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Abstract. Following various genetic mapping techniques conducted on
different segregating populations, one or more genetic maps are obtained
for a given species. However, recombination analyses and other meth-
ods for gene mapping often fail to resolve the ordering of some pairs
of neighboring markers, thereby leading to sets of markers ambiguously
mapped to the same position. Each individual map is thus a partial or-
der defined on the set of markers, and can be represented as a Directed
Acyclic Graph (DAG). In this paper, given a phylogenetic tree with a
set of DAGs labeling each leaf (species), the goal is to infer, at each
leaf, a single combined DAG that is as resolved as possible, considering
the complementary information provided by individual maps, and the
phylogenetic information provided by the species tree. After combining
the individual maps of a leaf into a single DAG, we order incomparable
markers by using two successive heuristics for minimizing two distances
on the species tree: the breakpoint distance, and the Kemeny distance.
We apply our algorithms to the plant species represented in the Gramene
database, and we evaluate the simplified maps we obtained.

1 Introduction

Similarly to a road map indicating landmarks along a highway, a genetic map
indicates the position and approximate genetic distances between markers along
chromosomes. Genetic mapping using DNA markers is a key step towards the
discovery of regions within genomes containing genes associated with particular
quantitative traits (QTLs). This is particularly important in crops and other
grasses, where the localization of markers linked to genes playing major roles in
traits such as yield, quality, and disease resistance, can be harnessed for agricul-
tural purposes [3].

In order to fulfill their purpose of locating QTLs as precisely as possible, ideal
genetic maps should involve as many markers as possible, evenly distributed over
the chromosomes, and provide precise orders and distances between markers. In
reality, recombination analysis, physical imaging and the other methods used for
genetic mapping only give an approximate evaluation of genetic distances be-
tween markers, and often fail to order some pairs of neighboring markers, lead-
ing to partial orders, with sets of incomparable markers, that is, set of markers



affected to the same locus. Moreover, to identify a specific marker locus, one
requires polymorphisms at that locus in the considered population. As different
populations do not contain polymorphisms for all the desired loci, the different
genetic maps obtained for the same species on the basis of different segregat-
ing populations generally contain different markers. However, as long as some
common markers are used, individual maps can be combined into a single one.

Various approaches have been considered to integrate different maps of a sin-
gle species. As genetic distances are poorly comparable between maps, a standard
approach has been to reduce each map to the underlying partial order between
markers. This simplification allows representing a map as a Directed Acyclic
Graph (DAG), where nodes correspond to markers, and paths between nodes to
the ordering information [18]. Combining DAGs from different maps may lead
to cycles, corresponding to conflicts (two markers A and B that are ordered
A → B in one map, and B → A in another). Different approaches have been
considered to cope with such conflicts. In [18], a DAG is recovered by simply
“condensing” the subgraph corresponding to a maximum subset of “conflicting”
vertices into a single vertex. In [6, 7] the authors find a median by removing a
minimum number of conflicts.

In contrast to the work that has been done for combining information of dif-
ferent maps of a single species, no similar effort has been expended to improve
the markers’ partial order information on one species on the basis of the genetic
information of related species. In this context, the only comparative genomic
study for genetic mapping is the one that we have conducted [1] for lineariz-
ing a DAG representing the map of a given species, with respect to a related
species for which a total order of markers is known. In the context of computing
the rearrangement distance between two maps, a more general study has been
conducted by Zheng et. al [19] for inferring the minimal sequence of reversals
transforming one DAG into another. Another study by the same authors [20]
has considered the problem of reconstructing synthenic blocks between two gene
maps by eliminating as few noisy markers as possible.

