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Consider a duplication gene family G 

Species  Genes 

A A_g1, A_g2, A_g3, A_g4 

B B_g 

C C_g 

D D_g1, D_g2 

E E_g1, E_g2 

F F_g 

H H_g 

Question:   How to reconstruct the duplication history of the gene family G ? 

Introduction: Gene Duplication Inference 

Duplication 

Gene loss 

A        B       C       D        E       F         H 



Step 1    Build the gene tree G 

              for the gene family 

              using gene sequences,  

              and the species tree S  

              if it is not available.  

G 

Introduction: Tree Reconciliation Approach 



   Gene Tree and Species Tree 

 A species tree S represents the evolutionary pathways of  

     of a group of species    

 A gene tree G is reconstructed from gene sequences, 

      representing evolutionary relationship of genes, but is not  

      the duplication history of the gene family.  

S1     S2      S3      S4 

Species tree S 

S1g   S2g  S1g S3g S4g 

Gene tree G 

 G can differ from the corresponding S in two respects. 

           -- The divergence of two genes may predate the divergence   

               of the corresponding species 

           -- Their topologies are different 

S1    S2   S1   S3     S4   



Step 1    Build the gene tree G 

              for the gene family 

              using gene sequences,  

              and the species tree S  

              if it is not available.  

Step 2    Reconcile G and S  

               to infer gene duplication  

               and loss events, forming  

               a duplication history of  

               the gene family. 
A   B      C   D  E  F    H 

   a  b a d   e  a  h d  e f   h  a   c 

Node-to-Node Map λ 

G 

Introduction: Tree Reconciliation Approach 

S 
G 



LCA reconciliation λ: Binary trees 

In G,  the leaves are labeled with corresponding species; 

𝑙(𝑥):     the label of a leaf x of G; 

𝑙− 𝑦 :  the leaf of S that has the label y; 

lca:       the lowest common ancestor of two nodes 

𝑣1, 𝑣2:  the children of v. 

λ: V(G)  V(S) is defined as: 

𝜆 𝑣 =  
𝑙𝑆

− 𝑙𝐺(𝑣) ,         𝑣 is a leaf of 𝐺,

lca 𝜆 𝑣1 , 𝜆 𝑣2 ,  otherwise
 

A   B      C   D  E  F    H 
   a  b a d   e  a  h d  e f   h  a   c 

 v 

 w 

 x 
 λ(v)  λ(x) 

 λ(w) 

Goodman et al, 1979 
G S 



LCA reconciliation λ: Binary trees (con’t) 

𝑣 ∈ 𝑉 𝐺  is a duplication node if 𝜆 𝑣 = 𝜆 𝑣1  or 𝜆 𝑣 = 𝜆 𝑣2 . 

A   B      C   D  E  F    H 
   a  b a d   e  a  h d  e f   h  a   c 

 u 
 v 

 w 

 λ(u)=λ(v) 

 λ(r)= λ(w)= λ(z)= λ(y) 

 y 
 z 

 r 

A        B       C       D        E       F         H 

Duplication 

Gene loss 

For each duplication node v, 

a duplication is assumed in the 

branch entering   𝜆 𝑣 , producing 

two gene copies,  which are 

the ancestors of the modern  

genes in the left subtree and  

in  the right subtree, respectively. 



LCA reconciliation λ: Binary trees (con’t) 

A   B      C   D  E  F    H 

 λ(u1)        λ(u2) 

 λ(u) 

(The gene duplication cost of λ) = (no. of duplication nodes) 
(The gene loss cost of λ) = (no. of gene loss events) 

 The gene loss cost  can be computed from the no. of  lineages  

     branching off the paths from  λ(u) to λ(u1) and λ(u2) 

 

 Both gene duplication and loss costs are two dissimilarity measures  

     for gene and species trees.  

   a  b a d   e  a  h d  e f   h  a   c 

 u2 
 u1 

 u 



Theorem   Let G and S be binary.  

 

      1).  λ gives a duplication history of the gene family 

             with the least gene duplication events (Gorecki & Tiuryn, 2006).  

 

      2).  λ gives a duplication history of the gene family with 

             the least gene loss events (Chauve & El-Mabrouk, 2009).  

 

        3).  λ gives a duplication history of  the gene family with the 

              least deep coalescence cost (Wu & Zhang, 2011). 

 

      4).   λ is linear-time computable (Zhang, 1997, Chen, Durand & Farach 2000). 

λ is the parsimonious reconciliation for binary trees 



Introduction: Species Tree Reconstruction 

Species Tree (ST) Problem 

Instance:  A set of gene trees Gi (0 ≤ 𝑖 ≤ 𝑛) and a cost function c().  

Solution:  A binary species tree S that minimizes  𝑐(𝐺𝑖 , 𝑆)1≤𝑖≤𝑛  

The following cost functions have been used: 

      -- Gene duplication cost W 

      -- Gene loss cost  L 

      -- Deep coalescence cost DC 

      --  Mutation cost (W+L), or  weighted sum of W and L 

      -- Robinson-Foulds distance 

 The ST problem is NP-hard for each of the above cost functions. 

