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Abstract

Tandemly arrayed genes (TAG) constitute a large fraction of most genomes and play impor-

tant biological roles. They evolve through unequal recombination, which places duplicated genes

next to the original ones (tandem duplications). Many algorithms have been proposed to infer a

tandem duplication history for a TAG cluster. However, the presence of different transcriptional

orientations in many clusters highlights the fact that processes such as inversions also contribute

to their evolution. Moreover, existing algorithms are restricted to the study of TAGs evolution

in a single species (only paralogous genes are considered). To circumvent these limitations, we

consider an evolutionary model for TAGs involving duplication, gene loss, inversion and speci-

ation events. A general framework to infer ancestral gene orders that minimize the number of

inversions in the whole evolutionary history is presented. At the methodological level, this paper

integrates three approaches to genome evolution: the duplication tree reconstruction, the gene

tree/species tree reconciliation theory, and the concept of inversion median used in order-based

phylogeny reconstruction. An application on a cluster of olfactory receptor genes in 4 mammals

is presented.
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1 Introduction

A multigene family is a set of genes that have evolved by duplication and speciation from a common

ancestral gene, and share a similar sequence and usually a similar function. Members of a gene

family in a given genome may appear in clusters, or scattered on a single or many chromosomes.

In this paper, we focus on clusters of tandemly arrayed genes (TAG): copies that are adjacent on

the chromosome. TAGs have been shown to represent a large proportion of genes in mammalian

∗The two first authors contributed equally to this work
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genomes. In particular, they represent about 14-17% of all genes in human, mouse and rat (Shoja

and Zhang, 2006). Clusters of TAGs may vary in size from two to hundreds genes, though small

clusters are largely predominant (an average of 3 to 4 genes in mouse, rat and human) (Shoja and

Zhang, 2006). They are involved in many functions of binding or receptor activities. In particular,

the olfactory receptor genes constitute the largest multigene family in vertebrate genomes, with

several hundred genes per species (Aloni et al., 2006). Other families of TAGs include the HOX

genes (Zhang and Nei, 1996), the immunoglobulin and T-cell receptor genes (Arden et al., 1995),

the MHC genes (Geraghty et al., 1992) and the Zinc Finger genes (Shannon et al., 2003).

TAGs are widely viewed as resulting from unequal recombination during meiosis (Fitch, 1977),

generating clusters of similar genes with the same transcriptional orientation. When fixed in a

genome, such duplicates increase the chance of giving rise to other mispairings, thus leading to

other duplicates.

Several studies have considered the problem of inferring an evolutionary history for a TAG

cluster (Tang et al., 2002; Elemento et al., 2002; Elemento and Gascuel, 2002; Jaitly et al., 2002;

Zhang et al., 2003; Bertrand and Gascuel, 2005). These are essentially phylogenetic inference

methods using the additional constraint that the resulting tree should induce a duplication history

according to the given gene order. Such trees are called duplication trees. When a gene tree is

already available for a TAG cluster, a linear-time algorithm can be used to check whether it is

a duplication tree (Gascuel et al., 2003; Zhang et al., 2003). As the probability for an arbitrary

gene tree to be a duplication tree is very low (2.10−5 for a random tree with 15 leaves (Gascuel

et al., 2003)), the fact that a gene tree is a duplication tree is a strong argument in favor of

the tandem duplication model of evolution for the associated gene family. However, it is often

impossible to reconstruct a duplication history for a TAG cluster (Gascuel et al., 2005), even from

well supported gene trees. This is due to the occurrence of other mechanisms, such as deletions

and genomic rearrangements (Eichler and Sankoff, 2003), during the evolution of the gene family.

In particular, Shoja and Zhang (2006) have observed that more than 25% of all neighboring pairs

of TAGs in human, mouse and rat have non-parallel orientations. This highlights the fact that

other mechanisms, such as inversions, should be considered in an evolutionary model of TAGs. In

a previous publication (Lajoie et al., 2007b), we have presented an algorithm allowing to find the

minimum number of inversions involved in the evolutionary history of a TAG cluster, assuming

single gene duplications.

An important restriction of the above models of evolution is the fact that they are limited to

the analysis of a TAG cluster located in a single species and on a single chromosome. However, the

increasing availability of complete genomic sequences and of many different TAG databases (Aloni

et al., 2006; Huntley et al., 2006) makes it possible to study the evolution of gene families with

members belonging to different species. Such a global evolutionary study may help deciphering

the common origins of TAGs, highlighting the inter-species differences and identifying the genetic

basis of species-specific features. Various phylogenetic studies have been conducted on different
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TAG families such as the Zinc-Finger genes in human and mouse (Shannon et al., 2003), and the

olfactory receptor genes in various mammalian species (Aloni et al., 2006). However, no rigorous

approach has been developed so far to explain the non agreement between a gene tree of a TAG

family and a duplication and speciation history.

