Separating Metagenomic Short Reads into Genomes via Clustering

Outline

- Metagenomics and DNA Sequencing
- Problem Formulation
- Related Work
- Our Method
 - Overview
 - Observations and Intuition
- Details of the Algorithm
- Experimental Results
- Implementation and Conclusions

Metagenomics

• Genomics

- Study of an organism's genome
- Relies upon cultivation and isolation
- >99% of bacteria cannot be cultivated

Metagenomics

- Study of all organisms in an environmental sample by simultaneous sequencing of their genomes
- Makes it possible to study organisms that can't be isolated or difficult to grow in a lab

Metagenomic Projects

The Acid Mine Drainage Project

The Tinto River in Spain (Credit - Carol Stoker)

- Motivation: to understand mechanisms by which the microbes tolerate the extremely acid environments
- Simple community: 5 dominant species (3 bacteria and 2 archaea)

The Sargasso Sea Project

A coral reef off the coast of Malden Island in Kiritibati

- A large scale sequencing in an environmental setting
 - Identified >1 million of putative genes (10 times > than in all databases at that time)
 - ~1800 species

The Human-Microbiome Project

- Microbial community living in a host
- 100 trillion microbes
- 100 times more microbial than human genes
- Is there a core human microbiome?
- How changes in microbiome correlate with human health?

DNA Sequencing

- Sanger sequencing
- Next generation sequencing (NGS)
 - High-throughput
 - Cost- and time-effective
 - No cloning (reduced clonal biases)
 - Shorter read length compared to Sanger reads (~1000 bps)
 - Roche/454 (~450 bps)
 - Illumina/Solexa (35-100 bps)
 - ABI SOLiD (35–50 bps)
 - Due to rapid progress, sequencing lengths will increase

Goals of Metagenomics

- Phylogenetic diversity
- Metabolic pathways
- Genes that predominate in a given environment
- Genes for desirable enzymes
- Comparative metagenomics ???

A fundamental step: complete genomic sequences

Problem Formulation

• Given metagenomic reads, separate reads from different species (or groups of related species)

Difficulties

- Repeats in genomic sequences
- Sequencing errors
- Unknown number of species and abundance levels
- Common repeats in different genomes due to homologous sequences

metagenomics

genomics

Approaches

- Similarity-Based
 - Similarity search against databases of known genomes or genes/proteins
- Composition-Based
 - Binning based on conserved compositional features of genomes
- Abundance-Based
 - Separate genomes by abundance levels

Our Algorithm: Overview

- Purpose: separating short paired-end reads from different genomes in a metagenomic dataset
- Two-phase heuristic algorithm
 - based on *l*-mers
 - similar abundance levels
 - arbitrary abundance levels (in combination with AbundanceBin [Wu and Ye, RECOMB, 2010])

Unique *I*-mers (occur only once) Repeated *I*-mers (occur > once)

Observation 1: Most of the *l*-mers in a bacterial genome are unique $l \sim 20$, for most of complete genomes

The ratio of unique *I*-mers to distinct *I*-mers

Observation 2: Most *l*-mers in a metagenome are unique for *l* ~ 20 and genomes separated by sufficient phylogenetic distances

Observation 3: Most of the repeats in a metagenome are individual for *l* ~ 20 and genomes separated by sufficient phylogenetic distances

Flowchart

Algorithm: Preprocessing

- Finding unique *l*-mers
 - Count occurrence of *l*-mers in reads
 - Find threshold K for counts of *l*-mers to separate unique *l*-mers and repeats
 - Unique *l*-mers: counts < *K*.
 - Repeats: $\operatorname{counts} > K$.

<i>I</i> -mers	Occurrence							
	in reads							
AAAT	N1							
AACG	n2							
ACGT	n₃>K							
ACTT	n 4							
AGAA	ทธ							
ATCT	ne							
CAAG	nz>K							
○ CCGT	ាខ							
• • •								

Choice of *K*: Observed frequency of the count = 2 * (expected frequency of the count in unique *l*-mers)

Algorithm: Preprocessing

• Finding *l*-mers with errors

 Threshold *H* for counts of *l*-mers to separate *l*-mers with and without errors

Algorithm: Phase I

- Goal:
 - *l*-mers in each cluster are from the same genome
 - Each genome may correspond to several clusters

- Graph of unique *l*-mers:
 - Nodes unique *l*-mers
 - Edge (u,v) iff u and v occur in the same read

Algorithm: Phase I

Cluster initialization

l-mers of an unclustered read

- Cluster expansion
 - Add nodes with at least T neighbors
 - Stop if more than 2(L-(l+T)+1) *l*-mers are to be added
 - It means that repeated *l*-mers (wrongly classified as unique) were added at a previous step. *L* is read length.
 - Choose T s.t. the expected number of gaps in coverage by (*l*+*T*)-mers < 1

