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Abstract

The Robinson-Foulds (RF) distance is a well-established measure between
phylogenetic trees. Despite a lack of biological justification, it has the advantages
of being a proper metric and being computable in linear time. For phylogenetic
applications involving genes, however, a crucial aspect of the trees ignored by the
RF metric is the type of the branching event (e.g. speciation, duplication,
transfer, etc).Here, we extend RF to trees with labeled internal nodes by
including a node flip operation, alongside edge contractions and extensions. We
explore properties of this extended RF distance in the case of a binary labeling. In
particular, we show that contrary to the unlabeled case, an optimal edit path may
require contracting “good” edges, i.e. edges shared between the two trees. We
provide a 2-approximation algorithm which is shown to perform well empirically.
Looking ahead, computing distances between labeled trees opens up a variety of
new algorithmic directions.
Implementation and simulations available at
https://github.com/DessimozLab/pylabeledrf.
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1 Introduction
Phylogenic trees represent the evolutionary relationship between sets of genetic

elements or taxa, where the elements of a set are in one-to-one relationship with

the leaves of the corresponding tree [1]. Different phylogenetic inference methods

may lead to different trees, and each method, typically exploring a large space of

trees, can also result in multiple equally likely solutions for the same dataset. It

follows that comparing trees is an essential task for finding out how inferred trees

are far from one another, or how an inferred tree is far from a simulated tree or

from a gold standard tree for the same datasets.

Designing appropriate tree metrics is a widely explored branch of research. A va-

riety of measures have been designed for different types of trees, rooted or unrooted,

some restricted to comparing tree shapes [2], others considering multilabeled trees,

i.e. trees with repeated leaf labels [3] and yet others considering information on

edge length [4]. In particular, a large number of pairwise measures of similarity or

dissimilarity have been developed for comparing two topologies on the same leafset.

Among them are the methods based on counting the structural differences between

the two trees in terms of path length, bipartitions or quartets for unrooted trees,

clades or triplets for rooted trees [5–7], or those based on minimizing a number of

rearrangements that disconnect and reconnect subpieces of a tree, such as nearest
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neighbour interchange (NNI), subtree-pruning-regrafting (SPR) or Tree-Bisection-

Reconnection (TBR) moves [8–10]. While the latter methods are NP-hard [11], the

former are typically computable in polynomial time. In particular, the Robinson-

Foulds (RF) distance, defined in terms of bipartition dissimilarity for unrooted

trees, and clade dissimilarity for rooted trees [12], can be computed in linear [13],

and even sublinear time [14].

Despite several drawbacks such as lack of robustness (a small change in a tree may

cause a disproportional change in the distance), skewed distribution [15–17], and a

lack of biological rationale, RF remains the most widely used measure, not only in

phylogenetics, but also in other fields such as in linguistics. To increase robustness,

improved versions of the RF distance have also been developed [11, 18].

In addition of being efficiently computable, RF has the merit of being a true

metric. It was originally defined on unrooted trees, in terms of edit operations on

the tree edges: the minimum number of edge contraction and extension needed to

transform one tree into the other [19]. Interestingly, the same metric, expressed in

terms of node deletion and insertion, has been widely used in the context of data

featuring hierarchical dependencies, modeled as trees with labeled nodes. In this

case, the standard Tree Edit Distance (TED) is defined in terms of a minimum

cost path of node deletion, node insertion and node relabeling (label substitution)

transforming one tree to the other, for two trees sharing the same set of node labels

(i.e. each label is present exactly once in each tree). While the less constrained

version of the problem on unordered labeled trees is NP-complete [20], most variants

are solvable in polynomial time [21–23].

Even though this kind of hierarchical node labeling has limited applicability for

phylogenetic trees, other types of labeling can be used in the context of genetic data

comparison. In the case of gene trees, it is important to identify the evolutionary

event (duplication, speciation, transfer, etc) that has led to a given bifurcation. For

example, information on duplication and speciation node labeling is provided for

the trees of the Ensembl Compara database [24] (reconciled with TreeBest [25]).

Therefore, being able to compare labeled phylogenies is important in the context of

gene tree reconstruction and analysis.

This paper is the first effort towards extending the RF distance to labeled trees

involving, in addition to edge contraction and extension (operations that can alter-

natively be defined as node insertion and deletion), a node substitution or “relabel-

ing” operation. Importantly, our extended RF remains a metric in the mathematical

sense.

While the formulation of the RF distance in terms of edit operations is known,

the bipartition and clade formulations are often those that are used in the liter-

ature. Though similar, the three formulations present some differences depending

on whether the trees are rooted or unrooted. We begin by making these differences

explicit. We then explore, in Section 3, some properties of the extended RF distance

in the case of two labels (e.g. speciation and duplication). In particular, we show

that, in contrast to the RF distance for unlabeled trees, an optimal edit path for

labeled trees may involve contracting good edges, i.e. edges representing common

bipartitions of the two compared trees, which makes the extended RF much harder

to compute than the basic RF. In Section 4, we explore various avenues for comput-

ing the extended RF. We give an exact algorithm for contracting “mixed subtrees”,
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i.e. subtrees with alternating labels, and a bounded heuristic for general trees that

achieves a factor 2 approximation. In Section 5, the heuristic is shown, on simulated

datasets, to be efficient, by plotting the number of tree edits against the computed

RF distance. Finally, in Section 6, we explore some avenues for improvement. All

proofs are given in the Appendix.

2 Notations and concepts
Let T be a tree with a node set V (T ) and an edge set E(T ). Given a node x of T ,

the degree of x is the number of edges incident to x. We denote by L(T ) ⊆ V (T )

the set of leaves of T , i.e. the set of nodes of T of degree one. A node of V (T )\L(T )

is called an internal node. A tree with a single internal node is called a star tree.

An edge connecting two internal nodes is called an internal edge; otherwise, it is a

terminal edge. Moreover, a rooted tree admits a single internal node r(T ) considered

as the root.