This paper is the first attempt to account for tandem duplication, speciation, gene loss and

inversion events in an evolutionary model of TAGs. Given the gene and species trees for a set of

orthologous TAG clusters and their respective gene orders, we aim to infer the ancestral gene orders

leading to a most parsimonious sequence of evolutionary events. Clearly, an important prerequisite

is to have, as an input, a well supported gene tree. This is unrealistic in the framework of “concerted

evolution”, where all the members of a gene family are assumed to evolve in a concerted manner

by repeated occurrences of gene conversions. Hopefully, evidences for many TAG families (e.g.

MHC, immunoglobulin and olfactory receptor genes) is in favor of a “birth-and-death” model of

evolution (Nei and Rooney, 2005), in which gene conversion is much less important than previously

believed.

At the methodological level, this paper integrates three approaches to genome evolution: the

duplication tree reconstruction, the gene tree/species tree reconciliation, and the concept of inver-

sion median used in order-based phylogeny reconstruction. We proceed in two steps. First, ignoring

gene orders, a classical gene tree/species tree reconciliation method is used to infer a “minimal” du-

plication, speciation and loss history in agreement with a known species tree (Page, 1994). Second,

we infer the ancestral gene orders allowing to minimize the number of inversions required to obtain

a valid duplication tree. This problem is related to the more classical one of inferring gene orders

of the ancestral genomes in a species tree (Sankoff and Blanchette, 1998; Bourque and Pevzner,

2002; Moret et al., 2002; Ma et al., 2006).

This paper is organized as follows. We describe the evolutionary model in Section 2 and our

optimization problem in Section 3. The general iterative method used for minimizing the inversions

in a whole species tree is then presented in Section 4. The detailed algorithm used for a single branch

is then presented in Section 5. In Section 6 we present an exact branch-and-bound algorithm and

a heuristic to solve the median problem. In Section 7, we compare the running times and the

accuracy of our algorithms on different simulated data sets. Finally, an application on a set of

orthologous TAG clusters in four mammalian species is presented.

2 The evolutionary model

The classical model of evolution considered for TAGs is based on tandem duplications resulting from

unequal recombination during meiosis, which together with point mutations are assumed to be the

sole evolutionary mechanisms acting on sequences. Formally, from a single ancestral gene at a given

position in the chromosome, the locus grows through a series of consecutive duplications placing

the created copy next to the original one. Such tandem duplications may be simple (duplication of
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a single gene) or multiple (simultaneous duplication of neighboring genes). In this paper, we only

consider simple duplications. From now on, a duplication will refer to a simple tandem duplication.

Consider a set of m orthologous TAG clusters located on m different genomes. We denote by

O = {O1, O2, . . . , Om} the set of gene orders, i.e. for 1 ≤ i ≤ m, Oi is the signed order of the

family members in genome i. The sign (+/−) of a gene represents its transcriptional orientation.

In addition to the observed gene orders, a gene tree can be inferred from the TAG sequences. In

this paper, a gene tree T for a TAG family is a rooted binary tree with labeled leaves, where each

label represents a gene copy. A leaf labeled by a gene copy in genome i is said to belong to genome

i. For conciseness, we make no difference between a leaf and its label. The pair (T,O) is called the

ordered gene tree for the gene family (see Figure 1(a)).

We denote by dinv(Oi, Ôi) the inversion distance between two orders Oi and Ôi on the same

set of genes. Such a distance can be computed using the original Hannenhalli and Pevzner (1999)

algorithm, or any of the existing optimizations (Kaplan et al., 2000; Bader et al., 2001; Bergeron

et al., 2004).

The following is a formal definition of a Duplication, gene Loss, Inversion and Speciation history

(DLIS-history) leading to an ordered gene tree (T,O) (see Figure 1(b) for an illustration).

Definition 1 A DLIS-history of (T,O) is a sequence of ordered gene trees

H = ((T 1,O1), (T 2,O2), . . . , (T h,Oh)) where:

1. T 1 is a tree consisting of a single leaf v and O1 = {O1
1} = {(±v)} is one of the two trivial

orders.

2. For 1 ≤ k < h, there is a unique i such that exactly one of the four following situations holds:

a. Duplication event: T k+1 is obtained from T k by adding two children u and w to a leaf v

belonging to genome i. Moreover Ok+1 is obtained from Ok by replacing v by (u,w) in

Ok
i , where u and w have the same sign as v.

b. Gene loss event: T k+1 is obtained from T k by removing a leaf v belonging to genome i.

