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Abstract

We consider two algorithmical questions related to the evolution of gene families. First, given
a gene tree for a gene family, can the evolutionary history of this family be explained with
only speciation and duplication events? Such gene trees are called DS-trees. We show that
this question can be answered in linear time, and that a DS-tree induces a single species
tree. We then study a natural extension of this problem: what is the minimum number of
gene losses involved in an evolutionary history leading to an observed gene tree or set of gene
trees? Based on our characterization of DS-trees, we propose a heuristic for this problem, and
evaluate it on a dataset of plants gene families and on simulated data.



1 Introduction

Background. Genes are the major building blocks of genomic sequences, containing the in-
formation necessary to produce all the proteins and non-coding RNAs of a cell. Genes, in
a genome or across genomes, that are related by sequence or function similarity are called
homologs and grouped into a gene family . The completed sequencing of a variety of genomes
have revealed a high variability in the number of gene copies present in each genome. These
changes in gene family sizes among species are due to successive phases of gene gains and
losses (Demuth et al. 2006). In particular, gene duplication is a fundamental process in the
evolution of species (Ohno 1970), and especially in eukaryotes (Lynch and Conery 2000, Eich-
ler and Sankoff 2003, Dujon et al. 2004, Cotton and Page 2005, Blomme et al. 2006, Wapinski
et al. 2007, Hahn et al. 2007), which is believed to play a leading role in the creation of novel
gene functions. Several processes have been described to account for the origin of gene dupli-
cates, ranging from the duplication of a single gene to the duplication of the entire genome
(Durand and Hoberman 2006).

Understanding the evolution of gene families is a fundamental problem that has several
applications (see (Durand et al. 2006) and references there). For example, it can help to
distinguish between orthologs and paralogs: orthologs are copies that are directly related
through speciation, while paralogs are copies that have evolved by duplication. This is an
important question for functional annotation of genes, as it is believed that pairs of orthologs
are more likely to have similar functions. Moreover, understanding the evolution of gene
families can help establishing unambiguous one-to-one mappings between pairs of genomes,
which is in general a hard computational problem (Blin et al. 2007) and a critical prerequisite
for phylogenomics studies based on gene order and genomic rearrangements.

As the notion of orthology and paralogy is directly related to the history of speciation and
duplication events during genomes evolution, a natural way to distinguish between the two
types of gene homologs is to infer these events from the phylogenetic tree of a gene family, also
called a gene tree. This question has been first considered in the case of a well established
species tree. It can be described as “fitting a gene tree into a species tree”, which is not
obvious due to the possible incongruence between the two trees (Goodman et al. 1979,Guig
o et al. 1996). This problem has been widely studied (Page 1994, Ma et al. 2000, Hallett and
Lagergren 2000, Bonizzoni et al. 2005, Gorecki and Tiutyn 2006, Durand et al. 2006). The
main algorithmic approach developed to solve it, the gene tree/species tree reconciliation,
allows to identify the duplication and gene loss events with respect to the speciation events
in the species tree. It is based on a mapping of the gene tree into the species tree that can be
computed in linear time (Zhang 1997) (see also (Page 1998,Zmasek and Eddy 2001, Chen et
al. 2000) for other implementations).

In the more general case where the species tree is unknown, a natural question is to infer
a species tree from a gene tree, or more generally a set of gene trees, that optimizes a given
criterion. Several criteria have been considered, either probabilistic (Arvestad et al. 2004) or
combinatorial, like minimizing the number of duplications or the number of duplications plus
losses. In particular, the problems of computing, for a given set of gene trees, the species
tree inducing the minimum number of (1) duplication events and (2) duplication+loss events,
have been shown to be NP-complete (Ma et al. 2000) but fixed-parameter tractable (Hallett
and Lagergren 2000). Surprisingly, as far as we know, minimizing the number of gene losses
(independently from the number of duplications) has never been considered. Though related to
each other, the two combinatorial criteria (minimizing duplications versus minimizing losses)



are not equivalent: it may exist an evolutionary history leading to a given gene tree that
minimizes the number of duplications but not the number of losses. The inverse proposition
is also true, though an example of a history minimizing the number of losses but not the
number of duplications is harder to find, suggesting that minimizing losses seems to be a
more constraining criterion. The goal of this paper is to propose a first investigation of this
combinatorial criterion for analyzing gene families.

