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Metagenomics
• Genomics
▫ Study of an organism's 

genome
▫ Relies upon cultivation 

and isolation
▫ > 99% of bacteria cannot 

be cultivated

• Metagenomics
▫ Study of all organisms in an environmental sample by 

simultaneous sequencing of their genomes
▫ Makes it possible to study organisms that can’t be isolated or 

difficult to grow in a lab 



Metagenomic Projects

• Motivation: to understand 
mechanisms by which the 
microbes tolerate the extremely 
acid environments

• Simple community: 5 dominant 
species (3 bacteria and 2 archaea)

The Acid Mine Drainage Project

The Tinto River in Spain  (Credit  - Carol Stoker)

The Sargasso Sea Project

A coral reef off the coast of Malden Island in Kiritibati

• A large scale sequencing in 
an environmental setting

• Identified >1 million of 
putative genes (10 times > 
than in all databases at that 
time)

• ~1800 species

The Human-Microbiome Project

• Microbial community living in 
a host

• 100 trillion microbes
• 100 times more microbial than 

human genes
• Is there a core human 

microbiome?
• How changes in microbiome

correlate with human health?



DNA Sequencing
• Sanger sequencing 
• Next generation sequencing (NGS)
▫ High-throughput
▫ Cost- and time-effective
▫ No cloning (reduced clonal biases)
▫ Shorter read length compared to 

Sanger reads (~1000 bps)
Roche/454 (~450 bps)
Illumina/Solexa (35-100 bps)
ABI SOLiD (35–50 bps)

▫ Due to rapid progress, sequencing 
lengths will increase



Goals of Metagenomics
• Phylogenetic diversity
• Metabolic pathways
• Genes that predominate in a given environment
• Genes for desirable enzymes
• Comparative metagenomics ???
• ...

A fundamental step: complete genomic sequences



Problem Formulation
• Given metagenomic reads, separate reads from 

different species (or groups of related species)



Difficulties
• Repeats in genomic sequences
• Sequencing errors

• Unknown number of species and 
abundance levels
• Common repeats in different genomes 

due to homologous sequences

genomics

metagenomics



Approaches
• Similarity-Based
▫ Similarity search against databases of known genomes 

or genes/proteins
• Composition-Based
▫ Binning based on conserved compositional features of 

genomes
• Abundance-Based
▫ Separate genomes by abundance levels



Our Algorithm: Overview
• Purpose: separating short paired-end reads from 

different genomes in a metagenomic dataset
• Two-phase heuristic algorithm
▫ based on l-mers
▫ similar abundance levels
▫ arbitrary abundance levels (in combination with 

AbundanceBin [Wu and Ye, RECOMB, 2010])



Algorithm: Definitions and Observations

Observation 1: Most of the l-mers in 
a bacterial genome are unique 

l ~ 20, for most of complete genomes

Repeated l-mers (occur > once)
Unique l-mers (occur only once)

The ratio of unique l-mers
to distinct l-mers



Algorithm: Definitions and Observations

Observation 2: Most l-mers in a 
metagenome are unique

for l ~ 20 and genomes separated  
by sufficient phylogenetic distances

Unique l-mers

Repeated l-mers



Algorithm: Definitions and Observations



Algorithm: Definitions and Observations

Observation 3: Most of the repeats 
in a metagenome are individual

for l ~ 20 and genomes separated     
by sufficient phylogenetic distances

Repeated l-mers

Individual 
repeats

Common 
repeats



Algorithm: Definitions and Observations



Flowchart



Algorithm: Preprocessing

• Finding unique l-mers

Choice of  K: Observed frequency of  
the count =  2 * (expected frequency 
of the count in unique l-mers)

▫ Count occurrence of l-mers in reads
▫ Find threshold K for counts of l-mers

to separate unique l-mers and repeats
Unique l-mers: counts < K. 
Repeats: counts > K.



Algorithm: Preprocessing
• Finding l-mers with errors
▫ Threshold H for counts of l-mers to separate l-mers with 

and without errors



Algorithm: Phase I
• Goal:
▫ l-mers in each cluster are from the same genome
▫ Each genome may correspond to several clusters

• Graph of unique l-mers:
▫ Nodes – unique l-mers
▫ Edge (u,v) iff u and v occur in the same read



Algorithm: Phase I

• Cluster initialization
▫ l-mers of an unclustered read
• Cluster expansion
▫ Add nodes with at least T neighbors
▫ Stop if more than 2(L-(l+T)+1) l-mers are to be added 

It means that repeated l-mers (wrongly classified as 
unique) were added at a previous step. L is read length.