If v was the only leaf in Ok
i then Ok+1 = Ok \ {Ok

i }, otherwise Ok+1 is obtained from

Ok by deleting v from Ok
i .

c. Inversion event: T k+1 = T k and dinv(O
k
i , Ok+1

i ) = 1.

d. Speciation event: T k+1 is obtained from T k by adding two children uj and wj to each

leaf vj belonging to genome i. Moreover, Ok+1 is obtained from Ok by replacing Ok
i =

(v1, . . . , vt), by {(u1, . . . , ut), (w1, . . . , wt)}, where uj and wj have the same sign as vj .

3. (T,O) = (T h,Oh).

Any DLIS-history H of (T,O) induces a unique species tree S obtained from the speciation

events of H. We say that H is consistent with S (see Figure 1).
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Figure 1: (a) An ordered gene tree (T, O = {(11,−21,−31), (12, 22, 32,−42,−52), (−13, −23, 33)}).

Genes are denoted as gi meaning “the gth gene in genome i”. (b) A DLIS-history for (T,O).

Duplications are indicated by bold lines, gene losses by ’X’ and inversions by dashed lines. For

clarity, we omitted successive identical configurations in each lineage. (c) The induced species tree

for the three genomes.

3 An inference problem

Let (T,O) be an ordered gene tree for a family of TAGs on m genomes. Suppose that a species tree

S is already known for the m genomes. Then a natural problem is to find a DLIS-history of (T,O)

that is consistent with S. By Lemma 1, such a history exists. It follows from the existence of a

duplication/speciation/loss history of T consistent with S in the general case of an unordered gene

family. In this context, the reconciliation approach, first introduced by Goodman et al. (1979), and

subsequently developed by many other authors (Page, 1994; Guigó et al., 1996; Ma et al., 2000;

Bonizzoni et al., 2005), allows to reconstruct such a history with a minimum number of duplication

and/or loss events. The different reconciliation approaches are all based on a particular mapping

(Least Common Ancestor mapping) from the nodes of T to the nodes of S, allowing to “embed”

the gene tree into the species tree.

Lemma 1 Given an ordered gene tree (T,O) on m genomes and a species tree S for the m genomes,

there is at least one DLIS-history of (T,O) consistent with S.

Proof: Obtain a sequence of duplications, gene losses and speciations from the reconciliation of

T and S. From that sequence, construct a DLIS-history H′ = ((T 1,Q1), . . . , (T h = T,Qh)) by

applying the operations described in cases a, b and d of Definition 1. Then, obtain H from H′ by

performing any sequence of inversions transforming Qh into O (case c in Definition 1). �
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As the number of possible DLIS-histories consistent with S is unlimited, reasonable criteria

should be considered. Here, we restrict ourselves to the most parsimonious DLIS-histories that are

in agreement with a given reconciled tree.

We proceed in two steps:

1. We obtain a reconciled tree G from T and S. In the present study, we used the parsimony

method of Zhang (1997), but any other method could be used (e.g. Arvestad et al. (2004)

and Wapinski et al. (2007)).

2. We find the ancestral gene orders that minimize the total number of inversions involved in a

DLIS-history of (T,O). Formally, the problem considered in this step is the following:

Minimum-DLIS problem

Input: An ordered reconciled tree (G,O).

Output: A gene order for each ancestral genome inducing a DLIS-history of minimum inversions.

In the rest of this paper, we focus on solving the Minimum-DLIS problem. We further introduce

some precisions about the nodes of G and their implicit mapping to S (see Figure 2):

• A duplication node is an internal node which corresponds to a duplication event. It maps to

a branch of S, i.e. the lineage in which the duplication occurred.

• A speciation node is an internal node which corresponds to an ancestral gene at the time of

a speciation event. It maps to an internal node of S, i.e. the ancestral genome to which it

belongs. It has either one child (in the case of a gene loss), or two children each belonging to

a different lineage.

• A leaf is an extant gene and maps to a leaf of S, i.e. the extant genome to which it belongs.

• A maximal set of speciation nodes or leaves mapped to the same node A of S is defined as

the gene content of A. When this set is ordered, we denote it by OA.

• Let ρ be a direct descendant of a speciation node r. Then, the subtree rooted at ρ is said to

be externally rooted at r.

From now on, we consider the “embedded” representation of G in S. More precisely, a branch

(R,L) of S will denote the set of subtrees in G connecting the gene contents of R and L (see

Figure 2).

