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Consider a duplication gene family G 

Species  Genes 

A A_g1, A_g2, A_g3, A_g4 

B B_g 

C C_g 

D D_g1, D_g2 

E E_g1, E_g2 

F F_g 

H H_g 

Question:   How to reconstruct the duplication history of the gene family G ? 

Introduction: Gene Duplication Inference 

Duplication 

Gene loss 

A        B       C       D        E       F         H 



Step 1    Build the gene tree G 

              for the gene family 

              using gene sequences,  

              and the species tree S  

              if it is not available.  

G 

Introduction: Tree Reconciliation Approach 



   Gene Tree and Species Tree 

 A species tree S represents the evolutionary pathways of  

     of a group of species    

 A gene tree G is reconstructed from gene sequences, 

      representing evolutionary relationship of genes, but is not  

      the duplication history of the gene family.  

S1     S2      S3      S4 

Species tree S 

S1g   S2g  S1g S3g S4g 

Gene tree G 

 G can differ from the corresponding S in two respects. 

           -- The divergence of two genes may predate the divergence   

               of the corresponding species 

           -- Their topologies are different 

S1    S2   S1   S3     S4   



Step 1    Build the gene tree G 

              for the gene family 

              using gene sequences,  

              and the species tree S  

              if it is not available.  

Step 2    Reconcile G and S  

               to infer gene duplication  

               and loss events, forming  

               a duplication history of  

               the gene family. 
A   B      C   D  E  F    H 

   a  b a d   e  a  h d  e f   h  a   c 

Node-to-Node Map λ 

G 

Introduction: Tree Reconciliation Approach 

S 
G 



LCA reconciliation λ: Binary trees 

In G,  the leaves are labeled with corresponding species; 

𝑙(𝑥):     the label of a leaf x of G; 

𝑙− 𝑦 :  the leaf of S that has the label y; 

lca:       the lowest common ancestor of two nodes 

𝑣1, 𝑣2:  the children of v. 

λ: V(G)  V(S) is defined as: 

𝜆 𝑣 =  
𝑙𝑆

− 𝑙𝐺(𝑣) ,         𝑣 is a leaf of 𝐺,

lca 𝜆 𝑣1 , 𝜆 𝑣2 ,  otherwise
 

A   B      C   D  E  F    H 
   a  b a d   e  a  h d  e f   h  a   c 

 v 

 w 

 x 
 λ(v)  λ(x) 

 λ(w) 

Goodman et al, 1979 
G S 



LCA reconciliation λ: Binary trees (con’t) 

𝑣 ∈ 𝑉 𝐺  is a duplication node if 𝜆 𝑣 = 𝜆 𝑣1  or 𝜆 𝑣 = 𝜆 𝑣2 . 

A   B      C   D  E  F    H 
   a  b a d   e  a  h d  e f   h  a   c 

 u 
 v 

 w 

 λ(u)=λ(v) 

 λ(r)= λ(w)= λ(z)= λ(y) 

 y 
 z 

 r 

A        B       C       D        E       F         H 

Duplication 

Gene loss 

For each duplication node v, 

a duplication is assumed in the 

branch entering   𝜆 𝑣 , producing 

two gene copies,  which are 

the ancestors of the modern  

genes in the left subtree and  

in  the right subtree, respectively. 



LCA reconciliation λ: Binary trees (con’t) 

A   B      C   D  E  F    H 

 λ(u1)        λ(u2) 

 λ(u) 

(The gene duplication cost of λ) = (no. of duplication nodes) 
(The gene loss cost of λ) = (no. of gene loss events) 

 The gene loss cost  can be computed from the no. of  lineages  

     branching off the paths from  λ(u) to λ(u1) and λ(u2) 

 

 Both gene duplication and loss costs are two dissimilarity measures  

     for gene and species trees.  

   a  b a d   e  a  h d  e f   h  a   c 

 u2 
 u1 

 u 



Theorem   Let G and S be binary.  

 

      1).  λ gives a duplication history of the gene family 

             with the least gene duplication events (Gorecki & Tiuryn, 2006).  

 

      2).  λ gives a duplication history of the gene family with 

             the least gene loss events (Chauve & El-Mabrouk, 2009).  

 

        3).  λ gives a duplication history of  the gene family with the 

              least deep coalescence cost (Wu & Zhang, 2011). 

 

      4).   λ is linear-time computable (Zhang, 1997, Chen, Durand & Farach 2000). 

λ is the parsimonious reconciliation for binary trees 



Introduction: Species Tree Reconstruction 

Species Tree (ST) Problem 

Instance:  A set of gene trees Gi (0 ≤ 𝑖 ≤ 𝑛) and a cost function c().  

Solution:  A binary species tree S that minimizes  𝑐(𝐺𝑖 , 𝑆)1≤𝑖≤𝑛  

The following cost functions have been used: 

      -- Gene duplication cost W 

      -- Gene loss cost  L 

      -- Deep coalescence cost DC 

      --  Mutation cost (W+L), or  weighted sum of W and L 

      -- Robinson-Foulds distance 

 The ST problem is NP-hard for each of the above cost functions. 