In this paper, starting from a species tree and a set of DAGs (individual maps)
labeling each leaf (species), the goal is to infer, at each leaf, a single combined
DAG that is as resolved as possible, considering the complementary informa-
tion provided by individual maps, and the phylogenetic information provided
by the species tree. Ideally (assuming sufficient complementary information be-
tween maps and sufficient phylogenetic information), a complete linearization
of the DAGs is desirable. However, as ideal situations are rarely encountered,
we will consider the more restricted, but more biologically relevant problem, of
integrating maps and reducing pairs of incomparable and conflicting markers of
each DAG, given the phylogenetic signal.

We proceed as follows. After combining the individual maps of a leaf into
a single DAG by using a method similar to that of Yap et al. [18], we resolve
incomparable pairs of markers by using two successive heuristics for minimizing
two distances on the species tree: the breakpoint distance, and the Kemeny



distance [10] defined as the total number of pairwise ordering conflicts over the
branches of the tree.

The second heuristic is based on the previous work of Ma et.al [11] for re-
constructing ancestral gene orders. The developed algorithm is guaranteed to
identify a most parsimonious scenario for the history of each incomparable pair
of markers, although it provides no guarantee as to the optimality of the global
solution. The paper is organized as follows. We introduce all concepts and nota-
tions in Section 2. We then describe our methodology in Section 3, and present
our two heuristics in Section 4. In Section 5, we apply our method to the Gramene
database [8] and evaluate the simplified maps we obtain.

2 Gene order data and representation as graphs

Experimental methods used for genetic mapping give rise to individual maps,
generally represented by lines upon which are placed individual loci (Figure 1,
Map1 and Map2). Each locus represents the position of a specific marker that
might appear at several positions in the genome. However, in this paper, we
assume that each marker exhibits a single polymorphism along the genome,
allowing to treat the concept of marker and locus synonymously. In other words,
marker duplications are not allowed.
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Fig. 1. Modeling maps as Directed Acyclic Graphs (DAGs). Left: maps as they are
represented in a gene map database such as Gramene. Map1 and Map2 correspond to
two mapping studies of the same chromosome. Letters correspond to markers placed
at positions proportional to their distance from each other. Common markers between
the two maps are linked. Right, from up to bottom: DAG representing Map1; DAG
representing Map2; Directed Graph (DG) corresponding to the union of DAG1 and
DAG2; DAG corresponding to map integration, after simplifying the strongly connected
components.



Modeling a map as a DAG: Following the notations of [18], maps may be repre-
sented as Directed Acyclic Graphs (DAGs), where each marker is represented by
a vertex, and each pair of adjacent markers are connected by an edge (Figure 1,
DAG1 and DAG2). Often due to the lack of recombination between two loci, a
number of different markers may appear at the same position on the map (for
example, markers C and D in Map1). It follows that a single marker may be
connected to a set of other markers.

Such DAGs represent partial orders between markers. Two markers A and
B are comparable iff there is a directed path from A to B (in which case we
write A < B) or from B to A (we write A > B), and incomparable otherwise. A
conflict between two maps is a pair of markers A and B that are ordered A < B

on one map, and A > B on the other. The Kemeny distance [10] between two
DAGs (or partial orders) is the number of conflicts between them. For example,
in Map1 (Figure 1), (A, C) is a pair of comparable markers (A < C, or similarly
C > A) and (C, D) is a pair of incomparable markers. Moreover, the Kemeny
distance between Map1 and Map2 is 20 since markers D, E, F , G and L are in
conflict with each other.

Map integration: Different studies on the same species conducted on different
populations give rise to different maps involving different markers. As long as
some identical markers are shared between studies, maps can be merged to a
Directed Graph (DG) with a single connected component, by performing the
union of the individual maps [18]. More precisely, let D1,D2, . . . ,Dn be n DAGs
corresponding to n maps, and M be the set of markers represented in at least
one Di, for 1 ≤ i ≤ n. Then the union DG is the directed graph G defined as
follows: a vertex is in G iff it is in at least one Di, and an edge is in G iff it is in
at least one Di, for 1 ≤ i ≤ n (Figure 1, DG12).