Overview of our results. We start from a decision question, motivated among others by the
importance of the duplication and speciation events to infer co-orthologs: given the gene
tree of a specific gene family, can this gene tree be explained using only duplication and
speciation events (e.g. without gene losses)? If a gene tree can be explained by a such a
duplication/speciation history, we call it a DS-tree. The next question we address is the
following: what is the minimum number of gene losses allowing to explain an observed gene
tree that is not a DS-tree? The rationale for considering this question is that, given a gene tree,
inferring the true gene loss events and their position in the tree gives a DS-tree that totally
explains the evolutionary history of a gene family; as it is of course impossible to infer true
gene loss events, we attack this problem following a parsimony approach. We show that this
problem is equivalent to finding a species tree that minimizes the number of gene loss events
in the combinatorial framework of reconciliation between a gene tree and a species tree, and
then complements naturally the previous approaches based on duplications or duplications
and losses (Ma et al. 2000, Hallett and Lagergren 2000, Chen et al. 2000). We propose a
heuristic for this problem, that can be applied either to a single gene tree or to a set of gene
trees that represent a set of gene families.

The natural application of our algorithms is to infer, from a set of gene trees, a species
tree for the considered genomes, more precisely a species tree that minimizes the number
of gene losses. However, from a practical point of view, considering individual gene families
independently could be useful to detect such families that have evolved without or with few
gene losses, and thus likely to be under very strong selection pressure. For example (Danchin
et al. 2006) identified 11 gene families present in the whole eukaryotic spectrum (from yeasts
to bilaterian animals), but not in mammals or vertebrates. This can be explained with a
single loss event in the branch from the last common ancestor of mammals or vertebrates. It
is important to notice that, when applied in such a way to single gene families, our approach
is likely to generate false positive, i.e. gene families that can be explained with few gene losses
but with a wrong species tree. However the gene families that have evolved with few gene
losses will be detected as such by a method computing the minimum number of gene loss
events, even if here too there is no guaranty on the correctness of the induced species tree
and inferred gene losses. Altogether, our algorithms propose a first attempt to detect such
gene families when no species tree is given.

Our results are presented as follows. In Section 3, we give two combinatorial characteriza-
tions of a DS-tree and a simple linear time recognition algorithm. We also show that a DS-tree
induces a unique species tree compatible with an evolutionary history with no gene loss. In
Section 4, we consider gene trees that are not DS-trees. Using the combinatorial framework
developed in the study of DS-trees and the reconciliation approach, we propose a polynomial
time and space algorithm that computes an upper bound on the number of gene loss events
needed to explain a gene tree or a set of gene trees. The complexity of the problem of minimiz-
ing the number of gene losses is unknown, but it is related to Camin-Sokal parsimony which
suggests it is a hard problem. Though the heuristic we propose does not provide a guaranteed



approximation ratio, its interest is twofold. First it is based on a combinatorial framework
that complements the classical mapping approach, and provides insights on the problem of
inferring gene losses and its complexity. Second, the computed number of gene losses can be
used as an initial value that, in our experiments, greatly accelerated the running time of a
branch-and-bound algorithm.

Finally, in Section 5, we apply our algorithms to two datasets: a dataset of plant gene
families, computed from ESTs data, taken from (Sanderson and McMahon 2007), and a
dataset of simulated gene trees based on a study of 12 Drosophilia species (Hahn et al. 2007).
These two datasets are interesting for opposite reasons. The plants dataset contains gene
families from seven angiosperms that are probably incomplete due to several reasons, among
those the fact that they come from ESTs data. Moreover, the inferred gene trees are not
guaranteed to be correct. However, a species tree is widely accepted. Our heuristic does not
provide a realistic species tree, but the optimal species tree is very close to the accepted one.
The simulated dataset provides a set of correct gene trees, that have evolved with relatively
few gene losses. On this dataset, our heuristic performs very well, and the species tree that
minimizes the number of gene losses is the correct species tree.