Let x and y be two nodes of a rooted tree T ; y is an ancestor of x if y is on the

path from x to the root (possibly y itself); y is a descendant of x if y is on the path

from x to a leaf (possibly y itself) of T . For a rooted tree, we may write (x, y) for

an edge between x and y where x is closer to the root. We say that y is a child

of x. If T is unrooted, we call the set {y : {x, y} ∈ E(T )} the set of children of x

(this is an unusual definition, but defining a notion of children for both rooted and

unrooted trees will be useful later). For a rooted or an unrooted tree T , we denote

by Ch(x) the set of children of an internal node x of T .

A tree T representing the evolution of a set L of entities (usually taxa or genes)

is a tree with a one-to-one mapping between L(T ) and L. We simply write L =

L(T ) and say that T is a tree for L. An internal node represents an ancestral

event (classically a speciation or a duplication) leading from one to many different

entities. Moreover rooting a tree amounts to determining the common ancestor of

all entities, i.e. determining the direction of evolution. Accordingly, internal nodes

of an evolutionary tree (which are the trees considered in this paper) should be of

degree at least 3, except the root which is of degree at least 2. An internal node

x 6= r(T ) of a tree T is binary if and only if x is of degree 3 and r(T ) is binary if

and only if r(T ) is of degree 2. A tree T is said binary if and only if all its internal

nodes are binary.

A subtree S of T is a tree such that V (S) ⊆ V (T ), E(S) ⊆ E(T ) and any edge

of E(S) connects two nodes of V (S). A chain of T is a subtree C with a node set

V (C) = {x1, · · · , xk} and an edge set E(C) = {e1, · · · , ek−1} such that for each

1 ≤ i ≤ k, ei is incident to xi and xi+1.

If T is an unrooted tree, rooting T requires choosing an internal node as the root,

or creating a new node r(T ) on an edge e = {x, y} of T , namely removing e and

adding two edges {r(T ), x} and {r(T ), y}. If T is a rooted tree then the unrooted

version of T is simply T (ignoring the description of r(T ) as the root) if r(T ) is

non-binary; otherwise it is the tree obtained from T by removing r(T ) and its two

incident edges going to its neighbors u and v, and adding an edge between u and v.

For a rooted tree T , we denote by Tx the subtree of T rooted at x ∈ V (T ), i.e.

the subtree of T containing all the descendants of x. We call L(Tx) the clade of x.

A clade is non-trivial if it corresponds to an internal node of T . We denote by C(T )

the set of non-trivial clades of T . It can be seen as a subset of the power set of L.
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The bipartition of an unrooted tree T corresponding to an internal edge e = {x, y}
is the unordered pair of clades L(Tx) and L(Ty) where Tx and Ty are the two subtrees

rooted respectively at x and y obtained by removing e from T . A bipartition is non-

trivial if it corresponds to an internal edge of T , and trivial otherwise. We denote by

B(T ) the set of non-trivial bipartitions of T . Note that bipartitions are sometimes

called splits in the literature.

2.1 The Robinson-Foulds distance

Definition 1 (edit operations) Two edit operations on the edges of a tree T (rooted

or unrooted) are defined as follows:

• Let e = {x, y} be an internal edge of E(T ). An edge contraction Cont(T, e)

is an operation transforming the tree T into the tree T ′ obtained from T by

removing the edge e of T and identifying x and y; in other words, T ′ is obtained

by adding the edge {x, z} for each z ∈ Ch(y) \ {x}, and then removing y and

its incident edges (including {x, y}).

• Let x be a non-binary internal node of V (T ) and X = {y1, · · · , yt} ( Ch(x)

be a subset of Ch(x) such that |X| ≥ 2. A node extension Ext(T, x,X) is an

operation transforming the tree T into the tree T ′ obtained from T by removing

the edges {x, yi}, for 1 ≤ i ≤ t, creating a node y and a new edge e = {x, y}
adjacent to x, and creating new edges {y, yi}, for 1 ≤ i ≤ t.

The function δ(T1, T2) assigning to each pair of rooted or each pair of unrooted

trees the length of a minimum sequence of edit operations transforming T1 into T2

has been shown to be a metric, called the Edit distance or Robinson-Foulds distance

between T1 and T2 [19].

For unrooted trees T1 and T2, this distance corresponds to the symmetric dif-

ference between the bipartitions of the two trees. More precisely, δ(T1, T2) =

|B(T1) \ B(T2)| + |B(T2) \ B(T1)|. In fact, to transform T1 into T2, edit operations

are needed on bad edges representing bipartitions which are not shared by the two

trees, i.e. edges of T1 (respec. T2) defining bipartitions in T1 (respec. T2) which

are not in B(T2) (respec. in B(T1)). An edge which is not bad is said to be good

(see Figure 2). Terminal edges are always good.

In the case of rooted trees T1 and T2, the Robinson-Foulds distance, that we

denote in this case δR(T1, T2), is usually defined in the literature as the symmetric

difference between the clades of the two trees. More precisely, for two rooted trees

T1 and T2, δR(T1, T2) = |C(T1) \ C(T2)|+ |C(T2) \ C(T1)|.
The only thing that can make bipartitions and clades differ in number is rooting

into a bad edge. In this case, the same bipartition, corresponding to the two edges

adjacent to the root, would be counted twice. The link between this distance, defined

in terms of clades (that we write δR) and the edit distance (that we write δ), has

been established through the defined relation between the bipartition system (or

split system) and the clade system (or cluster system) [26].

Although our extended distance is more likely useful for rooted trees, algorithmic

analyses are simpler for unrooted trees, as in this case all internal nodes can be

treated in the same way. Here, we make the link between the rooted and unrooted

case, and then focus, for the rest of the paper, on unrooted trees.
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Let T r be a rooted version of an unrooted tree T , with a binary root. Denote by

e1, e2 the two edges adjacent to r(T r). As e1 and e2 define the same bipartition of

B(T ), these edges are either both good or both bad. These notations are used in

the following lemma.