McMorris & Steel, 1993 

Ma, Li, &  Zhang, 2000;  

Bansal & Shamir, 2010; 

Zhang, 2011; 

Hallett & Lagergren, 2001 

Yu,  Warnow & Nakhleh, 2011 

Than & Nakhleh, 2009 

 Liu, Yu, Kubatko, Pearl & Edwards, 2009 



Introduction:  Unify Two Problems  

General Reconciliation (GR) Problem 

Instance:  A gene tree G and a species tree S and  

                  a reconciliation cost c( , ). 

Solution:  A binary refinement Ĝ of G and Ŝ of S  

                 such that the lca reconciliation of Ĝ and Ŝ   

                 minimizes a reconciliation cost c(Ĝ, Ŝ). 

Refinement 

 

Contraction 

Eulenstein,  Huzurbazar,  Liberles, 2010 



Two remarks 

1. The GR problem is a generalization of binary tree 

       reconciliation    

2. The species tree inference problem is a special case 

    of the GR problem, and hence the latter is NP-hard.   

Species Tree Inference 

Instance:  A set of gene trees Gi (0 ≤ 𝑖 ≤ 𝑛).  

Solution:  A binary species tree S that minimizes  𝑐(𝐺𝑖 , 𝑆)1≤𝑖≤𝑛  

 Set S be the star tree over the species in the reduction 

    from the Species Tree problem to the GR problem 



Outline of Today’s Talk 

  Relationship between tree similarity measures 

  Algorithms for the General Reconciliation problem  

          -- Extensions of the reconciliation of binary trees  

              to non-binary gene trees    

          -- Exact algorithm for reconciling two non-binary trees 

 Computer program TxT 

 Conclusion 

Zheng, Wu & Zhang, 2011 
Zheng & Zhang, 2013 



Part I:  Relationship between Cost Functions 

Theorem    Let S be a species tree and G the gene tree of a gene  

family. If one family member is found in each of the species,  

then 

𝐶loss 𝐺, 𝑆 = 2𝐶𝑑𝑢𝑝 𝐺, 𝑆 + 𝐶𝑑𝑐 𝐺, 𝑆  

where 𝐶𝑑𝑐 𝐺, 𝑆   (deep coalescence cost) is defined as the sum of 

extra lineages in all branches when G is mapped onto S. 

Maddison, 1997 

Zhang, 2011  



    Consider two singly-labeled trees G and S over n taxa X   

(that is, each leaf is uniquely labeled with 𝑒 ∈ 𝑋). 

    The Robinson-Foulds distance 𝐶RF 𝐺, 𝑆  is defined to be 

the number of leaf clusters appearing in G but not in S. 

a    b c  d  e   f  g   h a    c b  d  g   e f    h 

{e, f, g, h} {e, f, g, h} {a, b} 

Proposition    (i)  For G and S defined above,  

                  𝐶dup 𝐺, 𝑆 ≤ 𝐶RF 𝐺, 𝑆 ≤ 𝐶𝐷𝐶(𝐺, 𝑆) ≤ 𝐶loss 𝐺, 𝑆 . 

      (ii)      max𝐺,𝑆 𝐶dup(𝐺, 𝑆) = max𝐺,𝑆 𝐶RF(𝐺, 𝑆) = 𝑛 − 2. 



Theorem   (i) There exist G and S  with n  leaves such that 

                         𝐶dup 𝐺, 𝑆 =1, but 𝐶RF 𝐺, 𝑆 =n-2. 

       (ii)  For any G and S defined above, 

                   𝑚𝑎𝑥 𝐶𝑑𝑢𝑝(𝐺, 𝑆), 𝐶𝑑𝑢𝑝(𝑆, 𝐺) ≥ 𝐶RF 𝐺, 𝑆 .       

98 species tree topologies for 10 taxa (listed in Fumas rank) 
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Part II: Reconciling Non-binary G and Binary S 

Instance:  A gene tree G and a binary species tree S and a cost c( ). 

Solution:  The binary refinement Ĝ of G  such that the lca   

                 reconciliation of Ĝ and S  minimizes c(Ĝ, Ŝ). 

  The following duplication inference rule does not work  

     for  non-binary nodes: 

.)()(or  ),()(  iff

  and children  having   with associated isn duplicatioA 

21

21

uuuu
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 

  Durand et al (2006)  presented  first dynamic programming alg. for  

          reconciling a non-binary gene tree and a binary species tree.   

 

  Generalize the reconciliation to non-binary gene trees. The whole process 

          takes O(|G|+|Ŝ|) time for the duplication and loss costs. 



  The node v and its children are  mapped  

     to a subtree  (blue) under  λ,  which is  

     expanded into a binary subtree  

     (by adding purple edges). 

a  b  c   d e  f   g 

S 

 ac a de ag ab de fg 

G 
v 

The  image subtree I(v)  

(I+(v) after extension)  

λ:  The lca reconciliation of G and S 



0 0 
0 

1 

2 

3 

 1 

2 

4 

Step 1   Compute m(u), 

the maximum number of  

child images in a path from  

 u to some leaf 

descendant in I+(v) . 