2 Definitions and problems statements

2.1 Definitions

Trees. Let G = {1, 2, · · · , g} be a set of integers representing g different species (genomes). A
species tree on G is a binary tree with exactly g labeled leaves, where each i ∈ G is the label
of a single leaf. A gene tree T on G is a binary tree with labeled leaves, where each leaf is
labeled by an integer from G. It is a formal representation of a phylogenetic tree of a gene
family, where each leaf labeled i represents a member of the gene family located on genome
i. The size of a gene tree is its number of leaves. For a given vertex x of T , we denote by Tx

the subtree of T rooted at x, and by L(x) the subset of G defined by the labels of the leaves
of Tx. L(x) is called the genome set of x. We also denote by xℓ and xr the two children of x,
if x is not a leaf, and by xp its parent if x is not the root of T . An expanded leaf of T is a
vertex x of T such that |L(x)| = 1, and |L(xp)| > 1 or x is the root of T .

Evolutionary history. The following is a formal definition of a Duplication/Loss/Speciation
history (or simply a DLS-history) leading to a given gene tree.

Definition 1. A DLS-history of length n for a gene tree T on G is a sequence of gene trees
T = (T 0, T 2, · · · T n) such that:

1. T 0 is a tree with a single vertex x labeled 1, and T n = T ;

2. For 0 < k < n, one of the three following situations holds:

(a) Speciation event: For given i ∈ G that label a leaf of T k and j ∈ G that has never been
used in a speciation event, T k+1 is obtained from T k by adding two children y and z

to each leaf x of T k labeled i, removing the label of x and labeling one of the two new
vertices by i and the other by j.

(b) Gene duplication event: T k+1 is obtained from T k by adding two children y and z to
a leaf x, removing the label i of x, and labeling y and z with i.

(c) Gene loss event: T k+1 is obtained from T k by removing a leaf x and, is not the root
of T k, its parent y, and grafting the sibling of x to the parent of y if y.

If T is DLS-history for a gene tree T , we say that T explains T . Let T be a DLS-history
explaining a gene tree T . Then, by construction, T leads to a unique species tree S induced
by the speciation events. Note however that several DLS-histories can explain a same gene
tree and induce different species trees. Figure 1 illustrates these concepts.

Obviously, an infinite number of DLS-histories can explain a single gene tree (due for
example to silent gene duplications, i.e. gene duplication immediately followed by a gene loss).
In the rest of this paper, we focus on particular DLS-histories: those minimizing the number of
gene losses. Related to these DLS-histories, we introduce the notion of Duplication/Speciation
histories.

Definition 2. A DS-history is a DLS-history with no gene loss event. A gene tree T is a
DS-tree if it can be explained by a DS-history. A species tree induced by a DS-history for a
gene tree T is said to be DS-consistent with T .



2.2 Problems statement

We now describe the two problems we address in our work. The first problem is the following:

DS-Tree Recognition Problem: Given a gene tree T on G, is T a DS-tree?

We show in the next section that this problem can be solved in time and space linear in
the size of T . Moreover, we show that given a DS-tree T , there is a single species tree that
is DS-consistent with T . Although this property is not surprising, as far as we know it had
never been proved formally.

The second problem we study in this paper is an optimization problem that we first state
as follows: Given a gene tree T on G, what is the minimum number of gene loss events in a
DLS-history explaining T ? To solve this problem, we relate it to DS-trees. Indeed, given a
gene tree T that is not a DS-tree, it can be transformed into a DS-tree by a finite number
of subtree insertions, where each insertion consists in grafting a new subtree onto an existing
branch of T . It is immediate from the definition of DS-histories and DLS-histories that these
subtree insertions correspond to gene loss events (see Fig. 2).

This leads to the following equivalent formulation of the optimization problem of inferring
the minimum number of gene losses explaining a gene tree T :

Minimum Subtree Insertions Problem: Given a gene tree T , what is the minimum
number of subtree insertions needed to transform T into a DS-tree?

Remark 1. The same problem can be considered for a set of gene families. Indeed, it is very
likely that, given a set of gene families from a same set of genomes, optimizing the number
of subtree insertions independently for each of these families can lead to inconsistencies as
different species trees could be DS-consistent some of these DS-trees. This can happen for
example with poorly defined gene families or widespread gene duplications. It would then
make more sense to try to transform all these gene trees in DS-trees such that a single species
tree is DS-consistent with all of them, by minimizing the total number of required subtree
insertions. This can be reduced to consider the Minimum Subtree Insertions Problem
with a single gene tree obtained by grafting all considered gene families trees under a root,
possibly non-binary if there are more than two gene families. This approach only requires
to extend the notion of DS-trees to gene trees with a non-binary root. We describe such an
extension in Section 3 (Remark 2) and use it in our experiments (Section 5).