Lemma 1 (Link between rooted and unrooted trees) Let T1 and T2 be two un-

rooted trees, and T ′1, respectively T ′2, be a rooting of T1, respectively T2.

• If T ′1 and T ′2 are both rooted into existing nodes of T1 and T2 or both rooted

into good edges of T1 and T2, then δR(T ′1, T
′
2) = δ(T1, T2);

• If T ′1 and T ′2 are both rooted into bad edges of T1 and T2, then δR(T ′1, T
′
2) =

δ(T1, T2) + 2;

• If exactly one among T ′1 and T ′2 is rooted into a bad edge of T1 or T2, then

δR(T ′1, T
′
2) = δ(T1, T2) + 1.

The edit distance between two trees (rooted or unrooted) can be computed in

linear time with the algorithm proposed by Day [13] in 1984. Our goal is to extend

this distance to labeled trees.

2.2 Labeled trees

Given a finite set of labels Λ, T is labeled if and only if each internal node x of T

has a unique label λ(x) ∈ Λ.

Contraction and extension operations are generalized to labeled trees as follows:

The node y created from an edge extension Ext(T, x,X) is such that λ(y) = λ(x);

an edge contraction is only defined on edges {x, y} for which λ(x) = λ(y). It follows

that a third edit operation should be introduced for labeled trees. Let x be a node

of a labeled tree T with label λ = λ(x). A node flip Flip(x, λ′) is an operation

assigning a new label λ′ to x, i.e. a label λ′ ∈ Λ such that λ′ 6= λ. Those operations

are depicted in Figure 1.

A node flip is required before contracting a mixed edge, i.e. an edge with its two

extremities being differently labeled. A tree is said to be a mixed tree if all its edges

are mixed edges.

Figure 1: The three edit operations defined for labeled trees. From left to

right: Flip, Contraction and Extension.

Let T be the set of trees on L, all trees being of the same type, i.e. all rooted or

unrooted, all labeled or unlabeled. The following lemma (holding for all these cases)

shows that introducing the flip operation does not prevent δ from being a distance.

Lemma 2 (Edit distance) The function δ(T1, T2) assigning to each pair (T1, T2) ∈
T 2 the minimum length of a sequence of edit operations transforming T1 into T2

defines a distance on T .
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In this paper, Λ is restricted to two labels. They are illustrated by a circle and

a square in Figure 2. The two labels can, for example, represent speciation and

duplication events. Notice however that labeling is not constrained to be consistent

with a species tree [27, 28]. In other words, the intermediate trees in an optimal

path transforming a tree to another are not required to be feasible according the

the speciation/duplication labeling. Algorithmic analyses are made independently

of the nature of the two node labels. However, for notation purpose, we write Λ =

{Spe,Dup}.

Figure 2: Two unrooted and labeled trees T and T ′ on L =

{A,B,C,D,E, F,G}. The square and circle symbols represent the two pos-

sible labels for an internal node. Bad edges are red and good ones are black.

{S1, S2} are the maximal bad subtrees of T and {S′1, S′2} the corresponding

subtrees of T ′.

3 Results on labeled trees
We focus now on unrooted trees. Using Lemma 1, our results can then be easily

extrapolated to rooted trees. Consider T as the set of unrooted and labeled trees

on L. The goal is to compute the edit distance δ(T, T ′) for any pair T, T ′ of trees of

T , that is the number of operations in an optimal sequence, i.e a sequence of edit

operations of minimum length transforming T into T ′.

3.1 Reduction to maximal bad subtrees

Let S be a subtree of T . Let {ei = {xi, yi}, for 1 ≤ i ≤ k} be the set of termi-

nal edges of S, with each yi being a leaf of S, and {Xi, Yi} being the bipartition

corresponding to ei. Each leaf yi of S is said to be mapped to Yi. Notice that

∪1≤i≤kYi = L.

We say that S is a bad subtree of T if and only if S contains only bad edges, except

the terminal edges of S which are all good edges of T . In other words, S is maximal

in the sense that no more bad internal edges can be added into it. Intuitively, S can

be obtained by taking a subtree with only bad edges, and adding edges adjacent

to bad edges of S iteratively until the process stops. As a result, every terminal

edge ei of S will be good, i.e. there is an edge e′i = {x′i, y′i} in T ′ corresponding to

ei = {xi, yi}, that determine the same bipartition {Xi, Yi}. Note that a maximal

bad subtree may contain no bad edge at all (i.e. it is a star tree centered on good

edges).



Briand et al. Page 7 of 20

Lemma 3 (Pairs of maximal bad subtrees) Let S be a maximal bad subtree of T

with the set {ei}1≤i≤k of terminal edges, and let {e′i}1≤i≤k be the corresponding set

of edges in T ′. Then the subtree S′ of T ′, containing all e′i edges as terminal edges,

is unique. Moreover, it is a maximal bad subtree of T ′.

Let {S1, S2, · · · , Sk} be the set of maximal bad subtrees of T and {S′1, S′2, · · · , S′k}
be the corresponding subtrees of T ′ (see Figure 2 for an example). For 1 ≤ i ≤ m, let

Pi be an optimal sequence transforming Si into S′i. Then the sequence P obtained

by performing consecutively P1,P2, · · · ,Pm transforms T into T ′.

Although the traditional RF distance can be deduced from the above observation,

in our case such a sequence is not necessarily optimal. In fact, in contrast with

unlabeled trees, optimal sequences for labeled trees may involve contracting good

edges, as illustrated in Figure 3.

Figure 3: Example where the minimal edit path requires contracting a good

edge: if we contract the internal good edge of T (the bold one), then the

3 subtrees of T can be handled together, requiring 6 node flips and 18

edge contractions to reduce T into a star tree, and then 18 edge extensions

to reach T ′, leading to 42 operations in total. By contrast, if we do not

contract the good edge of T , then the two subtrees of T separated by this

edge should be handled separately, requiring 9 flips, 17 edge contractions

and 17 edge extensions to reach T ′, leading to 43 operations in total. The

first scenario is the better one.