Suppose that the gene content is ordered for each node of S. Then there exists a DI-history

(a history restricted to duplication and inversion events) with a minimum number of inversions

explaining each branch of S, and the minimum number of inversions in any DLIS-history of (G,O)

(and its corresponding ancestral gene orders) is the sum of the inversions involved in those minimal

DI-histories. Thus, our problem reduces to the one of finding the ancestral gene orders minimizing

6



11 21 31 12 22 32 42 52 13 23 33

BB CC

AA

MM

1 2 3

Figure 2: On the left, the ordered reconciled tree (G,O) induced by the DLIS-history of Figure 1,

with the corresponding ancestral gene orders. We see that each duplication node (black dot) in G

implicitly maps to an edge of the species tree S (on the right), and each speciation node (box) to a

node of S. The dashed gene in genome M has no descendants in lineage C, indicating a gene loss.

the sum of inversions involved in a DI-history of each branch of S. The formal definitions of a

branch of S and a DI-history are given in Section 5.

4 A general method based on the median problem

The Minimum-DLIS problem is related to the more classical one of inferring the gene orders at

the internal nodes of a species tree, where each leaf is labeled by an ordered sequence of genes (see

for example Sankoff and Blanchette (1998), Bourque and Pevzner (2002) and Moret et al. (2002)).

After fixing the ancestral gene contents, which is an intricate problem in the general case of unequal

gene content and gene paralogy, the problem is to find the ancestral gene orders minimizing a given

genomic distance.

Although the case of an ordered reconciled tree G has the additional constraint of tandem

duplications, the two problems are related, suggesting a similar global approach summarized below.

1. Begin with an initial order OM for each internal node M of S.

2. Traverse S in a depth-first manner. For each subtree consisting of a branch (A,M), where A

is the immediate ancestor of M , and two sister branches (M,B) and (M,C) (see Figure 2),

ignore the assigned order for M , and reconstruct an order that minimizes the value:

DI(OA, OM ) + DI(OM , OB) + DI(OM , OC),

where DI(OR, OL) is the minimum number of inversions in a DI-history explaining the branch

(R,L). This step consists in solving the well known median problem.
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3. Iterate Step 2. a given number of times, or until convergence to a local minimum.

In case no duplication and no gene loss have occurred during the evolution of the gene family along

the branches from A to B and C, the DI value becomes the inversion distance, and the median

problem formulated in Step 2 is just the inversion median problem, which has been proved to be

NP-hard (Caprara, 2003). Therefore, the “generalized median problem” considered here is also

NP-hard.

A rigorous definition and computation of DI(OR, OL) for a branch (R,L) is given in the next

section. We then present an exact algorithm and a heuristic to solve the median problem in

Section 6. Finally, we present a heuristic allowing to begin with appropriate initial orders.

5 The generalized Minimum-DI problem

5.1 Definitions

We consider the problem of minimizing the number of inversions involved in a history explaining a

given branch (R,L) of S when the gene contents are ordered. Formally, such a branch is called an

ordered forest and is defined as follows:

Definition 2 An ordered forest (F,OR, OL) is a forest of n gene trees F = {T1, T2, . . . , Tn} exter-

nally rooted at OR = (r1, r2, . . . , rn), with an order OL on its leaves.

We now formally define the notion of a DI-history explaining a given branch (R,L) of S. It is a

generalization of the definition introduced in our previous paper (Lajoie et al., 2007b) for a single

ordered gene tree.

Definition 3 A DI-history of an ordered forest (F,OR, OL) is a sequence of ordered forests

H = ((F 1, OR, O1
L), (F 2, OR, O2

L), . . . , (F h, OR, Oh
L)) such that:

1. F 1 is a set of single leaf gene trees externally rooted at OR and ordered as OL = OR.

2. For 1 ≤ k < h, exactly one the following situations holds:

a. Duplication event: F k+1 is obtained from F k by adding two children u and w to one of

its leaf v, and Ok+1

L is obtained from Ok
L by replacing v by (u,w), where u and w have

the same sign as v.

b. Inversion event: F k+1 = F k and dinv(O
k
L, Ok+1

L ) = 1.

3. (F,OR, OL) = (F h, OR, Oh
L).

From Definition 3, we also introduce the notion of a duplication history, which is simply a

DI-history restricted to duplication events. A duplication history gives rise to a duplication forest,

defined as follows.
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Definition 4 A duplication forest is an ordered forest (F = {T1, . . . , Tn}, OR, OL) containing only

duplication trees, and such that for every pair (ri, rj) in OR, if ri precede rj , then all the leaves of

Ti precedes all the leaves of Tj in OL. Moreover, for any 1 ≤ i ≤ n, the leaves of Ti have the same

sign as ri.

The following theorem is a generalization of the result we obtained for a single ordered gene

tree in one species (Lajoie et al., 2007b).