2.3 Reconciliation gene tree/species tree

We now show how the Minimum Subtree Insertions Problem can be stated in the
classical gene tree/species tree reconciliation framework.

Suppose that a species tree S is already known for G and let T be a gene tree on G.
The gene tree/species tree reconciliation approach aims to infer an evolutionary history that
has led to the gene tree T , based on a particular mapping (the LCA mapping) from the
vertices of T to the vertices of S. This mapping maps every vertex x of T towards the Lowest
Common Ancestor (LCA) of L(x) in S. An internal vertex x is said to be a duplication vertex
if M(xℓ) = M(x) and/or M(xr) = M(x). An internal vertex that is not a duplication is a
speciation vertex. The definition of the number of gene losses is more intricate: (1) given two
vertices y and y′ of S such that y′ is an ancestor of y, d(y, y′) is the number of vertices on
the path from y to y′, excluding y and y′, (2) the number of losses associated to an internal
vertex x of T , denoted ℓx, is

















0 if M(x) = M(xℓ) = M(xr)
d(M(xℓ),M(x)) + 1 if M(xℓ) 6= M(x) and M(xr) = M(x)
d(M(xr),M(x)) + 1 if M(xℓ) = M(x) and M(xr) 6= M(x)
d(M(xr),M(x)) + d(M(xℓ),M(x)) if M(xℓ) 6= M(x) and M(xr) 6= M(x)

(1)

and finally, the number of losses associated to the reconciliation of T with S, denoted by
ℓ(T, S) is the sum over all internal vertices x of T of the number of losses ℓx associated to x.
Note that the above definition of gene losses implicitly allows to locate them in a gene tree
(see (Durand et al. 2006, Vernot et al. 2007) and Fig. 3).

In that reconciliation framework, we can state a natural optimization problem related to
gene loss events: Given a gene tree T , find a species tree S such that ℓ(T, S) is minimum. The
proposition below implies that this problem is in fact equivalent to the Minimum Subtree
Insertions Problem.

Proposition 1. Let T be a gene tree on G and S be a species tree on G. Then ℓ(T, S) = k is

the minimum number of subtree insertions needed to transform T into a DS-tree T ′ such that

S is DS-consistent with T ′.

Proof. See Appendix. ⊓⊔



3 Recognizing a DS-tree

In this section, we propose two combinatorial characterizations of DS-trees. The first one
follows a bottom-up (from the leaves to the root) approach, and is the basis of the linear-time
recognition algorithm presented at the end of this section. The second characterization follows
a top-down (from the root to the leaves) approach and is used in our heuristic for the problem
of inferring the minimum number of gene losses required to recover a DS-tree from a given
gene tree (Section 4). We first introduce a few notations and definitions.

Cherries: A cherry of T is a subset {i, j} of G such that L(x) = {i, j} for a given vertex x

and the two children of x are expanded leaves (L(xℓ) = {i} and L(xr) = {j}); x is said to be
an occurrence of the cherry {i, j}, but when the context is clear, x is also said to be a cherry.
An expanded occurrence of the cherry {i, j} of T is a subtree Tx of T such that L(x) = {i, j},
L(xp) 6= {i, j} or x is the root of T , and every leaf of Tx belongs to a subtree rooted at an
occurrence of the cherry {i, j}.

Definition 3. A cherry {i, j} is said to be a DS-valid cherry for T if, for any expanded leaf
x such that L(x) = {i} or L(x) = {j}, xp is an occurrence of {i, j}. In other words, no cherry
of the form {i, k} with k 6= j or {j, k} with k 6= i exists in T .

If {i, j} is a DS-valid cherry, we denote by c(T, i, j) the gene tree on G\{i, j} ∪ {g + 1}
obtained by replacing in T every expanded occurrence of the cherry {i, j} by a single vertex
(a leaf then) labeled g + 1.

Forests and borders: Let x be an internal vertex of T . The unordered pair {L(xℓ), L(xr)} is
called the genomes partition associated to x. We say that x is valid if and only if L(xℓ) ∩
L(xr) = ∅. Let F be a forest, that is a set of one or more trees. We say that a set X of vertices
of F is covering F if each leaf belonging to a tree of F is a descendant of a unique vertex
of the set X . We say that a vertex x is higher than a vertex z if z is a descendant of x. Let
B = {b1, . . . , bk} be the set of highest valid vertices of a forest F : B is called a border if it is
covering F and all the genomes partitions associated to the vertices of B are identical. Let B
be a border of a forest F , and {Pℓ, Pr} be the partition of G induced by the children of the
vertices of B. We denote by Fℓ (resp. Fr) the set of subtrees rooted in the children of vertices
of B labeled by Pℓ (resp. Pr) (see Figure 4 for an illustration).