3.2 Reduction to mixed bad subtrees

In the next section, we will describe an exact algorithm for optimally contracting

a mixed tree. Before reaching this step, the question is how to obtain such a tree.

The next lemma shows that non-mixed bad edges can be contracted first. The idea

of the proof is that any optimal solution must eventually contract a non-mixed bad

edge {x, y}. We can thus contract {x, y} first into a single node z, and “reproduce”

all the events of the optimal solution by treating z as either x or y.

Lemma 4 (Contract non-mixed bad edges) Let e be any non-mixed bad edge of T ,

and let Tc be the tree obtained from T by contracting e. Then δ(Tc, T
′) = δ(T, T ′)−1.
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According to this lemma, we can safely start by contracting all non-mixed bad

edges of T and T ′ first, since there is always an optimal sequence of edit operations

that also does this. The resulting trees Tc and T ′c can then be subdivided into pairs

of maximal bad subtrees, all such bad subtrees being mixed subtrees.

4 Algorithms
We first consider a general framework which entails performing all required edge

contractions first, and then all node extensions.

Methodology 1 ( T , T ′)

Contract non-mixed bad edges of T and T ′, leading to Tc and T ′c;
for each pair S, S′ of maximal bad subtrees of Tc, T ′c do

Perform a sequence of flip and contraction operations leading from S to a star tree S∗;
Perform a sequence of flip and extension operations leading from S∗ to S′;

end for

This general framework leads to the following upper bound for δ(T, T ′).

Lemma 5 (Upper bound δ) Let T and T ′ be two unrooted and labeled trees with

n internal nodes each and let e (resp. e′) be the number of internal bad edges of T

(resp. T ′). Then δ(T, T ′) ≤ e+ e′ + n.

Notice that if both T and T ′ are binary, then e = e′. Moreover, in this this case

2e + n is a tight bound as it can be reached in some cases (see an example in

Figure 4).

Figure 4: A pair of unrooted mixed trees (T, T ′), both with eight internal

edges and nine internal nodes. All their internal edges are bad edges (red

edges). Here δ(T, T ′) = 25 = 2 · 8 + 9 = 2 · e+ n.

The first step of Methodology 1 leads to a star tree T∗. Instead of then extending

nodes to reach T ′, a symmetric way would be to transform T ′ into a star tree T ′∗.

The difference between T∗ and T ′∗ may be in the label of the single node of each

of these trees, which would then need an additional flip operation to reconstruct a

corresponding path from T to T ′. This second methodology is given below, where

Contract-Tree(T ,T∗) takes as input a tree T and returns a sequence of operations

contracting a tree T , i.e. transforming T into a star tree, and the star tree T∗

resulting from this optimal contraction.
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Methodology 2 is clearly simpler to handle and will be explored in the next section.

The next lemma shows that it may overestimate an optimal sequence returned by

Methodology 1 by at most one operation for each pair of maximal bad subtrees.

Methodology 2 ( T , T ′)

Contract non-mixed bad edges of T and T ′, leading to Tc and T ′c;
for each pair S, S′ of maximal bad subtrees of Tc, T ′c do

Contract-Tree(S, S∗);
Contract-Tree(S′, S′∗);
Perform a final flip if required;

end for

Lemma 6 (Compare Meth.1 and Meth.2) Let S and S′ be a pair of maximal bad

subtrees of Tc and T ′c, obtained similarly by Methodology 1 and Methodology 2. Let

M1(S, S′) (respec. M2(S, S′)) be the number of operations performed by the for loop

of Methodology 1 (respec. Methodology 2). Moreover, let S∗ (respec. S′∗) be the star

tree returned by Contract-Tree on S (respec. on S′).

1 If S∗ = S′∗ (same node label), then M2(S, S′) = M1(S, S′);

2 Otherwise, M1(S, S′) ≤M2(S, S′) ≤M1(S, S′) + 1

4.1 An optimal algorithm for contracting a tree

The remaining problem is the one of finding an optimal sequence of contraction

and flip operations contracting a mixed tree T . For any such sequence, the number

of contraction operations is just the number of internal edges of T . Therefore, the

problem reduces to finding the minimum number of flip operations φ(T ) in such

an optimal sequence. Notice that the problem does not reduce to performing the

minimum number of flips leading to the same label for all nodes, which would just

be min{nbspe, nbdup} with nbspe (respec. nbdup) being the number of Spe (respec.

Dup) nodes of T . For example, for the tree T of Figure 3, min{nbspe, nbdup} = 9.

However, proceeding by an alternating sequence of flip and contraction operations

(the top node flipped to Dup, then the three top edges contracted, then the next

top node flipped to a Spe node, then the three top edges contracted, etc.) leads to

a total of 6 flips rather than 9.

We will proceed iteratively by starting a sequence of contraction operations from

the center of a tree T , i.e. the midpoint of the longest mixed chain of T . The

diameter, denoted diam(T ), of a tree T is the length of its longest chain (determined

in terms of the number of edges). Note that any longest chain in a tree has two

leaves at its extremities, as otherwise we could extend the chain. Assume that T

has at least two terminal edges, so that diam(T ) ≥ 2. We show that φ(T ) is equal

to ddiam(T )/2e − 1. For a node v, let eccT (v) denote the maximum distance from

v to a leaf of T (this is known as the eccentricity of v) [1].