Due to conflicts between maps, such union DG may contain cycles (for exam-
ple, (D, L, E, F, G) is a cycle in DG12). Markers involved in such cycles cannot
be ordered relative to each other without yielding a contradiction. Two main
approaches have been used in the literature to cope with cycles.

1. A Strongly Connected Component (SCC) of a DG G refers to a maximum
subset V of vertices of G such that, for each (v1, v2) ∈ V2, there is a directed
path in G from v1 to v2 and from v2 to v1. For example, {D, E, F, G, L}
is an SCC in DG12. A number of very efficient algorithms are able to find
the SCCs in a graph [12, 16]. This yields to the possibility of simplifying a
DG to a DAG by “condensing” the subgraph that comprises an SCC into a
single vertex (DAG12 in Figure 1). Markers belonging to such a vertex are
considered pairwise incomparable.

2. Based on the hypothesis that conflicts are due to mapping errors, Jackson
et.al [7] considered the problem of inferring a consensus map leading to a
minimum number of such errors. Their method is based on finding a median
order for the Kemeny distance, which is an NP-hard problem [17]. They
proved that inferring a median order according to this distance is equivalent



to finding an acyclic subgraph of minimum weight in a weighted directed
graph (i.e. a minimum feedback arc set), and designed an exact algorithm
and a heuristic to solve it.

3 Methodology

Given a phylogenetic tree T for a set of n species and a set of DAGs (set of
individual maps) at each leaf of T , our goal is to produce a single DAG at
each leaf of T that is as resolved as possible considering the shared information
between maps and the phylogenetic information provided by T .

In the rest of this paper, resolving a pair of incomparable markers will refer
to fixing an order between the two markers, and simplifying a DAG will refer to
resolving a number of pairs of incomparable markers in the DAG.

3.1 Integrating maps

We integrate the set of DAGs labeling each leaf of T into a single DAG as
follows. We first construct the DAG’s union DG as described in Section 2. Then,
in contrast to [7], we do not try to solve conflicts of the union DG, that is the
pairs of markers involved in a cycle of the DG, at this stage. Rather, conflicts
are reduced to SCCs, as in [18], and resolving such SCCs is delayed to the next
phase considering the phylogenetic information of the species tree.

3.2 Marker content of internal nodes

We would like to account for the phylogenetic information represented by the
species tree T . Considering a most parsimonious model of evolution, the goal
is to infer marker orders that minimize a given distance on T . Preliminary to
computing any distance on T is the assignment of marker content at each internal
node. We will proceed as follows, assuming a model with no convergent evolution.
Let M be a marker, L be the set of leaves that contain the marker M , and v be
the node of T representing the least common ancestor of L. Then, we assign M

to each node belonging to a path from v to an element of L.

3.3 Minimizing an evolutionary distance

In contrast to gene order data, maps do not provide information on adjacencies,
but rather on relative orders between markers: an edge A → B in a DAG does not
mean that A is adjacent to B, but rather that A precedes B on the chromosome.
Indeed another DAG for the same species may contain an edge A → C, leading
to two possible total orders for the three markers: A B C or A C B. Therefore,
a classical gene order distance such as the inversion distance, or its reduction
to the breakpoint distance, is not directly applicable to such data. In this case,
a more natural distance is the number of conflicts between two maps, that is
the Kemeny distance. In the case of a species tree, the Kemeny distance can be
generalized as follows:



Definition 1. Given a species tree T with a total order assigned to each node,
the Kemeny distance on T is the sum of Kemeny distances of each pair of adja-
cent nodes (nodes connected by an edge of T ).

For the purpose of introducing our optimization problems, we recall the clas-
sical notion of a linear extension.

Definition 2. Let D be a DAG on a set M of markers. A linear extension of
D is a total order O of M such that if A < B in D then A < B in O.