Definition 4. A DS-valid forest is recursively defined as follows:

1. It is a set of expanded leaves or
2. It has a border and the forests Fℓ and Fr are DS-valid.

Theorem 1. Let T be a gene tree on G. The following statements are equivalent.

1. T is a DS-tree.

2. Either |G| = 1, or for any cherry {i, j}, {i, j} is a DS-valid cherry for T and c(T, i, j) is

a DS-tree on G\{i, j} ∪ {g + 1}.
3. {T} is a DS-valid forest.

Proof. See Appendix. ⊓⊔

Corollary 1. Let T be a DS-tree on G. There exists a single species tree for G that is DS-

consistent with T .



Proof. See Appendix. ⊓⊔

Point 2 of Theorem 1 immediately translates into a simple algorithmic principle allowing
to check whether a gene tree is a DS-tree. It is based on iteratively considering a cherry,
checking its DS-validity, and then contracting all its occurrences into leaves and updating the
species tree with the current cherry. We describe below a linear time and space algorithm
based on this principle, taking as input a gene tree T on G with |G| = g, and returning a
species tree that is DS-consistent with T , if any.

Algorithm DS-recognition (T )
1. LET m = g + 1 and S be a graph with of 2g − 1 vertices, labeled from 1 to 2g − 1, and no edge
2. Perform a depth-first traversal of T , and let x be the current vertex
3. IF x is a vertex with children xℓ and xr with L(xℓ) = {i}, L(xr) = {j} and i 6= j THEN
4. FOR EVERY vertex zℓ such that L(zℓ) = {i} DO
5. LET zr be the sibling of zℓ and z its parent
6. IF L(zr) = {j} THEN replace Tz by a leaf labeled m

7. ELSE IF L(zr) 6= {i} THEN RETURN FALSE
8. IF there remains a vertex x with L(x) = {j} THEN RETURN FALSE
9. Connect in S the vertex labeled m with two children, the two vertices labeled i and j

10. Increment m

11. RETURN S

Theorem 2. Given a gene tree T with n vertices, Algorithm DS-recognition returns

FALSE if and only if T is not a DS-tree, and the only species tree that is DS-consistent with

T otherwise. It can be implemented to run in O(n) time and space.

Proof. See Appendix. ⊓⊔

Remark 2. As mentioned in Remark 1, it is a natural question to extend the results of this
section to the case where the root of T is non-binary. This causes no problem for both
characterizations of DS-trees. For the bottom-up characterization (point 2 of Theorem 1),
this is taken into account by the case |G| = 1, that does not consider the degree of the root.
For the top-down characterization (point 3 of Theorem 1), it suffices to notice that the root
of such a non-binary tree can not be part of the border of the forest F = {T}, and then the
forests Fℓ and Fr are well defined.



4 A heuristic for the Minimum Subtree Insertions Problem

We now describe an algorithm computing an upper bound on the minimum number of subtree
insertions required to transform a gene tree T into a DS-tree.

Basically, due to the relationship between the Minimum Subtree Insertions Problem
and the gene tree/species tree reconciliation problem (Proposition 1), for a gene tree T on a
genome set G, given any species tree S on G, the LCA mapping induces a set of gene losses
that explains T and then transforms T into a DS-tree. The problem is then to find such a
species tree S that minimizes the number of gene losses. The heuristic we propose follows
from the top-down characterization of DS-trees (point 3 of Theorem 1) and contains three
steps:

– We first detect successive and disjoint sets of vertices in T , called levels, such that each
level covers all leaves of T and is composed of either valid vertices (as defined in Section
3) and expanded leaves. Intuitively these levels contain vertices that indicate possible
speciation events (for the valid ones) or unambiguous vertices (for the expanded leaves,
whose history is then trivial and contains only duplications). For each level, we label each
vertex x with a genome set L′(x) that, roughly, contains L(x) and describes the leaf set
of x in a DS-tree T ′ obtained from T by subtree insertions and where x is a speciation
vertex.