Lemma 7 (Optimal path contracting a mixed tree) The minimum number of flips

in an optimal sequence of operations transforming a mixed tree T into a star tree

is ddiam(T )/2e − 1.
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Algorithm Contract-Tree(T ) (where T is a mixed tree)

Let P = (w1, w2, . . . , wk) be a longest chain of T ;
Let w = wdk/2e be a midpoint of P ; (w has minimum eccentricity)
while w has a non-leaf neighbor do

Flip w;
Contract the internal edges incident to w;

end while

Lemma 7 immediately lead to Algorithm Contract-Tree. The fact that the al-

gorithm contracts T into a star tree using φ(T ) flips follows from the proof of

Lemma 7.

Theorem 1 For T being a mixed tree, Algorithm Contract-Tree returns the length

of an optimal sequence of operations contracting T .

One should note that if T has even diameter, then there are two possible mid-

points, i.e. two nodes with minimum eccentricity. This means that it is possible to

choose the label of the internal node of the resulting star tree. This guarantees that

when contracting a pair of bad subtrees T and T ′, we can always avoid a final flip by

choosing the appropriate final label if either T or T ′ has even diameter. We cannot

guarantee that this final flip is avoidable if both subtrees have odd diameter.

We now show that Methodology 2 has a guaranteed approximation ratio of 2 when

using Algorithm Contract-Tree as a subroutine. The idea behind the approximation

is to show that any optimal solution must contract all the bad edges and perform

at least one flip or good edge contraction per bad subtree. Our algorithm only

contracts bad edges, and we can show that the number of flips performed is at most

the number of bad edges plus twice the number of bad subtrees.

Theorem 2 (Upper bound Meth.2) Let d be the number of operations performed

by Methodology 2 when tree contractions are done by Algorithm Contract-Tree. Then

d ≤ 2δ(T, T ′).

5 Experimental results
We implemented a heuristic following Methodology 2, using the Contract-Tree

algorithm. To test it on simulated data, we retrieved the TP53 gene family from

Ensembl release 96 (542 genes), including the speciation and duplication labels,

and introduced an increasing number of random edit operations, on 30 replicates.

A random edit was introduced as follows: with probability 0.3, the label of one

random internal node was flipped; the rest of the probability mass function was

evenly distributed among all potential internal edges (which could be potentially

contracted) and all nodes of degree > 3 (in which a new edge could be expanded).

After each edit, we computed the classical RF distance and its extension to labeled

trees using our heuristic (Fig. 5). Because it accounts for labels, the latter tracked

more closely the true number of edits. At the same time, the estimated distances

were never higher than the actual number of edits, which suggests that the heuristic

[1]The radius of T is a well-known graph parameter and is defined as the minimum

eccentricity of a node of T . In a tree, the radius turns out to be ddiam(T )/2e.
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Figure 5: Empirical comparison of the distance inferred for an increasing

number of random edit operations (contraction, extensions, and flips), using

the classical Robinson-Foulds distance (left) and Contract-Tree algorithm

(right). Because the former ignores node labels, it grossly underestimates

the actual number of edits. Our algorithm tracks more closely the actual

number of edits.

can identify a minimum edit path when the total number of edit operations is

relatively low. The implementation, including the function to mutate labeled trees,

is available as an open source Python library (PyPI package pylabeledrf, also

available at https://github.com/DessimozLab/pylabeledrf).

6 Discussion
In this paper, we have considered what we thought was the simplest and most

natural extension of the Robinson-Foulds distance to labeled trees. Although its

theoretical complexity is unknown and remains an open problem, this extension

appears to be much harder to compute than the classical RF distance for unlabeled

trees.

Despite the optimality of Algorithm Contract-Tree for contracting a mixed tree,

neither Methodology 1, nor Methodology 2 are guaranteed to lead to an optimal

solution. This is due to two main reasons. The first one is that, as shown in Figure 3,

an optimal path contracting a tree T may require contracting good edges, i.e. edges

common to both trees, which is not the case for unlabeled trees. The second reason

is that an optimal path from a tree T to a tree T ′ may not be one with all edge

contraction events preceding all edge extension. An example, given in Figure 6,

shows that it may be better to convert a given bad edge into a good edge rather

than contracting all bad edges. It can be observed from this example that going from

T to T ′ following the red path entails performing a nearest-neighbour interchange

(NNI) operation on the edge e of T . A future direction for improving the algorithm

will be to consider such “safe” edges, i.e. edges admitting an NNI leading to a

bipartition of the target tree.

Still, we have implemented a heuristic which constitutes a better baseline solution

to quantifying differences between labeled tree topologies than the conventional RF

measure, which is blind to labels. For instance, this implementation could be useful

in the context of orthology benchmarking, to compare inferred labeled trees with

reference curated ones [29].

Looking ahead, we envision several potential future directions. We see potential

in identifying the good edges that should be contracted and characterizing classes

https://github.com/DessimozLab/pylabeledrf
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Figure 6: An optimal path from T to T ′ following Methodology 1 is depicted

by black arrows and involves 6 operations. It is not optimal as another path,

depicted by red arrows, involves only five operations. The path of length

3 from T to Ts acts on the safe edge, represented in orange. This path

involves an edge contraction, an edge extension and a flip, leading to the

good edge (red edge) in Ts.

of trees that may be resolved optimally. In particular, it would be interesting to

restrict the study to the class of labeled trees consistent with a species tree (which

is not the case of the trees of Figure 3).

Another direction would be to consider an alternative extension of the RF dis-

tance. In this paper, edge contraction and edge extension, the two edit operations

defining the classical RF, were re-defined in the context of labeled nodes, by con-

straining them to occur on edges with the same labels on their extremities. Another

direction would be to consider edit operations on nodes, as for the Tree Edit Dis-

tance (TED) for hierarchical trees, i.e. node deletion, insertion and relabeling. In

addition to the theoretical complexity and computational efficiency, it would be

important to evaluate the robustness of these two RF extensions with respect to

small changes in the topology or tree labeling. Although we do not expect robust-

ness to be much better than the classical RF, knowing which extension is better

can orient the study towards future improvements. Finally another direction would

be to extend the study to an arbitrary set of possible labels.

