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Metagenomics
. e | DNA
® Genomlcs - ' I'ar:vniqr:::"“t; ; knowiedge

= Study of an organism's application
genome

= Relies upon cultivation
and isolation

= > 99% of bacteria cannot i el e
be CUItlvatEd kn;”]‘;ga “_E — “ resources of an environment.

application | o ENA cultivatable

species Traditional cultivation methods
and traditional genomics can at
. genomics ﬁ best access 1%.
- Metagenomics

= Study of all organisms in an environmental sample by
simultaneous sequencing of their genomes

= Makes it possible to study organisms that can’t be isolated or
difficult to grow in a lab



Metagenomic Projects

The Acid Mine Drainage Project The Sargasso Sea Project The Human Mlcroblome Project

The Tinto River in Spain (Credit - Carol Stoker) A coral reef off the coast of Malden Island in Kiritibati

< Microbial community living in
a host

- Motivation: to understand A large scale sequencing in . _
mechanisms by which the an environmental setting ~ © 100 trillion microbes
microbes tolerate the extremely < Identified >1 million of - 100 times more microbial than
acid environments putative genes (10 times > human genes
than in all databases atthat . |5 there a core human

«  Simple community: 5 dominant

species (3 bacteria and 2 archaea) time)

~1800 species

microbiome?

- How changes in microbiome
correlate with human health?



DNA Sequencing

- Sanger sequencing

- Next generation sequencing (NGS)
= High-throughput

) - = _
= Cost- and time-effective | | | Seauencin
= No cloning (reduced clonal biases) . s, = .
= Shorter read length compared to ~g T —
Sanger reads (~1000 bps) _ ;o e
¢ ROChe/454 (~450 bpS) GﬂnnCCTG:CuGTTTGC j v

- Illumina/Solexa (35-100 bps)

- ABI SOLID (35-50 bps)

Due to rapid progress, sequencing
lengths will increase

a



Goals of Metagenomics

- Phylogenetic diversity

- Metabolic pathways

- GGenes that predominate In a given environment
- Genes for desirable enzymes

- Comparative metagenomics ???

A fundamental step: complete genomic sequences



Problem Formulation

-+ Glven metagenomic reads, separate reads from
different species (or groups of related species)



Difficulties

—_

» Repeats in genomic sequences |
] genomics
» Sequencing errors

_metagenomics

» Unknown number of species and
abundance levels

- Common repeats In different genomes
due to homologous sequences .




Approaches

- Similarity-Based
= Similarity search against databases of known genomes
or genes/proteins

- Composition-Based

= Binning based on conserved compositional features of
genomes

- Abundance-Based
= Separate genomes by abundance levels



Our Algorithm: Overview

» Purpose: separating short paired-end reads from
different genomes in a metagenomic dataset

- Two-phase heuristic algorithm
o based on /-mers
o similar abundance levels

= arbitrary abundance levels (in combination with
AbundanceBin [Wu and Ye, RECOMB, 2010])



Algorithm: Definitions and Observations
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Observation 1: Most of the -mers In
a bacterial genome are unique The ratio of unique l-mers
[ ~ 20, for most of complete genomes to distinct I-mers



Algorithm: Definitions and Observations

Unique /-mers

B BB B Repeated I-mers

Observation 2: Most /-mers In a
metagenome are unique

for [ ~ 20 and genomes separated
by sufficient phylogenetic distances



Algorithm: Definitions and Observations
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Algorithm: Definitions and Observations

Bl i B []
B2 BB B Repeated -mers
S

Individual Common

repeats repeats

Observation 3: Most of the repeats
In a metagenome are individual

for [ ~ 20 and genomes separated
by sufficient phylogenetic distances



Algorithm: Definitions and Observations
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Flowchart
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Algorithm: Preprocessing

C Eindi : _ I-mers Occurrence

Finding unique /-mers n reads

= Count occurrence of -mers in reads o AA. AT n1
= Find threshold K for counts of /-mers 2 ié%? 22:«

to separate unique /-mers and repeats o AC.TT na
- Unique /-mers: counts < K. o AG.AA ns
- Repeats: counts > K. O AT..CT ne

Eroauenc ® CA.AG n7z>K
L ©CC..GT ns

fiiqueimers Repeated Choice of K: Observed frequency of
e the count = 2 * (expected frequency
K Gountsorl-mers of the count in unique /-mers)




Algorithm: Preprocessing

» Finding /-mers with errors

= Threshold H for counts of /-mers to separate /-mers with
and without errors

Frequency

I-mers
with I-mers without
errors errors
M

H Counts of I-mers




Algorithm: Phase |

- Goal:
s [-mers in each cluster are from the same genome
s Each genome may correspond to several clusters

Unique Graph of unique Clusters of unique
I-mers I-mers l-mers

Clustering of o ® o ®
unique I-mers '-'.'.'1 C1 :.".f- Cc4

— — ';:. 000

00 000

 Graph of unique /-mers:
= Nodes — unique /-mers
= Edge (u,v) iff u and v occur in the same read



Algorithm: Phase |

» Cluster initialization
o [-mers of an unclustered read

» Cluster expansion
= Add nodes with at least 7" neighbors

= Stop If more than 2(L-(/+7)+1) /-mers are to be added

- It means that repeated /-mers (wrongly classified as
unique) were added at a previous step. L is read length.