▫ Choose T s.t. the expected number of gaps in coverage 
by (l+T)-mers < 1



Algorithm: Phase II
• Goal: merge clusters from the same genome
• Weighted graph 
▫ For every cluster Ci construct set Ri that contains:

Repeats in reads assigned to Ci
Repeats in mate-pairs of reads assigned to Ci

▫ Nodes – clusters Ri
▫ Weights: w(i,j) = Ri∩ Rj



Algorithm: Phase II
• MCL algorithm [van Dongen, PhD Thesis, 2000] 
▫ For clustering sparse weighted graphs
▫ Parameter P ~ granularity
▫ We use an iterative algorithm to find the best P



Algorithm: Postprocessing
• Assign a read to a cluster if  >50% of its l-mers

correspond to the same cluster
• Unassigned reads: iteratively assigned using mates



Arbitrary Abundance Levels

• Significant  abundance ratios is defined by the 
expected misclassification rate (>3%) 



Experimental Results: Overview
• Lack of NGS metagenomic benchmarks
• Most binning algorithms in the literature are concerned with 

Sanger reads
• Datasets
▫ Tests on variety of synthetic datasets with different number of 

genomes, phylogenetic distances and abundance ratios
▫ Performance on a real metagenomic dataset from gut 

bacteriocytes of a glassy-winged sharpshooter
• Comparison 
▫ We modify the Velvet assembler [Zerbiono and Birney, Renome Research, 

2008] to work as a genome separator (clusters in Phase I are 
replaced by sets of l-mers from the Velvet contigs)

▫ With CompostBin [Chatterji et al., RECOMB, 2008] on Sanger reads
▫ With MetaCluster on short NGS reads [Wang et al., Bioinformatics, 2012]



Experimental Results: Evaluation
• Genomes are assigned by majority of reads (at least 50%)
• Several genomes may correspond to one cluster
• Evaluation factors
▫ Broken genomes (not assigned)
▫ Separability (percent of separated pairs)
• Sensitivity
▫ (# true positives)/(# all reads from the genomes assigned to 

the cluster)
• Precision
▫ (# true positives)/(# reads in a cluster)



Experimental Results
• 182 synthetic datasets of 4 categories
▫ 79 experiments for the same genus
▫ 66 – same family
▫ 29 – same order
▫ 8 – same class
• Read length: 80 bps
• Coverage depth: ~15-30
• Equal abundance levels
• 2-10 genomes in each dataset
• Simulation: Metasim [Richter et al., PloS ONE, 2008]
• Phylogeny: NCBI taxonomy



Experimental Results



Experimental Results: Genomes 
with Different Abundance Levels



Experimental Results: Comparison with 
CompostBin
• Simulated paired-end Sanger reads from [Chatterji et al., 

RECOMB, 2008]

▫ Handling longer reads (1000 bps)
Cut long reads into short reads of 80 bps
Linkage information is recovered in Phase II

▫ Handling lower coverage depth (~3-6)
Choose higher threshold K to separate repeats and unique 
l-mers in preprocessing

• Simulated paired-end Illumina reads 
▫ 80 bps, high coverage depth (~15-30)



Experimental Results: Comparison with 
CompostBin

Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 Test9

Abundance ratio 1:1 1:1 1:1 1:1 1:1 1:1 1:1:8 1:1:8 1:1:1:1:2:14

Phylogenetic
distance

Species Genus Genus Family Family Order Family  
Order

Order
Phylum

Species, Order, Family 
Phylum, Kingdom



Experimental Results: Real Dataset
• Gut bacteriocytes of glassy-winged sharpshooter, 

Homalodisca coagulata
▫ Consists of reads from:

Baumannia cicadellinicola
Sulcia muelleri
Miscellaneous unclassified reads

• Sanger reads
• Performance is measured on the ability to separate reads 

from B.cicadellinicola and S.muelleri
• Performance
▫ TOSS: Sensitivity: ~92%, error rate ~1.6%
▫ CompostBin: error rate: ~9%







Implementation of TOSS
• Implemented in C
• Running time and memory depend on
▫ Number and length of reads
▫ Total length of the genomes
• For 80 bps reads -- 0.5 GB of RAM per 1 Mbps
▫ 2-4 genomes, total length 2-6 Mbps – 1-3 h, 2-4 GB of RAM
▫ 15 genomes, total length 40 Mbps – 14 h, 20 GB of RAM



Conclusion
• Genomes can be separated if the number of common 

repeats is small compared to the number of all repeats.

• Additional information (such as compositional properties) 
could be added to improve separability in Phase II.

Fraction of common repeats to all repeats in evaluated datasets tests


	Separating Metagenomic Short Reads into Genomes via Clustering
	Outline
	Metagenomics
	Metagenomic Projects
	DNA Sequencing
	Goals of Metagenomics
	Problem Formulation
	Difficulties
	Approaches
	Our Algorithm: Overview
	Algorithm: Definitions and Observations
	Algorithm: Definitions and Observations
	Algorithm: Definitions and Observations
	Algorithm: Definitions and Observations
	Algorithm: Definitions and Observations
	Flowchart
	Algorithm: Preprocessing
	Algorithm: Preprocessing
	Algorithm: Phase I
	Algorithm: Phase I
	Algorithm: Phase II
	Algorithm: Phase II
	Algorithm: Postprocessing
	Arbitrary Abundance Levels
	Experimental Results: Overview
	Experimental Results: Evaluation
	Experimental Results
	Experimental Results
	Experimental Results: Genomes with Different Abundance Levels
	Experimental Results: Comparison with CompostBin
	Experimental Results: Comparison with CompostBin
	Experimental Results: Real Dataset
	Implementation of TOSS
	Conclusion