More generally, we think that computing the distance between labeled trees con-

ceals many new problems and opens a variety of new algorithmic directions.
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8 Appendix

8.1 Proof of Lemma 1 (Link between rooted and unrooted trees):

There is a one-to-one relationship between the set of non-trivial bipartitions and

the set of internal edges of an unrooted tree T . Similarly, for a rooted tree T ′, there

is a one-to-one relationship between the set of internal edges of T ′ and its set of

non-trivial clades, excluding the clade L(T ′). However, the number of edges may

differ between a tree T and a rooting T ′ of T .

• If T1 and T2 are both rooted into existing nodes, then T1 and T ′1 (respec.

T2 and T ′2) have exactly the same edge sets, and we conclude from what

precedes that there is a one-to-one relationship between the set of non-trivial

bipartitions of T1 (respec. T2) and the set of non-trivial clades excluding L(T1)

(respec. L(T2)) of T ′1 (respec. T ′2). As L(T1) = L(T2), this clade does not

contribute to the symmetric difference computation of δR(T ′1, T
′
2), and thus

δR(T ′1, T
′
2) = δ(T1, T2).

• If both T1 and T2 are rooted into good edges, then T ′1 (respec. T ′2) has one edge

more than T1 (respec. T2). But these new edges are good edges and therefore

do not contribute to the symmetric difference computation of the δR distance,

and thus δR(T ′1, T
′
2) = δ(T1, T2).

• If both T1 and T2 are rooted into bad edges, then T ′1 (respec. T ′2) has one

edge more than T1 (respec. T2). These two new edges are bad edges, and

thus contribute to the symmetric difference computation of the δR distance

by adding two clades, and thus δR(T ′1, T
′
2) = δ(T1, T2) + 2.

• If exactly one among T1 and T2 is rooted into a bad edge, than only one new

edge contributes to the symmetric difference computation of the δR distance

by adding one clade, thus δR(T ′1, T
′
2) = δ(T1, T2) + 1.

8.2 Proof of Lemma 2 (Edit distance):

The non-negative and identity conditions are obvious. For the symmetric condition,

notice that we can reverse every edit operation in an optimal sequence from T1

to T2 to obtain a sequence from T2 to T1 with the same number of events, and

vice-versa (extensions and contractions are inverses of each other, and any flip can

be reversed by a flip). We thus have δ(T2, T1) ≤ δ(T1, T2) and δ(T1, T2) ≤ δ(T2, T1),

and equality follows.

Finally, we prove the triangular inequality condition: for 3 trees T1, T2 and T3,

to transform T1 into T2, we may take any edit sequence from T1 to T3, followed by

any edit sequence from T3 to T2. It follows that δ(T1, T2) ≤ δ(T1, T3) + δ(T3, T2).

8.3 Proof of Lemma 3 (Pairs of maximal bad subtrees):

As ∪iYi = L, {e′i}1≤i≤k are the only terminal edges of any subtree S′ of T ′ con-

taining the set {e′i}1≤i≤k as terminal edges. As T ′ is a tree, for any 1 ≤ i 6= j ≤ k,

there is only one possible path from x′i to x′j . Uniqueness follows.

Suppose that such a subtree S′ is not a bad subtree. Then it contains an internal

good edge e′ = (x′, y′). In other words, there is a non-trivial bipartition of {Yi}1≤i≤k
which is also a bipartition in S. This contradicts the fact that S is a bad subtree of
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T . Finally, as all terminal edges of S′ are good edges of T ′, it follows that S′ is a

maximal bad subtree of T ′.

8.4 Proof of Lemma 4 (Contract non-mixed bad edges):

We first introduce a definition that will be of use later in the proof. For two rooted

trees S1 and S2, define the union of S1 and S2 as the tree obtained by identifying

their roots, i.e. by removing the root of S2 and making all its children now children

of the root of S1.

Let e = {u, v} be a non-mixed bad edge and assume, without loss of generality,

that both u and v have the label Spe (recall that Λ = {Spe,Dup}). Notice that any

sequence of operations turning T into T ′, at some point, must contract the {u, v}
edge, as otherwise, the (bad) bipartition corresponding to {u, v} would remain in

the transformed tree and we would not obtain T ′ (noting that extensions cannot

remove bipartitions). We now prove the Lemma by induction over δ(T, T ′). As a

base case, suppose that δ(T, T ′) = 1. Then {u, v} must be the only bad edge of T

and the single operation is to contract it, proving the base case.

Now assume that for any tree T̃ satisfying δ(T̃ , T ′) < δ(T, T ′), contracting any

non-mixed bad edge of T̃ reduces its distance to T ′ by 1. Let Q = (q1, . . . , ql) be an

optimal sequence of operations transforming T into T ′ (here each qi denotes either a

contraction, extension or flip). Let qj be the event that contracts {u, v}. If q1 = qj ,

then we are done, so assume otherwise. We make the assumption that whenever

there is a contraction involving u prior to qj , the contracted node is still called u.

Furthermore, we assume that if an extension prior to qj splits the neighbors of u,

the node v is still a neighbor of u after the operation. All the same assumptions

hold for v. This just changes the names we give to nodes and does not alter the

scenario, but observe that this means that {u, v} is in every tree obtained before

the first j operations.

For each i ∈ {1, . . . , l}, let Ti be the tree obtained after applying q1, . . . , qi on T ,

and define T0 = T . Furthermore, for i ∈ {0, 1, . . . , j − 1}, denote by Tu
i and T v

i the

two trees obtained from Ti by removing the edge {u, v}, where u is in Tu
i and v

is in T v
i . Define Tu = Tu

0 and T v = T v
0 . We will assign u and v as the respective

roots of each Tu
i and T v

i . Notice that for each i ∈ {1, . . . , j − 1}, qi only modifies

either the subtree Tu
i−1 or T v

i−1. Therefore, if events qi and qi+1 modify Tu
i−1 and

T v
i , respectively, we could apply qi+1 before qi and Ti+1 would still be the same

tree. This lets us assume that we may reorder events such that all events affecting

Tu (prior to qj) occur before those affecting T v. That is, there is some h such that

q1, . . . , qh only affects the Tu subtree, qh+1, . . . , qj−1 only affects the T v subtree, so

that Tu
h = Tu

h+1 = . . . = Tu
j−1 and T v = T v

1 = . . . = T v
h .