= Choose T s.t. the expected number of gaps In coverage
by (/+7)-mers< 1



Algorithm: Phase Il

- Goal: merge clusters from the same genome
- Weighted graph
= For every cluster Ci construct set R: that contains:
- Repeats in reads assigned to Ci
- Repeats in mate-pairs of reads assigned to Ci
= Nodes — clusters Ri
= Weights: w(i,j) = Ri(1 R;  Clusters of unique
I-mers
RO C1 ::.:..: C4

Graph of clusters




Algorithm: Phase Il

» MCL algorithm [van Dongen, PhD Thesis, 2000]
= For clustering sparse weighted graphs
= Parameter P ~ granularity
= \We use an iterative algorithm to find the best P

i M1: C11, C12, ...
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Algorithm: Postprocessing

- Assign a read to a cluster if >50% of its /-mers
correspond to the same cluster

- Unassigned reads: iteratively assigned using mates

Assign reads to M-clusters

-
-
-

M1 M2 M3



Arbitrary Abundance Levels

Metagenomic Reads Apply AbundanceBin to
bin the reads

—

Condition: significant

‘ abundance ratios ; For each bin
[ “Perform phase 2 B
et .:-:.: - (use all the reads to .
o i 'Wi+ construct a graph) «% T ol Apply phase 1 |

wty — |

R 2

Assign the reads Frequency

- Significant abundance ratios is defined by the
expected misclassification rate (>3%)

Max
Ly Z +1, Z

Unique
l-mers

In genome i

K Counts of l-mers

Az — A2 Az —A1




Experimental Results: Overview

Lack of NGS metagenomic benchmarks

Most binning algorithms in the literature are concerned with
Sanger reads
Datasets

= Tests on variety of synthetic datasets with different number of
genomes, phylogenetic distances and abundance ratios

= Performance on a real metagenomic dataset from gut
bacteriocytes of a glassy-winged sharpshooter

Comparison

= We modify the Velvet assembler [Zerbiono and Bimey, Renome Research,
2008] to work as a genome separator (clusters in Phase | are
replaced by sets of /-mers from the Velvet contigs)

o With CompostBin [Chatterji et al., RECOMB, 2008] On Sanger reads
o With MetaCluster on short NGS reads [wang et al., Bioinformatics, 2012]



Experimental Results: Evaluation

- Genomes are assigned by majority of reads (at least 50%)
- Several genomes may correspond to one cluster
- Evaluation factors
= Broken genomes (not assigned)
= Separability (percent of separated pairs)
* Sensitivity
s (# true positives)/(# all reads from the genomes assigned to
the cluster)
- Precision
= (# true positives)/(# reads in a cluster)



Experimental Results

- 182 synthetic datasets of 4 categories
= 79 experiments for the same genus
s 66 — same family
s 29 — same order
= 8 — same class

- Read length: 80 bps

- Coverage depth: ~15-30

- Equal abundance levels

- 2-10 genomes in each dataset

« Simulation: Metasim [Richter et al., PloS ONE, 2008]
- Phylogeny: NCBI taxonomy



Experimental Results
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Experimental Results: Genomes
with Different Abundance Levels

Abundance ratio < 1:2
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Experimental Results: Comparison with

CompostBin
- Simulated paired-end Sanger reads from [Chatterji et al.,
RECOMB, 2008]
= Handling longer reads (1000 bps)
- Cut long reads into short reads of 80 bps
- Linkage information is recovered in Phase I
= Handling lower coverage depth (~3-6)
- Choose higher threshold K to separate repeats and unique
[-mers In preprocessing
- Simulated paired-end Illumina reads
= 80 bps, high coverage depth (~15-30)



Experimental Results: Comparison with

CompostBin
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Experimental Results: Real Dataset

» Gut bacteriocytes of glassy-winged sharpshooter,
Homalodisca coagulata

= Consists of reads from:
* Baumannia cicadellinicola
* Sulcia muelleri
- Miscellaneous unclassified reads

- Sanger reads

- Performance iIs measured on the ability to separate reads
from B.cicadellinicola and S.muelleri

- Performance
= TOSS: Sensitivity: ~92%, error rate ~1.6%
= CompostBin: error rate: ~9%



Performance of the Improved TOSS /LR

by modeling /-mer frequency distribution more carefully,
taking into account sequencing errors
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Performance of the Improved TOSS iL.f CR
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Implementation of TOSS

Implemented in C

Running time and memory depend on

= Number and length of reads

= Total length of the genomes

For 80 bps reads -- 0.5 GB of RAM per 1 Mbps

= 2-4 genomes, total length 2-6 Mbps — 1-3 h, 2-4 GB of RAM
= 15 genomes, total length 40 Mbps — 14 h, 20 GB of RAM



Conclusion

- Genomes can be separated if the number of common
repeats Is small compared to the number of all repeats.
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- Additional information (such as compositional properties)
could be added to improve separability in Phase I1.



	Separating Metagenomic Short Reads into Genomes via Clustering
	Outline
	Metagenomics
	Metagenomic Projects
	DNA Sequencing
	Goals of Metagenomics
	Problem Formulation
	Difficulties
	Approaches
	Our Algorithm: Overview
	Algorithm: Definitions and Observations
	Algorithm: Definitions and Observations
	Algorithm: Definitions and Observations
	Algorithm: Definitions and Observations
	Algorithm: Definitions and Observations
	Flowchart
	Algorithm: Preprocessing
	Algorithm: Preprocessing
	Algorithm: Phase I
	Algorithm: Phase I
	Algorithm: Phase II
	Algorithm: Phase II
	Algorithm: Postprocessing
	Arbitrary Abundance Levels
	Experimental Results: Overview
	Experimental Results: Evaluation
	Experimental Results
	Experimental Results
	Experimental Results: Genomes with Different Abundance Levels
	Experimental Results: Comparison with CompostBin
	Experimental Results: Comparison with CompostBin
	Experimental Results: Real Dataset
	Implementation of TOSS
	Conclusion