Now, consider the following optimization problems, where “Given” should be
replaced by either Kemeny, Breakpoint or Inversion:

Minimum-“Given” Linearization Problem

Given: A species tree T with a DAG at each leaf and a set of markers at each
internal node;
Find: A total order at each internal node of T , and at each leaf of T , a linear
extension of its DAG, minimizing the “Given” distance on T .

Notice that this problem is proved to be NP-hard for the breakpoint dis-
tance [13], for the inversion distance [2], and for the Kemeny distance [17].

The Minimum-Kemeny Linearization Problem is the one most directly appli-
cable to partial orders. This problem is equivalent to the Minimum-Breakpoint
Linearization Problem and the Minimum-Inversion Linearization Problem in the
case of a marker set restricted to the same two markers M = {A, B} at each node
and leaf of T . Moreover, it is equivalent to the Minimum-Inversion Linearization
Problem with inversions restricted to segments of size 2 [14]. However, in the
general case, a solution to the Minimum-Kemeny Linearization Problem is not
guaranteed to minimize the inversion or breakpoint distance. Using this distance
only allows combining the information obtained on closely related species, in case
of no large genome rearrangements.

Simplifying DAGs: Following the above observations, we will present, in the next
section, two algorithms aiming to simplify each leaf’s DAG as follows:

1. Simplify the DAG based on the breakpoint distance. Although the result-
ing DAG D is not a total order, the developed algorithm can be seen as a
heuristic for the Minimum-Breakpoint Linearization Problem, as any linear
extension of D can be seen as a (possibly suboptimal) solution to this prob-
lem;

2. Simplify the resulting DAG based on the Kemeny distance. Similarly to
the above step, the developed algorithm can be seen as a heuristic for the
Minimum-Kemeny Linearization Problem.

4 Algorithms

Our two heuristics are inspired from the general methodology used by Ma et.
al [11] for inferring ancestral gene orders, which in turn is inspired by the Fitch
algorithm for substitution parsimony [4].



4.1 A heuristic for the Minimum-Kemeny Linearization Problem

Considering the assumption of no convergent mutation, the Fitch algorithm in-
fers the DNA sequences at the internal nodes of a phylogenetic tree based on the
DNA sequences at the leaves [4]. The sequences are treated site-by-site. Although
nucleotide assignment is not unique, any assignment gives an evolutionary his-
tory with the minimum number of substitutions.

A similar idea has been considered in [11] for inferring ancestral gene orders
on the basis of minimizing the number of breakpoints (or maximizing the number
of adjacencies). The Ma et. al algorithm [11] proceeds in two steps. First, using
a bottom-up traversal, it determines the potential adjacencies of each individual
gene. This step results in a graph at each internal node, potentially with cycles.
Then, in a top-down traversal, the information obtained on a node’s parent is
used to simplify the node’s graph. The whole algorithm is guaranteed to identify
a most-parsimonious scenario for the history of each individual adjacency. How-
ever, in contrast to the case of DNA sequences for which individual nucleotides
are independent, adjacencies are not, and thus the whole-genome prediction is
not guaranteed to minimize the number of breakpoints.

As DAGs provide information on relative orders between markers, rather
than immediate adjacencies, we aim at inferring the ancestral order (A < B or
B < A) for each pair of markers (A, B). The Kemeny-Simplification algorithm
described in Figure 2 is guaranteed to identify a most-parsimonious scenario
for the history of each individual pair of markers. However, as pairs of mark-
ers are not independent, this does not guarantee the optimality of whole-map
predictions.

Algorithm Kemeny-Simplification (T)
1. In a bottom-up traversal of T ,
For each internal node v of T do

For each pair (A,B) of markers of M2

v
do

If A < B (resp. A > B) in both children of v then
Set A < B (resp. A > B) in v;

Else If A > B in one child and A < B in the other, then
Set (A,B) incomparable in v;

Else If A < B (resp. A > B) in one child and incomparable in the other, then
Set A < B (resp. A > B) in v;

Else If (A, B) are incomparable in both children of v then
Set (A,B) incomparable in v;

2. In a top-down traversal of T ,
For each node v of T that is not the root do

For each pair (A,B) of markers of M2

v
do

If (A,B) are incomparable in v but ordered A < B (resp. A > B)
in v’s parent then

Set A < B (resp. A > B) in v;

Fig. 2. For each node v, Mv is the marker content at v.