Suppose first that u is labeled Spe in Th, and thus also in Tj−1. Then v is also

labeled Spe in Tj−1 (and also in Th since v was untouched until qh+1). Let T̂ be

the tree obtained after contracting {u, v} in T , and let z be the resulting node.

Observe that if we interpret z as u, then we may apply the events q1, . . . , qh on T̂ ,

since these events only affected the Tu subtrees. To be formal, we “reproduce” q1

through qh on T̂ by applying the events Q′ = (q′1, . . . , q
′
h) on T̂ , defining T̂i as the

tree obtained after the i-th event of Q′, where each q′i in Q′ is defined as follows:
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• if qi contracts {x, y} in Ti−1, then q′i contracts {x, y} in T̂i−1 if x, y 6= u,

otherwise if, say, x = u, then q′i contracts {z, y} (and calls the resulting node

z);

• if qi flips x in Ti−1, then q′i flips x in T̂i−1 if x 6= u, or flips z otherwise;

• if qi is an extension and splits the neighborhood of x, then q′i does the same if

x 6= u (replacing u by z if needed). If x = u, then let X be the set of neighbors

of v in Ti−1, excluding u. If Ch(u) is split into A and B by qi, where v ∈ B,

then q′i splits the neighbors A ∪ (B \ {v}) ∪X of z into A and (B \ {v}) ∪X
(and z is the neighbor of (B \ {v}) ∪X and the newly created node).

One can verify the following that the following invariant holds on each T̂i, i ∈
{1, . . . , h}: if we take Ti and contract the edge {u, v}, ignoring the labels and keeping

the label of u, then we obtain T̂i (the invariant is also true for T and T̂ ).

The resulting tree T̂h obtained from applying q′1, . . . , q
′
h on T̂ will therefore contain

z as a Spe node, and will be the union of Tu
h and T v

0 . From this point, in a similar

fashion, we may interpret z as v and apply qh+1, . . . , qj−1 on T̂h, resulting a tree that

is the union of Tu
h = Tu

j−1 and T v
j−1. The corresponding events are the same as above,

we omit the formal details. Since Tj is obtained from Tj−1 by contracting {u, v},
this means that T̂j−1 = Tj , which we have attained with j events but contracting

{u, v} first, which proves this case.

Suppose instead that u is labeled Dup in Th. Then v is a Dup node in Tj−1. We

may further assume that v is a Spe node in Th+1, . . . , Tj−2, since whenever we flip

v into a Dup, we may assume by induction that {u, v} gets contracted. Therefore,

qj−1 flips v from Spe to Dup, and for the first time. We may then do the following:

first apply the events qh+1, . . . , qj−2 on T̂ , interpreting z as v. The resulting tree

T̂ ′ contains z as a Spe node, and is the union of T v
j−2 and Tu

0 . We may now apply

q1, . . . , qh on T̂ ′ by interpreting u as z, resulting in a tree T̂ ′′ that contains z as

a Dup node and is the union of Tu
h = Tu

j−1 and T v
j−1. We have thus attained Tj ,

but this time without the qj−1 flip on v, contradicting the optimality of Q. This

concludes the proof.

8.5 Proof of Lemma 5 (Upper bound δ):

Methodology 1 performs e contractions and e′ extensions. As for the number of

flips, we have to flip at most all the nodes belonging to the smallest label group,

which means at most half the nodes in each tree, and thus at most n flips in total.

8.6 Proof of Lemma 6 (Compare Meth.1 and Meth.2):

Figure 7: Notations for the Proof of Lemma 6

We denote by Cont(T ) the minimum length of a sequence of operations contract-

ing T , and by l(P) the length of a sequence P of edit operations.
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Let P2 be an optimal sequence contracting S to S∗ and P ′2 be an optimal sequence

contracting S′ to S′∗. As each operation is reversible, P ′2 leads to a corresponding

sequence P ′′2 of the same length between S′∗ and S′. Thus, P2, concatenated with a

possible flip operation transforming S∗ to S′∗, concatenated with P ′′2 is a sequence

from S to S′ following Methodology 1, and thus M1(S, S′) ≤M2(S, S′) (R1).

Conversely, let P be an optimal sequence following Methodology 1. Then this

sequence can be subdivided into a sequence P1 from S to a star tree S1, and P ′1 from

S1 to S′. As each operation is reversible, P ′1 leads to a corresponding sequence P ′′1
of the same length between S′ and S1. In other words, M1(S, S′) = l(P1) + l(P ′1) =

l(P1) + l(P ′′1 ) ≥ Cont(S) + Cont(S′).

1 If S∗ = S′∗, then M2(S, S′) = Cont(S) + Cont(S′) and thus M1(S, S′) ≥
M2(S, S′), and the result follows from (R1).

2 Otherwise, S∗ and S′∗ are different and M2(S, S′) = Cont(S) +Cont(S′) + 1.

Thus M1(S, S′) ≥ Cont(S)+Cont(S′) = M2(S, S′)−1, and thus M2(S, S′) ≤
M1(S, S′) + 1.

8.7 Proof of Lemma 7 (Optimal path contracting a mixed tree):

We first show that at least ddiam(T )/2e− 1 flips are needed, by induction over the

diameter of T . When diam(T ) = 2, T is a star tree and 0 = diam(T )/2 − 1 flips

are needed. For the induction step, we assume that any tree T ′ with diam(T ′) <

diam(T ) requires at least ddiam(T ′)/2e − 1 flips. Take any optimal sequence of

events S, and observe that in S, when we flip a node v of T , by Lemma 4 we may

assume that S contracts all the incident edges to v until we obtain another mixed

tree. Let T1, T2, . . . , Tk be the sequence of mixed trees encountered when applying

S, i.e. each Ti is obtained after flipping a node and contracting its incident edges.