Theorem 1 For any DI-history of (F,OR, OL) with i inversions, there exists a duplication forest

(F,OR, ÔL) such that dinv(OL, ÔL) ≤ i.

Proof: Let Hk = ((F 1, OR, O1
L), (F 2, OR, O2

L), . . . , (F k, OR, Ok
L)) be a DI-history of (F,OR, OL).

We prove the theorem by induction on k:

• Base case: If k = 1, then H1 = ((F 1, OR, O1
L)) is a DI-history with no duplication and no

inversion. Clearly (F 1, OR, ÔL) = (F 1, OR, O1
L) is a duplication forest and dinv(O

1
L, ÔL) = 0.

• Induction step:

Let Hk+1 = ((F 1, OR, O1
L), . . . , (F k, OR, Ok

L), (F k+1, OR, Ok+1

L )) be a DI-history involving i

inversions. From Definition 3, there are two possibilities:

– If F k+1 6= F k, then the last event is a duplication, i.e. there is a leaf v of a tree of F k that

was replaced by two consecutive leaves u,w of the same sign in Ok+1

L . By the induction

hypothesis, there exists a duplication forest (F k, OR, Ôk
L) such that dinv(O

k
L, Ôk

L) ≤ i.

Suppose v is positive in Ôk
L. If v is also positive in Ok

L, we define Ôk+1

L as the

order obtained by replacing +v by (+u,+w) in Ôk
L. Otherwise, v is negative in

Ok
L and we obtain Ôk+1

L by replacing +v by (+w,+u) in Ôk
L. It follows that

dinv(O
k+1

L , Ôk+1

L ) = dinv(O
k
L, Ôk

L) ≤ i and (F k+1, OR, Ôk+1

L ) is a duplication forest. The

case where v is negative in Ôk
L is treated similarly.

– If F k+1 = F k, then the last event is an inversion and Hk involves i − 1 inversions.

By the induction hypothesis, there exists a duplication forest (F k, OR, Ôk
L) such that

dinv(O
k
L, Ôk

L) ≤ i − 1. Then we have dinv(O
k+1

L , Ôk+1

L ) ≤ dinv(O
k
L, Ôk

L) + 1 ≤ i, where

Ôk+1

L = Ôk
L. �

The following result immediately follows from Theorem 1.

Corollary 1 Let (F,OR, OL) be an ordered forest and (F,OR, ÔL) be a duplication forest such that

dinv(OL, ÔL) = i is minimal over all ÔL. Then, there exists a DI-history of (F,OR, OL) with exactly

i inversions. Moreover, i is the minimum number of inversions in a DI-history of (F,OR, OL).
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Corollary 1 allows to reformulate the problem as follows:

Generalized-Minimum-DI problem

Input: An ordered forest (F,OR, OL).

Output: An order ÔL on the leaves of F such that (F,OR, ÔL) is a duplication forest and

dinv(OL, ÔL) is minimal.

Given a branch (R,L) of S and the orders OR and OL, the minimum number of inversions involved

in a DI-history of the branch (R,L) is denoted as DI(OR, OL). In the following section, we present

an algorithm for solving the Generalized-Minimum-DI problem.

5.2 A Branch-and-Bound algorithm

The algorithm is a generalization of the one we presented in a previous paper (Lajoie et al., 2007b).

Given an ordered gene tree (T,O), the goal was to find an order Ô such that (T, Ô) is a duplication

tree and dinv(O, Ô) is minimal.

Ordered gene tree: As mentioned by Gascuel et al. (2005), simple duplication trees are equiva-

lent to binary search trees. Therefore, to enumerate all the orders Ô such that (T, Ô) is a duplication

tree, we associated a binary variable bi to each internal node i of T . By setting bi = 0, we make

the left descendant leaves of i smaller than the right ones in Ô, whereas by setting bi = 1 we makes

them larger. If we assign these values by a post-order traversal of T , then each bi value induces an

adjacency between two of its descendant leaves in Ô.

Hence, (T, Ô) is a duplication tree iff Ô is defined by an assignment of all the binary variables

in T , and all its genes have the same sign (+ or −). If n is the number of leaves in T , this leads to

2n distinct orders.

To avoid computing dinv(O, Ô) for every possible order Ô, we considered a branch-and-bound

strategy based on the following property: dinv(O, Ô) ≥ n + 1− c, where n is the number of genes

and c is the number of cycles in the breakpoint graph (Hannenhalli and Pevzner, 1999) of O and Ô.

