5:8

5.7

epigenetics

Three parts

Fractal genetics and gene discovery

Epistasis and context-dependent effects

Epigenetic inheritance transgenerational effects, ancestral genetics, and current disease risks

Diet-induced obesity: <u>Gene - diet interactions</u>

B6, obese only with a HFHS diet A/J, lean regardless of diet

B6 and A/J: Contrasting models of disease

On High Fat, High Sucrose Diet:	B6	A/J
Obesity	\checkmark	Х
Insulin resistance	\checkmark	Х
Hypertension	\checkmark	X
Cardiovascular disease Risk	\checkmark	X
Non-alcoholic steatohepatitis	\checkmark	Х
Hepatocellular carcinoma	\checkmark	Х
	Genetics of disease	Genetics of health

Nadeau and Topol, Nat. Genet. 2006; Shao et al. PNAS, 2008; Hill et al., Hum Mol Genet, 2009

Chromosome Substitution Strains (CSSs): A genome survey of individual genotypes

- CSSs partition the genome in a stable, defined and non-overlapping manner
- Genetic variation is controlled in a precise and reproducible manner

Singer and Hill et al. Science 2004, Shao et al. PNAS 2008

Many chromosomes confer resistance to diet-induced obesity

Summary: phenotypic variation in CSSs

- 1. Many CSSs have QTLs
 - > 90 traits; > 700 QTLs
 - Average = 8 CSSs / trait
- 2. Unexpectedly large phenotypic effects
 - Average effect size in crosses: 6% (Flint et al., Nat Rev Genet 2005)
 - Average effect size in CSSs: 76%
- 3. Strong directional phenotypic shifts
 - 92% of QTLs shifted towards A/J

Shao et al. PNAS 2008, Spiezio et al. BMC Genetics 2012

Genetic and phenotypic complexity on a single chromosome

Chr 6 congenic strains

Shao et al. PNAS, 2008; Buchner et al. Physiol. Genomics 2008; Millward et al. Mammal. Genome2009

Phenotypes flip between alternative states

and contrasting effects Also found for other traits and chromosomes

Fractal Genetics

Strain	QTL size (Mb)	# of genes	Effect size
A/J	2717	22,974	100%
CSSs	120	1,485	75%
Congenics	28	342	58%
Subcongenics	15	135	52%
Subsubcongenics	1	4	39%

3,000-fold reduction in QTL size

5,000-fold reduction in gene content **2.5-fold** reduction in effect size

QTLs in congenic strains but not in crosses

A/J-derived sequence

SIc35b4 regulates body weight and glucose homeostasis

- Obrq2a1:
- 1 Mb interval on Chr. 6 (33-34 Mb)
- Phenotype:
 - Body weight differs on high-fat diet
 - 4 g, 9% of total body weight
 - Fasting glucose
 - Hepatic glucose production

Genetics:

- 3 genes located in QTL interval (Exoc4, Lrguk, Slc35b4)
- No amino acid variants
- Decreased hepatic *Slc35b4* expression associated with lower hepatic gluconeogenesis
 - Expression of all genes tested by qPCR in liver, pancreas, brain, WAT, muscle
- Slc35b4 knockdown in H2.35 decreases glucose synthesis in vitro

Juxtaparanodal proteins CNTNAP2 and TAG1

- Obrq3b:
- 3 Mb interval on Chr. 6
- Phenotype:
 - Body weight differs on high-fat diet
 - 5 g, 14% of total body weight
- Genetics:
 - 1 gene located in QTL interval (Cntnap2)
 - Missense mutation in evolutionarily conserved residue
 - H538Q
 - TAG1 and CNTNAP2 are both required for localization of K_{v} channels at juxtaparanodes
 - Impaired localization of juxtaparanodal $K_v 1.2$ in $Obrq3b^{B6}$
 - Tag1 knockout mice were also found to be obesity-resistant

Three parts

Fractal genetics and gene discovery

Epistasis and context-dependent effects

Usually tests for pairwise effects

Transgenerational effects, heritable epigenetic changes, ancestral genetics, and current disease risks

Too many CSSs have too large effects

Many CSSs are indistinguishable from A/J

Ave effect is 76% of the parental difference

Highly non-additive effects

Sum of *signed* effects for *all* CSSs for each trait

If additive: sum ≤ 100%

If epistasis: sum > 100%

40 of 41 traits Median cumulative effect: 803% Range: 164% - 1,397%

Highly non-additive effects

9 CSSs affect cholesterol level on regular diet Their average effect is 100% of the A/J – B6 difference But A/J has all 9 genetic variants!

Reconciliation

Average effects

Individual effects

Model

Epistasis is pervasive

Organisms are non-random combinations of genetic variants that provide sufficient functions to survive and breed

Epistasis buffers physiological systems against environmental and genetic perturbations

Disease can result from dysfunctions in these networks of interacting genes

<u>Three parts</u>

Fractal genetics and gene discovery

Epistasis and context-dependent effects

Transgenerational effects, heritable epigenetic changes, ancestral genetics, and current disease risks

"Missing heritability"

Mendel's laws of inheritance

genotype - phenotype association within individuals is the foundation of most genetic studies

Transgenerational genetic effects

phenotypes and disease risk result from genetic variants in previous generations

Genetic origins, heritable and familial, but genetic variants are not in affected individuals

<u>A QTL for transgenerational studies</u>

8 of the 12 genes in the 161A interval maintain histone methylation in sperm

Parental effects on diet-induced obesity

if no transgenerational effects

lean

obese

Breeders on standard diet Test mice on high-fat diet

Transgenerational inheritance

Transgenerational inheritance to sons

Transgenerational inheritance to grandsons

Transgenerational inheritance to grandsons

Parental effects on diet-induced obesity

Test mice on high-fat diet

Other examples of transgenerational genetic effects

Paternal Y chromosome effect on daughter phenotypes: *common and strong effects paternal germ-lineage*

Testicular cancer: strong effects enduring effects maternal germ-lineage reversed with paternal transmission

Genetic questions

1. The germline molecule that's not DNA

2. Mechanisms

initiating epigenetic changes changes in the germline transducing changes in next generation reversing epigenetic changes

3. Embedding a lifetime of genetic and environmental exposures in epigenetic code

Computational questions

1. Rules for epigenetic inheritance interpreting, modeling, predicting

2. Testing for associations epigenetics and phenotypes epigenetics and genotypes

3. Distinguishing causes of variation genetics, environment, epigenetics

Fractal genetics

Epistasis

Transgenerational genetic effects

Eric Lander, Broad Institute Josephine Lam, Cleveland Clinic Nick Davidson, Washington Univ.

Jason Heaney Vicki Nelson Jennifer Zechel Steph Doerner John Giesinger Soha Yazbek David Buchner Ghunwa Nakouzi Paola Raska Philip Anderson Annie Hill Sabrina Spiezio Elaine Leung

NCI and NIH Pioneer Award

Ευχαριστώ

Thank you