– We then compute from these levels, starting from the last one (the one that contains the
last possible speciation events) to the first one (that contains the first possible speciation
events), a species tree S that is compatible with all possible speciation events detected
during the first phase. This is during this phase that we try, for each level, to minimize
the number of gene loss events induced by the chosen species tree. This problem is related
to the Camin-Sokal parsimony problem, and we describe it in Section 4.3.

– Finally, it follows from Proposition 1 that, given T and S, ℓ(T, S) gives an upper bound
on the number of subtree insertions needed to transform T into a DS-tree.

Remark 3. The described algorithm differs from the algorithm published in a preliminary
version of this work (Chauve et al. 2007) in two points. First we compute only a species tree
and rely on the mapping defined in the reconciliation approach to infer gene losses events.
Second, we propose a greedy heuristic to infer partial species trees (step 6 of Procedure
Compute-Loss-Number, Section 4.2) instead of using arbitrary partial species trees.

4.1 The main algorithm

A set of vertices {x1, . . . , xk} is said to be connected if the intersection graph induced by the
labels of these vertices (the vertices of the graph are the xi’s and two vertices are connected
if their labels have a non-empty intersection) is connected. Completing the labels of a con-
nected set {x1, . . . , xk} of vertices consists in adding to the label of every vertex x the subset
∪k

i=1
L(xi)\L(x) of G, leading to the new labeling L′(x) = ∪k

i=1
L(xi) (see Fig. 5).

We extend the notion of a valid vertex, defined in Section 3 for internal vertices, to
expanded leaves: every expanded leaf is considered as a valid vertex. For a set of valid vertices
V, we call forest of V, denoted f(V), the set of subtrees of T rooted in the children of subset
of the vertices of V that are not expanded leaves.



Procedure Relabel (T)
1. LET F = {T} be the forest composed of the single tree T and k = 1;
2. WHILE F is not a set of expanded leaves DO
3. LET Vk be the set of highest valid vertices of F ;
4. Complete the labels of every maximal connected subset of Vk

5. LET F = f(Vk);
6. Increment k;

The successive sets of highest valid vertices of T considered in Procedure Relabel (the
Vi’s) are called the successive levels of T . Level V1 is the set of highest valid vertices, while,
if T has k levels, level Vk is the last level. We denote by r(T ) the subset of G labeling the
leaves of the forest F when F is a set of expanded leaves. An illustration of this procedure is
given in Figure 5.

We now turn to the second step of our heuristic, that infers a species tree and the number
f gene losses from the labeling L′. For a given level of T represented by a forest F of p trees
T1, . . . , Tp rooted at the vertices x1, . . . , xp, we call the partition of F by genome sets the
unique partition of F into subforests F1, · · · Fp such that two trees Ti and Tj of F belong to
the same subforest if and only if L′(xi) = L′(xj) (xi and xj are respectively the roots of Ti

and Tj). For i ∈ {1, . . . , p}, we denote by L′(Fi) the subset of G that labels all roots of the
trees belonging to the subforest Fi. A species tree P for a genome set G extends a species tree
P ′ for a subset H of G if P contains P ′ as a subtree.

Procedure Compute-Loss-Number (T, L’)
1. LET k be the number of levels of T and Pk+1 = r(T );
2. FOR i from k to 1 DO
3. LET F be the forest composed of the tree rooted in vertices from Vi;
4. LET F1, · · · Fp be the partition of F by genome sets;
5. FOR EVERY subforest Fj DO
6. LET Pj be a species tree on L′(Fj), that extends every tree in Pi+1

whose genome set is included in L′(Fj);
7. LET Pi be the set of species trees P1, · · · , Pp.
8. LET S be the only species tree in P1.
9. RETURN ℓ(T, S).

Theorem 3. Procedure Compute-Loss-Number is well defined and computes an upper

bound on the minimum number of subtree insertions needed to transform T into a DS-tree.

Proof. See Appendix. ⊓⊔

We still did not indicate which species tree Pj should be chosen for the considered genome
set L′(Fj). In a greedy approach, the natural choice would be to pick the species tree that
extends the species trees present in Pj+1 and induces the minimum number of gene losses
when computing ℓ(T, S) (that correspond to subtree insertions located on the branches of
nodes located between levels Vi and Vi+1). In all generality this problem is as hard as our
original problem, that deals with a single tree. The restriction that Pj should extend previously
chosen species trees allows to reduce this problem to a conceptually simpler one, involving
completing a set of small gene trees, that we attack with a greedy heuristic in Section 4.2.