In this graph, each edge corresponds to an adjacency in one of the two orders (see Figure 3). The

general idea is to bound c as we progressively add the edges induced by the assignment of a given

bi. More precisely, if at a given step we have e cycles and p remaining edges, we know that c ≤ e+p

since each remaining edge can create at most one cycle. Therefore, we can use the following lower

bound in a branch-and-bound strategy:

dinv(O, Ô) ≥ n + 1− e− p.

Ordered forest: Generalization to an ordered forest (F,OR, OL) is straightforward. Indeed, let

(T1, T2, . . . , Tt) be the trees in F ordered according to the order OR of their external roots. From
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(d)

T1T1 T2T2

r1r1 r2r2

1

111

2

222

3

333 444 555

−4 −5

b1

b1

b2

b2

b2

b3

b3

b3

b3

b1=1

b2=1 b3=0

Figure 3: (a) The ordered forest corresponding to the branch (M,B) of the tree in Figure 2 (F =

{T1, T2}, OR = (r1,−r2), OL = (1, 2, 3,−4,−5)). (b) The gene trees T1 and T2, with an arbitrary

left/right orientation of the children at each internal node. (c) The duplication forest (F,OR, ÔL =

(4, 2, 1,−3,−5)) induced by an assignment of the bi variables. (d) The breakpoint graph of ÔL and

OL, with each curved edge labeled by the bi inducing it, according to this assignment sequence:

(b1 = 1, b2 = 1, b3 = 0).

Definition 4 and the discussion above, it is clear that (F,OR, ÔL) is a duplication forest iff ÔL is the

concatenation of the n orders (ô1, ô2, . . . , ôt) respectively defined by an assignment of the binary

variables in T1, T2, . . . , Tt, and for each 1 ≤ j ≤ t, all the genes belonging to ôj have the same sign

as rj. Consequently, we can enumerate the orders ÔL as above and the same bound can be used

(see Figure 3 for an example).

6 The median problem

To formally define the median problem, we need to extend the notion of an ordered forest (Def-

inition 2) by allowing the orders to be defined only on the leaves or only on the external roots

of the trees. A leaf-ordered forest will be denoted as (FRL, R,OL) and a root-ordered forest as

(FRL, OR, L).

The median problem is formulated as follows. Given a root-ordered forest (FAM , OA,M) and

two leaf-ordered forests (FMB ,M,OB) and (FMC ,M,OC) (M is the set of ancestral genes generating

both B and C), the goal is to find an order OM minimizing the median score:

S(OM ) = DI(OA, OM ) + DI(OM , OB) + DI(OM , OC)
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6.1 A branch-and-bound algorithm

To avoid considering each of the 2nn! possible orders OM , where n is the number of genes in M ,

we consider a branch-and-bound strategy. The idea is to compute a lower bound on S(OM ) as we

progressively extend the prefix O∗

M of a candidate median OM . This is justified by the following

property.

Property 1 Let (F ∗

RL, O∗

R, O∗

L) be an ordered forest obtained from (FRL, OR, OL) by removing a

tree rooted at the last element of OR, or the leaf corresponding to the last element of OL. Then:

DI(O∗

R, O∗

L) ≤ DI(OR, OL)

From the property above, it follows that:

S(OM ) ≥ S(O∗

M ) = DI(O∗

A, O∗

M ) + DI(O∗

M , O∗

B) + DI(O∗

M , O∗

C)

An exact branch-and-bound strategy for solving the median problem is sketched below. Algo-

rithm BBM-DI (Branch-and-Bound for the Median with DI distance):

1. Consider an initial candidate OM . Define the empty orders O∗

M , O∗

A, O∗

B and O∗

C .

2. Add a gene ±gM ∈M to the end of O∗

M . Then, insert the descendants of gM in O∗

B and O∗

C

according to their positions and signs in OB and OC . Moreover, if gM is the descendant of a

gene gA ∈ A that is not yet in O∗

A, insert gA in O∗

A according to its position and sign in OA.

3. If S(O∗

M ) < S(OM ):

• If S(O∗

M ) contains less then n genes, then return to Step 2.

• Else OM ← O∗

M .

4. Backtrack to Step 2 and consider another gene gM (or sign) for the last position of O∗

M . When

all the genes have been considered, backtrack one position left. When all the positions have

been tried, stop and return OM .

This branch-and-bound approach can be used with medians containing up to a dozen of genes

(see Execution time in Section 7.1). For larger instances, we next present a fast and simple heuristic

which yields good approximations when the number of inversions is low.

6.2 A simple heuristic for the median problem

The idea is to consider an initial order and optimize the median score locally by successive applica-

tions of transposition or transversion1 on that order. It is similar to the exact algorithm of Siepel

1A transposition followed by an inversion.
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and Moret (2001) except that our neighborhood is different, and we keep only the best candidates

at each step. A local optimum is reached when no move can improve the median score. The algo-

rithm is sketched bellow.