During the second step of the algorithm (top-down traversal), conflicts may
be created. For example, let A, B, C be three markers such that A > B and
(A, C) and (B, C) are incomparable. Resolving this two pairs by B > C and
C > A results in transforming the comparable pair (A, B) into a conflicting
pair. This may lead to a loss of order information at the leaves of T . To avoid
this problem, we weight each order between two markers based on the number
of times it appears in all species. Then for each leaf v, orders between pairs
of markers in the parent of v are sorted according to their weight, and added
successively in the DAG of v if they do not create a conflict.

4.2 A heuristic for the Minimum-Breakpoint Linearization Problem

As the Kemeny distance is not guaranteed to provide a good evaluation of the
evolutionary distance in the case of large inversions, before applying the Kemeny-
simplification algorithm on T , we first simplify DAGs by using a heuristic for the
Minimum-Breakpoint Linearization Problem. This heuristic is based on the third
step of the Ma et al. [11] algorithm aiming to recover a “partially linearized”
gene order at a particular node of the tree. This step proceeds by first weighting
each edge by an estimate of the likelihood of its presence in the ancestor, and
then choosing adjacency paths of maximum weight.

Based on this idea, we develop the Breakpoint-Simplification algorithm that
proceeds as follows:

For each leaf v of T ,

1. Convert v’s DAG into an extended DG G (possibly containing cycles) as
follows: (1) expand each vertex corresponding to an SCC into the set of
vertices of this SCC; (2) add an edge between each vertex connected to an
SCC and each vertex of this SCC; (3) add an edge between each pair of
markers that are potentially adjacent in a linear extension of the DAG (i.e.
between all incomparable markers). For example, in DAG12 of Figure 1, the
SCC S = {D, E, F, G, L} is replaced by five vertices labeled D, E, F , G, L;
each pair of vertices (X, Y ) belonging to {B, C} × S, S × {I, H} and S2 is
connected by an edge.

2. Weight each edge (A, B) of G by an estimate w(A, B) of the probability of
having B following A in the species f . This estimate is computed as follows:

w(A, B) =

∑ik

i=i1
1

ADJ(A,i)

n

where i1, . . . , ik represent the k leaves of T (including v) containing (A, B) as
an edge in their corresponding extended DG, and ADJ(A, i), for i1 ≤ i ≤ ik,
is the number of edges adjacent to A in the extended DG of i. Recall that n

is to the number of leaves (species) of T .



3. Construct a set of paths of maximum weight that cover all nodes of G. This
problem is known to be NP-hard [5] and we propose a simple greedy heuristic
to resolve it. Our heuristic proceeds by sorting all the edges of G by weight,
and then adding them in order to a new graph, initially restricted to the set
of vertices of G and no edges, until each vertex has a unique predecessor and
successor.

4. Incorporate the obtained set of adjacency paths into the original v’s DAG.
This is done by applying the heuristic that we have developed in [1] for sim-
plifying a DAG with respect to a given total order. In our case, the heuristic
is applied successively to the total order represented by each adjacency path.

4.3 The general method

In summary, our methodology can be subdivided into three main steps:

– Step 1: Perform map integration at each leaf of T ;
– Step 2: Apply the Breakpoint-Simplification algorithm on T ;
– Step 3: Apply the Kemeny-Simplification algorithm on T .

In the following section, we will analyse the efficiency of each step of the
general method.