 
 
 

𝑚 𝑢 = 𝑚𝑎𝑥 𝑚 𝑢1 , 𝑚 𝑢2 + ω 𝑢 . 

ω(u)  is the # of children mapped to u. 

Algorithm 

a  b  c   d e  f   g 

S 

 ac a de ag ab de fg 

G 
v 



Thm   (i) The min. dup. cost for refining the non-binary node v  

                 is  m 𝜆 𝑣 − 1.     

    (ii) The min. loss cost for refining v  is equal to  (# of purple edges). 

Idea of Proof.    

                        P = 𝜆 𝑣1 , 𝜆 𝑣2 , … , 𝜆 𝑣𝑘 , ⊆  

  L:  The size of the longest chain in P, which is m 𝜆 𝑣  in our case ; 

  P:  The min.  #  of antichains into which P may be partitioned.  

          Dual of Dilworth Theorem (Mirsky, 1971):  L=P. 

 

(ii)  It is obvious.        

0 0 
0 
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      Step 2  Compute α(u) / β(u) using m(u). 

1/0 

1/0 

1/1 
2/2 

1/4 

3/3 3/2 

 1/1 
2/0 

4 

3 

α(u): the # of  genes flowing 

          into a branch (p(u), u). 

β(u): the # of genes leaving 

          a branch  (p(u), u). 

. 

Algorithm 

𝛼 𝑟 = 1,     𝛽 𝑟 = m 𝑟 ; 

𝛼 𝑢 = 𝛽 𝑝 𝑢 − 𝜔 𝑝 𝑢 , 

 𝛽 𝑢 = 𝑚 𝑢 . 

1.  A Simple Refinement with the Optimal Dup. Cost 

ω(u): the # of children  

          mapped to u. 



0 0 
0 

1 

2 

3 

 1 

2 

4 

1/0 

1/0 

1/1 
2/2 

1/4 

3/3 3/2 

 1/1 
2/0 

Step 3   Infer duplications and losses: 

  

If α(u) < β(u),  duplications 

(     ) are postulated.  

 

If α(u) > β(u),  losses (      ) 

 are postulated. 



0 0 
0 
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2 

3 

 1 

2 
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      Step 2  Compute α(u) / β(u) using m(u). 

1/0 

1/0 

1/1 
1/2 

1/2 

1/2 1/2 

 1/1 
1/0 

4 

3 

α(u): the # of  genes flowing 

          into a branch (p(u), u). 

β(u): the # of genes  leaving 

          a branch (p(u), u). 

Algorithm 

𝛼 𝑢 = 1,   

𝛽 𝑢 =  
𝜔 𝑢 + 1, 

𝜔 𝑢 , 
if 𝑢 is an internal node

if 𝑢 is a leaf
 

2. A Simple Refinement with the Optimal Loss Cost 

ω(u): the # of children  

          mapped to u. 



0 0 
0 
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2 
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 1 

2 

4 

Step 3   Infer duplications and losses: 

  

If α(u) < β(u),  duplications 

(     ) are postulated.  

 

If α(u) > β(u),  losses (      ) 

 are postulated. 

1/0 

1/0 

1/1 
1/2 

1/2 

1/2 1/2 

 1/1 
1/0 
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Step2:   Compute α(u) / β(u) using m(u). 

1/0 

1/0 

1/1 
1/2 

1/3 

2/2 2/2 

 1/1 
1/0 

{ 

Algorithm 

3.  A Refinement Minimizing the Loss Cost with 

the Constraint of Optimal Dup. Cost 

Step 3:   Infer duplications 

and losses. 

  

If α(u) < β(u),  duplications 

(     ) are postulated.  

 

If α(u) > β(u),  losses (      ) 

 are postulated. 



Dup-optimal solution Loss-optimal solution Solution of minimizing 

duplications and then  

loss  

a  b  c   d e  f   g 

S 

 ac a de ag ab de fg 

G 
v 



a b  c d e  f  h 

S 

 ac a de ah ab de fh 

G 

a  b  c  d e f  h 

Ŝ 

ac a de ah ab de fh 

a  b  c  d e f  h 

ab  a de ah ac de  fh 

Ĝ 

          Step 1  

         Obtain the optimal 

         refinement  Ŝ of  S  

         using the union  

         network 

Step 2 

Refine G based on  

the refinement  Ŝ  

of  S, obtaining Ĝ 

Step 3 

Reconcile  Ĝ  and  Ŝ 

to infer the evolution 

of the gene family 

8 losses 

3 duplications 

4. Exact Algorithm for Reconciling Non-binary Trees 



http:phylotoo.appspot.com 



   Modeling gene duplication, losses, horizontal gene transfer, 

incomplete lineage sorting simultaneously 
              

              -- Hallett, Lagergren & Tofigh,  2004 

             -- Stolzer et al, 2012 

             -- Bansal, EJ Alm, M Kellis, 2012 

 

  Likelihood methods for tree reconciliation 

       

             -- Arvestad, Lagergren, Sennblad, 2009 

              -- Boussau et al. 2013 

              -- Liu, Yu, Kubatko, Pearl,  Edwards, 2009 

 

Conclusion 