Algorithm LSM-DI (Local Search for the Median with the DI distance):

1. Consider an initial candidate median OM . Set Smin ← S(OM ).

2. For each of the O(n3) neighbor Oi of OM :

(a) Compute S(Oi) = DI(OA, Oi) + DI(Oi, OB) + DI(Oi, OC).

(b) If S(Oi) < S(OM ), then push Oi on the priority queue. Moreover, if S(Oi) < Smin, then

set Smin ← S(Oi).

3. As long as the priority queue contains an order Oi such that S(Oi) = Smin, set OM ← Oi,

remove Oi and return to Step 2.

4. Output OM .

6.3 Getting the initial orders

The success of the above methods depends strongly on the choice of the initial candidates OM .

Our solution is to use a greedy version of the algorithm described in Section 5.2, but generalized

to the whole reconciled tree G. More precisely, for each duplication node v of G, we set bi to the

value that maximizes the total number of cycles in the breakpoint graphs of the m extant genomes.

Once all the bi are defined, it is straightforward to obtain the orders in the ancestral genomes.

7 Results

7.1 Simulated data

Execution time

We measured the execution time of our general method for inferring ancestral orders (Section 4)

using either the branch-and-bound (BBM-DI) or the heuristic (LSM-DI) for solving the median

problem. Algorithms were implemented in C++ and run on a typical Linux workstation.

The ordered gene trees where obtained by simulating DLIS-histories consistent with balanced

species trees with 2 or 4 leaves. The number of genes in the resulting genomes (extant or ancestral)

depends uniquely on their depth in the species tree. Starting from the root which contains a unique

ancestral gene, this number becomes respectively n, ⌊3n/2⌋ and ⌊9n/4⌋ as we reach depth 1, 2 and

3 (depth 3 applies only to species trees with 4 leaves). Inversion events are distributed evenly

among the branches of the species trees and their cutting-points are chosen randomly.

13



Results are presented in Figure 4. We observe that the execution time of BBM-DI depends

significantly on the number of inversions and rapidly becomes impractical. In contrast, LSM-DI

can be used on relatively important datasets within reasonable time (100 seconds on average for a

median of 30 genes with 12 inversions).
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(c) Three medians with 14 inversions
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(d) Three medians with 28 inversions
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Figure 4: Average execution time in seconds on simulated data (50 replicates). (a and b) One

ancestral genome with n genes and two extant genomes each containing ⌊3n/2⌋ genes. (c and

d) Three ancestral genomes containing respectively n, ⌊3n/2⌋ and ⌊3n/2⌋ genes, and four extant

genomes each containing ⌊9n/4⌋ genes.

Algorithms Accuracy

We measured the accuracy of our general method for inferring ancestral orders on simulated data,

using either the BBM-DI or LSM-DI for solving the median problem. Ordered gene trees were

obtained as described above.

Accuracy is evaluated based on two criteria: the inferred number of inversions, and the inferred

gene orders. Evaluation of the gene order is based on the percentage of adjacencies shared between

the inferred order and the actual one. An inferred adjacency (a, b) is shared iff (a, b) or (−b,−a) is

in the actual order.

We observe in Figure 5(a and b) that the number of inversions inferred by LSM-DI is very close

to the global minimum found by BBM-DI. However, the probability that this global minimum

corresponds to the reality decreases when the actual number of inversions increases in the DLIS-
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history. The same is observed for the percentage of correctly inferred adjacencies (see Figure 5(c

and d)).
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Figure 5: Comparison between BBM-DI and LSM-DI (100 replicates). (a and b) Average difference

between the inferred number of inversions and the actual one (inferred minus actual). (c and d)

Percentage of shared adjacencies between the inferred order and the actual one.

Effect of gene losses

To evaluate the effect of gene losses on the accuracy of LSM-DI, we generated appropriate DLIS-

histories using a protocol similar to the one described above. Gene losses were distributed randomly

among the branches of the species trees. Results are shown for correctly reconciled trees (80% and

60% respectively for 8 and 16 gene losses) in Figure 6. We see that gene losses have very little

effect on the accuracy of our heuristic when the reconciled gene tree is correct.