5 Experiments on the Gramene database

Gramene [8] is an important comparative genomics mapping database for crop
grasses. It uses the completely sequenced rice genome to organize information
on maize, sorghum, wheat, barley, and other gramineae (see Figure 3 for a phy-
logenetic tree of the species present in Gramene, excluding rice). It provides
curated information on genetic and genomic datasets related to maps, markers,
genes, genomes and quantitative trait loci, as well as invaluable tools for map
comparison.

Correlating information from one map to another and from one species to
another requires to have common markers, i.e. markers that are highly poly-
morphic among several populations. Such markers, also called “anchor markers”
are typically SSRs (Simple Sequence Repeats, or microsatellites) or RFLPs (Re-
striction Fragment Length Polymorphism). In our study, we selected exclusively
RFLP markers, as they appeared to be the most shared among all crop species
present in Gramene, and thus those most likely to gain additional order infor-
mation following a phylogenetic analysis. Moreover, they represent the largest
family of DNA markers present in Gramene (17,715 different markers).

In order to consider only non-duplicated markers, we select, in each species,
those appearing at a single locus. Moreover, as only markers shared between
species may gain additional order information from a phylogenetic study, we
further restrict ourselves, for each species s, to the set of “valid markers” defined



0 (0, 0)
54 / 137
Foxtail millet (1)

0%(0, 0)

107283

183

231

262

202

134

Rye (1)
76 / 181
42 (42, 0)642 (271, 371)

Wheat (8)
183 / 1199

760 (404, 356)
173 / 976
Barley (11)

143 / 313
Oat (1)

83 (83, 0) 350 (323, 27)
212 / 4856
Maize (13)

956 (956, 0)
226 / 2288
Sorghum (4) Pearl millet (9)

88 / 281
153 (153, 0)

44%(145, 8) 41%(391, 0)41%(157, 108) 5%(2, 0) 50%(220, 161) 8%(7, 0) 40%(61, 0)

Fig. 3. Species included in the Gramene database (excluding the rice genome), with
the phylogeny provided by [9]. Each internal node is labeled by the cardinality of its
marker set. Labels of each leaf are defined from line 1 to line 4 as follows: (1) the species
name followed, in brackets, by the number of map sets used in our study (each map set
involves one map for each chromosome); (2) the number of valid RFLPs followed by
the total number of RFLPs; (3) the total number of incomparable and conflicting pairs
of markers in the union DG resulting from map integration (in brackets, the number
of incomparable pairs, followed by the number of conflicting pairs); (4) the percentage
of resolved incomparable and conflicting pairs of markers (in brackets, the number of
resolved incomparable pairs , followed by the number of resolved conflicting pairs).

as follows: a valid marker in s is a non-duplicated marker in s that appears as
a non-duplicated marker in at least one other species.

Figure 3 gives the distribution of total and valid RFLPs among species,
and also the number of incomparable and conflicting (markers involved in a
cycle) pairs of markers in the union DG obtained after the first step of of map
integration. The total set of incomparable and conflicting pairs are those we
hope to resolve following a phylogenetic analysis.

Results of applying our methodology (Section 4.3) to the Gramene database
are given in the last line of leaf labels in Figure 3. The percentage of resolved
incomparable and conflicting pairs of markers is given, followed in brackets by
the actual number of resolved pairs. Overall, for species with a number of map
set greater than one, the resolution rate ranges from 40% to 50%.

Results evaluation: To test the efficiency of our methodology, we perform the
following experiments. We randomly choose 50 segments of two or three adjacent
genes, each from a randomly chosen genetic map; the markers of each segment
are made incomparable. We then apply our methodology, and check the percent-
age of incomparable pairs correctly resolved after each step (Section 4.3). This
process is repeated 500 times.