McMorris & Steel, 1993 

Ma, Li, &  Zhang, 2000;  

Bansal & Shamir, 2010; 

Zhang, 2011; 

Hallett & Lagergren, 2001 

Yu,  Warnow & Nakhleh, 2011 

Than & Nakhleh, 2009 

 Liu, Yu, Kubatko, Pearl & Edwards, 2009 



Introduction:  Unify Two Problems  

General Reconciliation (GR) Problem 

Instance:  A gene tree G and a species tree S and  

                  a reconciliation cost c( , ). 

Solution:  A binary refinement Ĝ of G and Ŝ of S  

                 such that the lca reconciliation of Ĝ and Ŝ   

                 minimizes a reconciliation cost c(Ĝ, Ŝ). 

Refinement 

 

Contraction 

Eulenstein,  Huzurbazar,  Liberles, 2010 



Two remarks 

1. The GR problem is a generalization of binary tree 

       reconciliation    

2. The species tree inference problem is a special case 

    of the GR problem, and hence the latter is NP-hard.   

Species Tree Inference 

Instance:  A set of gene trees Gi (0 ≤ 𝑖 ≤ 𝑛).  

Solution:  A binary species tree S that minimizes  𝑐(𝐺𝑖 , 𝑆)1≤𝑖≤𝑛  

 Set S be the star tree over the species in the reduction 

    from the Species Tree problem to the GR problem 



Outline of Today’s Talk 

  Relationship between tree similarity measures 

  Algorithms for the General Reconciliation problem  

          -- Extensions of the reconciliation of binary trees  

              to non-binary gene trees    

          -- Exact algorithm for reconciling two non-binary trees 

 Computer program TxT 

 Conclusion 

Zheng, Wu & Zhang, 2011 
Zheng & Zhang, 2013 



Part I:  Relationship between Cost Functions 

Theorem    Let S be a species tree and G the gene tree of a gene  

family. If one family member is found in each of the species,  

then 

𝐶loss 𝐺, 𝑆 = 2𝐶𝑑𝑢𝑝 𝐺, 𝑆 + 𝐶𝑑𝑐 𝐺, 𝑆  

where 𝐶𝑑𝑐 𝐺, 𝑆   (deep coalescence cost) is defined as the sum of 

extra lineages in all branches when G is mapped onto S. 

Maddison, 1997 

Zhang, 2011  



    Consider two singly-labeled trees G and S over n taxa X   

(that is, each leaf is uniquely labeled with 𝑒 ∈ 𝑋). 

    The Robinson-Foulds distance 𝐶RF 𝐺, 𝑆  is defined to be 

the number of leaf clusters appearing in G but not in S. 

a    b c  d  e   f  g   h a    c b  d  g   e f    h 

{e, f, g, h} {e, f, g, h} {a, b} 

Proposition    (i)  For G and S defined above,  

                  𝐶dup 𝐺, 𝑆 ≤ 𝐶RF 𝐺, 𝑆 ≤ 𝐶𝐷𝐶(𝐺, 𝑆) ≤ 𝐶loss 𝐺, 𝑆 . 

      (ii)      max𝐺,𝑆 𝐶dup(𝐺, 𝑆) = max𝐺,𝑆 𝐶RF(𝐺, 𝑆) = 𝑛 − 2. 



Theorem   (i) There exist G and S  with n  leaves such that 

                         𝐶dup 𝐺, 𝑆 =1, but 𝐶RF 𝐺, 𝑆 =n-2. 

       (ii)  For any G and S defined above, 

                   𝑚𝑎𝑥 𝐶𝑑𝑢𝑝(𝐺, 𝑆), 𝐶𝑑𝑢𝑝(𝑆, 𝐺) ≥ 𝐶RF 𝐺, 𝑆 .       

98 species tree topologies for 10 taxa (listed in Fumas rank) 
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Part II: Reconciling Non-binary G and Binary S 

Instance:  A gene tree G and a binary species tree S and a cost c( ). 

Solution:  The binary refinement Ĝ of G  such that the lca   

                 reconciliation of Ĝ and S  minimizes c(Ĝ, Ŝ). 

  The following duplication inference rule does not work  

     for  non-binary nodes: 

.)()(or  ),()(  iff

  and children  having   with associated isn duplicatioA 

21

21
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  Durand et al (2006)  presented  first dynamic programming alg. for  

          reconciling a non-binary gene tree and a binary species tree.   

 

  Generalize the reconciliation to non-binary gene trees. The whole process 

          takes O(|G|+|Ŝ|) time for the duplication and loss costs. 



  The node v and its children are  mapped  

     to a subtree  (blue) under  λ,  which is  

     expanded into a binary subtree  

     (by adding purple edges). 

a  b  c   d e  f   g 

S 

 ac a de ag ab de fg 

G 
v 

The  image subtree I(v)  

(I+(v) after extension)  

λ:  The lca reconciliation of G and S 



0 0 
0 

1 

2 

3 

 1 

2 

4 

Step 1   Compute m(u), 

the maximum number of  

child images in a path from  

 u to some leaf 

descendant in I+(v) . 