Effect of double duplication (model deviation)

Recall that our DLIS model allows only simple tandem duplications. To measure the robustness of

our inference method against model deviations, we simulated the evolution of orthologous clusters

with a limited number of double duplications2 (DD). As expected, we observe in Figure 7 that

2A double duplication simultaneously copies two adjacent genes as a single unit. For example, Ok = (g1, g2, g3, g4)

that becomes Ok+1 = (g1, g2, g3, g
′

2, g
′

3, g4).
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Figure 6: Accuracy of LSM-DI on ordered gene trees resulting from DLIS-histories with different

numbers of gene losses (500 replicates). (a) Average difference between the inferred number of

inversions and the actual one (inferred minus actual). (c) Percentage of shared adjacencies between

the inferred order and the actual one.

LSM-DI largely overestimates the number of inversions when DD are introduced, especially when

few inversions really occurred (one DD can produce as much as 3 false inversions). However, the

effect on the percentage of correctly inferred adjacencies is much less important.
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Figure 7: Accuracy of LSM-DI on ordered gene trees generated from DLIS-histories with different

numbers of double duplications (500 replicates). (a) Average difference between the inferred number

of inversions and the actual one (inferred minus actual). (c) Percentage of shared adjacencies

between the inferred order and the actual one.

7.2 Application on biological data

The olfactory receptor (OR) gene family contains several hundred members in mammalian genomes,

scattered in about 50 genomic clusters. We used our general method with LSM-DI to infer ances-

tral gene orders for one of these clusters, which is located on chr14@21.2 in the human genome.

Four orthologous clusters were used in our study: human chr14@21.2; rat chr15@27.9; mouse

chr14@47.5; opossum scaffold 19262@4.7. Protein sequences, gene orders and clusters orthology
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were all obtained from CLIC#35 in the HORDE database (Aloni et al., 2006). Human OR6Y1

gene was used as an outgroup. Sequences were aligned with ClustalW (Thompson et al., 1994) and

the gene trees with the largest posterior probability were obtained with MrBayes (Ronquist and

Huelsenbeck, 2003), using the Jones-Taylor-Thornton substitution matrix (Jones et al., 1992) and

500, 000 MCMC iterations.

The 16 most probable trees have a cumulative posterior probability of 0.8. For each of them, we

obtained a reconciled gene tree with the Reconcile software (Sennblad et al., 2007) and used our

general algorithm to infer ancestral gene orders and the corresponding number of inversions. The

most parsimonious DLIS-histories were obtained with the fourth (p = 0.09) and the sixth (p = 0.05)

most probable trees returned by MrBayes. Both involve a single inversion and no gene loss. Other

trees involve 4.7 gene losses and 1.8 inversions on average. The fourth tree is presented in Figure 8.

According to this tree, a unique inversion event occurred before the divergence between eutheria

and marsupialia. We point out that this scenario differs slightly with the one we obtained previously

by considering only the human and rat clusters which involves an additional gene loss (Lajoie et al.,

2007a).

This simple application gives an example of a TAG cluster which is very likely to have evolved

in agreement with our model of evolution.

8 Conclusion

We have presented a general framework for studying the evolution of tandemly arrayed gene families

in multiple genomes. It is the first formal approach to integrate inversion and speciation events in

a tandem duplication model of evolution.

Our study has been placed in the context of a known species tree. In the case of an unknown

species tree, an alternative method for constructing the preliminary reconciled tree should be con-

sidered. Different methods have been developed in the literature based on different measures:

the duplication cost model (Ma et al., 2000), the mutation cost model (Ma et al., 2000) and the

minimum loss model (Chauve et al., 2007).

The methods we presented allow to infer ancestral gene orders minimizing (locally) the number

of inversions for a given reconciled tree. However, this tree is not guaranteed to provide the minimum

number of inversions for any DLIS-history compatible with the species tree. Finding a DLIS-history

of minimum inversions remains an open problem.

We point out the difficulty of measuring the accuracy of the phylogenetic methods used to infer

the gene trees, especially for TAG families. Events such as gene conversions and unequal crossover

can create “mosaic” genes that share more than one ancestor, and pseudogenization is a frequent

process. Different strategies could be used to cope with these problems. For example, regions

subject to gene conversions could be identified and excluded from the phylogenetic analysis, and

the gene contexts could be considered. Pseudogenes could also be treated separately with more
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appropriate methods and models, or ultimately discarded from the analysis. Despite these efforts,

it would remain difficult to infer the correct gene tree for several TAG families.

In this context, the minimum number of inversions for a TAG family could be used as an

additional criteria for the comparison of different candidate gene trees (Lajoie et al., 2007b). Here

again, results should be interpreted carefully since the actual model is limited to simple duplications.

Although they are believed to be predominant, multiple duplications also occur in TAG evolution.

An important improvement would thus be the extension of our model to multiple duplications.

This poses many challenges since inferring a tandem duplication tree with multiple duplications

and gene losses remains an open problem, even when inversions are not taken into account and

only one species is considered.
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