Results are presented in Table 1. Performing the union of individual maps
allows the integration, in a single map, of the complementary information in-
terspersed in these maps. As conflicts between individual maps are usually due
to mapping errors rather than to real rearrangement events that would have



Segment size 2 Segment size 3

% Resolution % Errors % Resolution % Errors

INTEG 36.7 2.3 37.4 2.6

INTEG+KEM 51.8 (15.1) 12.1 (36.0) 52.9 (15.6) 11.7 (34.0)

INTEG+BP 48.5 (11.8) 9.0 (30.0) 50.1 (12.7) 8.7 (26.7)

INTEG+BP+KEM 54.4 (17.7) 11.5 (30.6) 54.9 (17.5) 10.6 (27.5)

Table 1. “Segment size 2” (resp. “Segment size 3”): simulations done with segments
of two markers (resp. three markers); % Resolution: percentage of introduced artificial
incomparable pairs of markers that are resolved by the considered method; % Errors:
percentage of errors (incomparable pairs incorrectly ordered) among the number of
resolved artificial incomparable pairs; Results are presented for the following applica-
tion of the general methodology steps (Section 4.3). INTEG: Step 1; INTEG+KEM:
Step 1 followed directly by Step 3; INTEG+BP: Step 1 followed by Step 2; IN-
TEG+BP+KEM: Final results (after applying Step 1, Step 2 and Step 3). Numbers in
brackets are the percentage of resolution and error, for incomparable pairs remaining
after INTEG.

affected one particular population, they are expected to be rare. This observa-
tion is confirmed by our results. Indeed, the step of integrating maps (INTEG
in Table 1) allows to resolve a large proportion of incomparable pairs, with high
resolution power (∼ 2% errors).

Following this step, the Kemeny-Simplification algorithm (KEM) has a higher
resolution rate than the Breakpoint-Simplification algorithm (BP), but with a
lower level of efficiency (∼ 12% errors for KEM, versus 9% for BP). Applying
the complete methodology (BP followed by KEM) leads to a good compromise.
However, it should be noted that less confidence should be given to incomparable
pairs resolved from the phylogenetic information in comparison to those resolved
from combining individual maps of a given species. This is indicated by the
percentage of error (∼ 30%) for incomparable pairs remaining after step INTEG
(number in brackets in Table 1).

6 Conclusion

This paper is a first effort towards accounting for the phylogenetic information of
a species tree to increase the resolution of genetic maps. The main assumption
is that individual maps of one species may gain additional order information
by considering the complementary information obtained from closely related
species. In the case of species that are close enough to preserve a high degree
of gene order conservation, minimizing the Kemeny distance on the species tree
is an appropriate way of increasing the resolution of individual maps. However,
the Kemeny distance is not appropriate anymore for species that have diverged
from each other by large rearrangement events. In this case, using a genomic re-
arrangement measure (e.g. inversions or breakpoints) is more appropriate. Based



on this idea, we have designed a two-step methodology: resolve a number of in-
comparable markers by considering a rearrangement distance (namely the break-
point distance), and then increase the resolution rate by considering the Kemeny
distance.

Another more accurate heuristic for the Minimum-Breakpoint Linearization
Problem may be designed by using a Median Branch-and-Bound approach, sim-
ilar to the one developed for inferring ancestral gene orders of a species tree [15].
The general idea would be to begin with an arbitrary order at each internal node
of the species tree, and then, in a bottom-up traversal, consider each triplet, and
improve the order of the median by minimizing the breakpoint or inversion
distance. However, as leaves are labeled by partial orders, instead of a linear-
time algorithm for computing the breakpoint distance between two orders, an
exponential-time algorithm, as the one that we have developed in [1], would
be needed for computing a distance between a partial and a total order. The
resulting complete heuristic is therefore likely to be intractable for reasonably
large datasets. Moreover, as the number of possible solutions is likely to be huge,
evaluating the obtained resolutions may be much more difficult.

Results obtained on the Gramene database are encouraging, as a high level of
resolution is reached. However, our preliminary simulations performed to evalu-
ate the method reveal a lack of specificity. These simulations may be improved,
for example by removing an individual map and checking whether the order
information it contains can be recovered by our methodology. Additional work
should also be done to improve the various steps of the methodology, and better
adapt it to the gramineae species.
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