 
 
 

𝑚 𝑢 = 𝑚𝑎𝑥 𝑚 𝑢1 , 𝑚 𝑢2 + ω 𝑢 . 

ω(u)  is the # of children mapped to u. 

Algorithm 

a  b  c   d e  f   g 

S 

 ac a de ag ab de fg 

G 
v 



Thm   (i) The min. dup. cost for refining the non-binary node v  

                 is  m 𝜆 𝑣 − 1.     

    (ii) The min. loss cost for refining v  is equal to  (# of purple edges). 

Idea of Proof.    

                        P = 𝜆 𝑣1 , 𝜆 𝑣2 , … , 𝜆 𝑣𝑘 , ⊆  

  L:  The size of the longest chain in P, which is m 𝜆 𝑣  in our case ; 

  P:  The min.  #  of antichains into which P may be partitioned.  

          Dual of Dilworth Theorem (Mirsky, 1971):  L=P. 

 

(ii)  It is obvious.        

0 0 
0 

1 

2 

3 

 1 

2 

4 
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0 
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 1 

2 
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      Step 2  Compute α(u) / β(u) using m(u). 

1/0 

1/0 

1/1 
2/2 

1/4 

3/3 3/2 

 1/1 
2/0 

4 

3 

α(u): the # of  genes flowing 

          into a branch (p(u), u). 

β(u): the # of genes leaving 

          a branch  (p(u), u). 

. 

Algorithm 

𝛼 𝑟 = 1,     𝛽 𝑟 = m 𝑟 ; 

𝛼 𝑢 = 𝛽 𝑝 𝑢 − 𝜔 𝑝 𝑢 , 

 𝛽 𝑢 = 𝑚 𝑢 . 

1.  A Simple Refinement with the Optimal Dup. Cost 

ω(u): the # of children  

          mapped to u. 



0 0 
0 

1 

2 

3 

 1 

2 

4 

1/0 

1/0 

1/1 
2/2 

1/4 

3/3 3/2 

 1/1 
2/0 

Step 3   Infer duplications and losses: 

  

If α(u) < β(u),  duplications 

(     ) are postulated.  

 

If α(u) > β(u),  losses (      ) 

 are postulated. 



0 0 
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2 
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      Step 2  Compute α(u) / β(u) using m(u). 

1/0 

1/0 

1/1 
1/2 

1/2 

1/2 1/2 

 1/1 
1/0 

4 

3 

α(u): the # of  genes flowing 

          into a branch (p(u), u). 

β(u): the # of genes  leaving 

          a branch (p(u), u). 

Algorithm 

𝛼 𝑢 = 1,   

𝛽 𝑢 =  
𝜔 𝑢 + 1, 

𝜔 𝑢 , 
if 𝑢 is an internal node

if 𝑢 is a leaf
 

2. A Simple Refinement with the Optimal Loss Cost 

ω(u): the # of children  

          mapped to u. 



0 0 
0 

1 

2 
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 1 

2 
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Step 3   Infer duplications and losses: 

  

If α(u) < β(u),  duplications 

(     ) are postulated.  

 

If α(u) > β(u),  losses (      ) 

 are postulated. 

1/0 

1/0 

1/1 
1/2 

1/2 

1/2 1/2 

 1/1 
1/0 
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Step2:   Compute α(u) / β(u) using m(u). 

1/0 

1/0 

1/1 
1/2 

1/3 

2/2 2/2 

 1/1 
1/0 

{ 

Algorithm 

3.  A Refinement Minimizing the Loss Cost with 

the Constraint of Optimal Dup. Cost 

Step 3:   Infer duplications 

and losses. 

  

If α(u) < β(u),  duplications 

(     ) are postulated.  

 

If α(u) > β(u),  losses (      ) 

 are postulated. 



Dup-optimal solution Loss-optimal solution Solution of minimizing 

duplications and then  

loss  

a  b  c   d e  f   g 

S 

 ac a de ag ab de fg 

G 
v 



a b  c d e  f  h 

S 

 ac a de ah ab de fh 

G 

a  b  c  d e f  h 

Ŝ 

ac a de ah ab de fh 

a  b  c  d e f  h 

ab  a de ah ac de  fh 

Ĝ 

          Step 1  

         Obtain the optimal 

         refinement  Ŝ of  S  

         using the union  

         network 

Step 2 

Refine G based on  

the refinement  Ŝ  

of  S, obtaining Ĝ 

Step 3 

Reconcile  Ĝ  and  Ŝ 

to infer the evolution 

of the gene family 

8 losses 

3 duplications 

4. Exact Algorithm for Reconciling Non-binary Trees 



http:phylotoo.appspot.com 



   Modeling gene duplication, losses, horizontal gene transfer, 

incomplete lineage sorting simultaneously 
              

              -- Hallett, Lagergren & Tofigh,  2004 

             -- Stolzer et al, 2012 

             -- Bansal, EJ Alm, M Kellis, 2012 

 

  Likelihood methods for tree reconciliation 

       

             -- Arvestad, Lagergren, Sennblad, 2009 

              -- Boussau et al. 2013 

              -- Liu, Yu, Kubatko, Pearl,  Edwards, 2009 

 

Conclusion 