Algorithm: Phase II

- Goal: merge clusters from the same genome
- Weighted graph
 - For every cluster *Ci* construct set *Ri* that contains:
 - Repeats in reads assigned to Ci
 - Repeats in mate-pairs of reads assigned to Ci
 - Nodes clusters *Ri*

Algorithm: Phase II

- MCL algorithm [van Dongen, PhD Thesis, 2000]
 - For clustering sparse weighted graphs
 - Parameter $P \sim$ granularity
 - We use an iterative algorithm to find the best *P*

Algorithm: Postprocessing

- Assign a read to a cluster if >50% of its *l*-mers correspond to the same cluster
- Unassigned reads: iteratively assigned using mates

Arbitrary Abundance Levels

Experimental Results: Overview

- Lack of NGS metagenomic benchmarks
- Most binning algorithms in the literature are concerned with Sanger reads
- Datasets
 - Tests on variety of synthetic datasets with different number of genomes, phylogenetic distances and abundance ratios
 - Performance on a real metagenomic dataset from gut bacteriocytes of a glassy-winged sharpshooter
- Comparison
 - We modify the Velvet assembler [Zerbiono and Birney, Renome Research, 2008] to work as a genome separator (clusters in Phase I are replaced by sets of *l*-mers from the Velvet contigs)
 - With CompostBin [Chatterji et al., RECOMB, 2008] on Sanger reads
 - With MetaCluster on short NGS reads [Wang et al., Bioinformatics, 2012]

Experimental Results: Evaluation

- Genomes are assigned by majority of reads (at least 50%)
- Several genomes may correspond to one cluster
- Evaluation factors
 - Broken genomes (not assigned)
 - Separability (percent of separated pairs)
- Sensitivity
 - (# true positives)/(# all reads from the genomes assigned to the cluster)
- Precision
 - (# true positives)/(# reads in a cluster)

Experimental Results

- 182 synthetic datasets of 4 categories
 - 79 experiments for the same genus
 - 66 same family
 - 29 same order
 - 8 same class
- Read length: 80 bps
- Coverage depth: ~15-30
- Equal abundance levels
- 2-10 genomes in each dataset
- Simulation: Metasim [Richter et al., PloS ONE, 2008]
- Phylogeny: NCBI taxonomy

Experimental Results

Precision

Fraction of broken genomes

Genus Family Order Class

Sensitivity

Experimental Results: Genomes with Different Abundance Levels

Experimental Results: Comparison with CompostBin

- Simulated paired-end Sanger reads from [Chatterji et al., RECOMB, 2008]
 - Handling longer reads (1000 bps)
 - Cut long reads into short reads of 80 bps
 - Linkage information is recovered in Phase II
 - Handling lower coverage depth (~3-6)
 - Choose higher threshold *K* to separate repeats and unique *l*-mers in preprocessing
- Simulated paired-end Illumina reads
 - 80 bps, high coverage depth (~15-30)

Experimental Results: Comparison with CompostBin

	Test1	Test2	Test3	Test4	Test5	Test6	Test7	Test8	Test9
Abundance ratio	1:1	1:1	1:1	1:1	1:1	1:1	1:1:8	1:1:8	1:1:1:2:14
Phylogenetic distance	Species	Genus	Genus	Family	Family	Order	Family Order	Order Phylum	Species, Order, Family Phylum, Kingdom

Experimental Results: Real Dataset

- Gut bacteriocytes of glassy-winged sharpshooter, *Homalodisca coagulata*
 - Consists of reads from:
 - Baumannia cicadellinicola
 - Sulcia muelleri
 - Miscellaneous unclassified reads
- Sanger reads
- Performance is measured on the ability to separate reads from *B.cicadellinicola* and *S.muelleri*
- Performance
 - TOSS: Sensitivity: ~92%, error rate ~1.6%
 - CompostBin: error rate: ~9%

Performance of the Improved TOSS

by modeling *l*-mer frequency distribution more carefully, taking into account sequencing errors

4 genomes, coverages 4 and 10

Performance of the Improved TOSS

10 genomes, coverages 1.5 and 9

Implementation of TOSS

- Implemented in C
- Running time and memory depend on
 - Number and length of reads
 - Total length of the genomes
- For 80 bps reads -- 0.5 GB of RAM per 1 Mbps
 - ^o 2-4 genomes, total length 2-6 Mbps 1-3 h, 2-4 GB of RAM
 - Is genomes, total length 40 Mbps 14 h, 20 GB of RAM

Conclusion

• Genomes can be separated if the number of common repeats is small compared to the number of all repeats.

Fraction of common repeats to all repeats in evaluated datasets tests

• Additional information (such as compositional properties) could be added to improve separability in Phase II.