Remark 4. It is important to point at the difference in nature between the two phases of our
heuristic: the first one is not based on a combinatorial optimization principle, as it only detects



patterns in T that, following our characterization of DS-trees, indicate possible speciation
events. Indeed, if, when processing a subforest Fj in steps 5-6 of Procedure Compute-
Loss-Number the genome set L′(Fj) intersects exactly the genome sets of two species trees
of Pi+1, then there is a single choice for Pj . We rely on a greedy optimization phase when
the pattern of speciations for a given Fj is ambiguous and there are more than one possible
species tree that would be consistent with the possible speciations related to a level of valid
vertices.

4.2 Completing a set of leaves and cherries

Problem definition: We now describe our approach to compute a species tree Pj in step 6
of Procedure Compute-Loss-Number. We first show that the problem is similar to the
one of inferring a species tree that minimizes the number of gene losses in a set of gene trees,
with the restriction that each of these gene trees is a cherry or a single leaf. This simpler
modelization follows from Lemma 1 below.

Lemma 1. Let T be a gene tree with k levels of valid vertices.

1. Every valid vertex in level Vk is either an expanded leaf or a cherry.

2. Let x be a child of a vertex belonging to level Vi, i < k. Then all descendants of x belonging

to level Vi+1 have the same label L′.

Proof. See Appendix. ⊓⊔

We now describe how we transform a level into leaves and cherries. Following Lemma 1, for
a vertex x of Vi that is not an expanded leaf, we label its child xℓ (resp. xr) with the genome
set L′ of its descendants belonging to level Vi+1. If x is an expanded leaf, with L(x) = {i},
i also labels a leaf of a tree P of Pi+1 and we define L′(x) as L′(x) = L(P ). Then, if we
denote by Q = {Q1, . . . , Qm} the subset of Pi+1 composed of the trees whose genome sets
are included in L′(Fj), and by X the roots of the trees belonging to Fj , every x ∈ X is one
of the three following kinds of vertices.

– (Type 1) x is an expanded leaf with L′(x) = L(Qi) for some Qi ∈ P.
– (Type 2) L′(xℓ) = L′(xr) = L(Qi) for some Qi ∈ Q.
– (Type 3) L′(xℓ) = L(Qi) and L′(xr) = L(Qj), with Qi 6= Qj, Qi ∈ Q and Qj ∈ Q.

Computing a species tree that extend all the species trees of Q and minimizes, among
such trees, the number of subtree insertions is then equivalent to the same problem for the
set of gene trees T = {T1, . . . , Tp} on {1, . . . ,m} defined from X as follows: Tk is a leaf {i}
(a tree reduced to a single vertex labeled i) if the root x of Tk is a vertex of type 1 or 2 with
L′(xk) = L(Qi), or a cherry {i, j} if x is a vertex of type 3 with L′(xℓ) and L′(xr) are equal
to L(Qi) and L(Qj).

Given a species tree P on {1, . . . m}, completing a leaf {i} such that it becomes a DS-
tree S on {1, . . . m} requires a number of subtree insertions c(P, {i}) equal to the number of
branches on the path from i to the root of P , called the depth of i in P , denoted depthP (i).
Completing a cherry {i, j}, if v is the lowest common ancestor of i and j in P , requires
c(P, {i, j}) = (depthP (v) + depthPv

(i) + depthPv
(j) − 2) subtree insertions (branches on the

paths from i to v, j to v and v to the root of P ). (See Fig. 7). The cost of completing T given
P is then equal to c(P,T ) =

∑

k=1,...,p c(P,L(Tk)), and we are then interested in the following
problem.



Minimum Leaf-Cherry Completion Problem: Given T , find a species tree P such that
c(P,T ) is minimum.

Algorithm: We describe a heuristic solving the Minimum Leaf-Cherry Completion Prob-
lem that is based on the sequential addition principle commonly used in heuristics to infer
species trees for the parsimony criterion (Felsenstein 2004), but adapted to the particular
structure of our problem. More precisely, we build a species tree in a greedy way, starting
from a set of leaves, and iteratively joining a pair of subtrees, in such a way that at each step
we have a lower bound on the final number of subtree insertions. We make a greedy choice
for the pair of subtrees that are joined at each step: we chose the pairs that minimizes the
increase of the lower bound.