Define T0 = T . Let i be the smallest index such that diam(Ti) < diam(T ). Then

in Ti−1, there was a longest chain P = (u1, . . . , ul) of length diam(T ). The flip-

and-contract operations from Ti−1 to Ti can reduce the length of P by at most 2

since we flip one node and only its incident edges, of which there are at most two

on P . Hence diam(Ti) ≥ diam(T )− 2. We deduce by induction that the number of

required flips is at least 1 + d(diam(T )− 2)/2e − 1 = ddiam(T )/2e − 1.

We now turn to the converse bound φ(T ) ≤ ddiam(T )/2e − 1. Fix any node v

of T , and suppose that we run the following procedure: as long as T is not a star

tree, flip v and contract its incident internal edges. Since each flip-and-contraction

iteration reduces the length from v to any leaf by 1 (except its neighbors), eccT (v)

is reduced by 1 each round. We stop when eccT (v) = 1, in which case only terminal

edges remain, and in the end, this means that eccT (v)− 1 flips are needed.

To see why this proves our bound, we show that there always exists a node with ec-

centricity ddiam(T )/2e. Consider a longest chain P of T with nodes w1, . . . , wk. Ob-

serve that diam(T ) = k−1 (recall that distances are counted in terms of edges). Con-

sider a midpoint node w := wdk/2e on P . We claim that eccT (w) = ddiam(T )/2e. It

is easy to check that w has distance at most ddiam(T )/2e and at least bdiam(T )/2c
to the leaves w1 and wk on P . Assume for contradiction that w is at distance at

least ddiam(T )/2e + 1 from some leaf l of T not in P . Then either we can form a

chain from w1 to w and then to l, or a chain from wk to w and then to l. This chain

has length at least bdiam(T )/2c + ddiam(T )/2e + 1 > diam(T ), a contradiction.

This shows that eccT (w) = ddiam(T )/2e and concludes the proof.
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8.8 Proof of Theorem 2 (Upper bound Meth.2):

Consider a given instance (T, T ′). Take any leaf of T and assign it as the root, and

do the same for T ′. Although we have assumed roots of degree at least two so far,

we use this rooting only for our analysis in order fix a parent-child relationship

between nodes. Let Q be an optimal sequence of operations turning T into T ′. We

may assume that Q first contracts every non-mixed edge, and our algorithm does

the same. Therefore, we suppose that T and T ′ contain no non-mixed edges. Assume

for our purposes that whenever a contraction takes place in Q between a node u

and a child v, the u node stays in the tree and v gets removed (here the notion of

a child is in the rooted sense with respect to our rooting above). Also assume that

when there is an extension splitting a node u, then the newly created node becomes

a child of u and u retains the same parent. It is easily checked that this only alters

the name of nodes and not the sequence itself.

Call an internal node v of T a good child if the edge between v and its parent

is good. Note that v has a unique corresponding node in T ′ which we denote v′

(i.e. v′ is the root of the same clade as the subtree rooted at v). Further, call v a

bad-good child if v is a good child, but either the label of v differs from that of v′,

or v is incident to at least one bad edge. Note that every maximal bad subtree of

T has a (good) terminal edge with one endpoint being a bad-good child. Also note

that a bad-good child v that is incident to only good edges is a particular case of a

maximal bad subtree (i.e. v just has the wrong label).

We already know that δ(T, T ′) is at least the number of bad edges in T and T ′. Let

Q′ be the set of operations of Q that are either flips, or contraction of good edges.

We argue that |Q′| is at least the number of bad-good children in T . To see this,

let v be a bad-good child. Assume first that v is not incident to any bad edge. If we

never flip v nor remove it by contracting its parent edge, then Q cannot transform

T into T ′, as v and its underlying clade remain present in every tree from T to T ′,

but with the wrong label (because a contraction not removing v cannot remove the

v clade, and extensions can create clades but not remove them). So we may assume

that v gets flipped or that its parent edge gets contracted. A flip must be in Q′

and, observing that at any point the parent edge of v must be good, a contraction

removing v must also be in Q′. Assume instead that v is incident to at least one

bad edge {v, w}, with w a child of v. If v is never flipped nor removed owing to a

contraction of its parent edge, then at some point w must be flipped so that the

{v, w} edge gets contracted. Otherwise, if v gets removed, then its parent edge was

contracted, again implying the contraction of a good edge. Either case implies an

operation in Q′. Importantly, observe that the operations in Q′ identified above are

all distinct, since each one implies a flip or a the removal of a node in a different

bad subtree of T .

Now, let T1, . . . , Tk be the maximal bad subtrees of T and T ′, and for each i ∈
{1, . . . , k}, let ti be the number of bad edges in Ti. Further denote b =

∑k
i=1 ti.

Since bad subtrees form pairs, our arguments above imply that Q′ has at least

k/2 operations (because |Q′| is at least the number of maximal bad trees in T ,

which is half the number of bad subtrees). The contraction of bad edges plus the

operations of Q′ show that Q has at least
∑k

i=1 ti + k/2 = b + k/2 operations.

Our algorithm contracts b edges in total. To count the number of flips, take any
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bad subtree Ti. Then ti ≥ diam(Ti) − 2 and the number of flips we perform is

at most ddiam(Ti)/2e − 1 = d(diam(Ti) − 2)/2e ≤ ti/2 + 1. Note that this also

holds when Ti contains no bad edge. Therefore, the number of operations that we

perform is at most b +
∑k

i=1(ti/2 + 1) = 3b/2 + k. Our approximation ratio is

therefore 3b/2+k
b+k/2 ≤

2b+k
b+k/2 = 2.
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