Let S = {S1, . . . , Sk} be a set of leaf-disjoint trees on the genome set {1, . . . ,m}, such
that the union of their leaves is equal to {1, . . . ,m}. We extend the definition of the cost of
completing T as follows: c(S, {i}) is the depth of i in the unique tree of S that has a leaf i, and
c(S, {i, j}) = 0 if no tree of S does contain both leaves i and j and c(S, {i, j}) = c(Sk, {i, j})
if Sk is the tree of S containing both leaves i and j. It is then immediate that:

Lemma 2. For every species tree P on {1, . . . ,m} that extends all trees of S, c(P,T ) ≥
c(S,T ), and c(P,T ) = c(S,T ) if S = {P}.

To describe our heuristic, we need a last notation: if S is a forest with m trees, for every
pair of distinct numbers i and j from {1, . . . ,m}, we denote by Si,j the forest obtained from
S by replacing Si and Sj by a tree joining Si and Sj under a root.

Procedure Completion-Leaf-Cherry (T )
1. LET S = {1, . . . , m} the forest composed of m different leaves;
2. FOR k from 1 to m − 1 DO
3. Replace S by the forest Si,j that minimizes c(Si,j , T );
4. RETURN the only tree remaining in S ;

Proposition 2. If T contains q trees on {1, . . . ,m}, Procedure Completion-Leaf-Cherry
(T ) can be implemented in time O(q + m3) and space O(m2).

Proof. See Appendix. ⊓⊔

Proposition 3. The complete greedy heuristic, composed of Procedure Relabel, Proce-
dure Compute-Loss-Number and Procedure Completion-Leaf-Cherry, for a gene

tree T of size n on a genome set of size g, can be implemented in time O(g × n + g3) and

space O(g × n).

Proof. See Appendix. ⊓⊔

4.3 Link with Camin-Sokal Parsimony

We now describe how the Minimum Leaf-Cherry Completion Problem is related to
a phylogenetic reconstruction problem known as Camin-Sokal Parsimony Problem. In
the Camin-Sokal Parsimony Problem (see (Felsenstein 2004) for example), given a set
of binary characters, only species trees verifying the following property are considered: a
character that is not present in a leaf is not present in its ancestors. In other words, characters



can only be gained. The goal is then to find a species tree that minimizes the total number
of events, that is the number of character gains.

In the Minimum Leaf-Cherry Completion Problem, given a species tree P , each leaf
(resp. cherry) present in T can be seen as character, weighted by the number of occurrences
of this leaf (resp. cherry) in T , that is present in all but one leaf (resp. two leaves) of P (for
example a cherry {i, j} will correspond to a character that is present in all m taxa but i and
j). Then, for a given character (leaf or cherry) if the vertices of P are labeled 0 for the ones
that are ancestor of a leaf not having this character and 1 otherwise. The number of subtree
insertions for a given leaf or cherry is then the number of gains of the corresponding character
in the labeled species tree P , and minimizing subtrees insertions is equivalent to minimizing
characters gains as in the Camin-Sokal Parsimony Problem (see Fig. 8).

The Minimum Leaf-Cherry Completion Problem is then the restriction of the
Camin-Sokal Parsimony Problem where each character is present in all but at most
two taxa. Camin-Sokal Parsimony Problem has been shown to be NP-complete, but the
hardness proof given in (Day et al. 1986) uses a reduction from Vertex Cover to Camin-
Sokal Parsimony Problem instances where each character appears in exactly two taxa.
Therefore, the NP-completeness of the Camin-Sokal Parsimony Problem does not imply
the same result for the Minimum Leaf-Cherry Completion Problem, but, together with
the hardness of other gene tree/species tree reconciliation problems (Ma et al. 2000), suggest
that it is a hard problem.



5 Experimental results

The data and results of our experiments are available on a companion website:
http//www.cecm.sfu.ca/~cchauve/JCB-CG07.

5.1 A dataset of plant gene families

We describe the results obtained with the algorithms presented in the previous sections on the
577 gene families considered in (Sanderson and McMahon 2007), in a study of the phylogeny
of seven angiosperm genomes from ESTs data4. Each of the 577 gene families was analyzed
individually in a preliminary version of this work (Chauve et al. 2007). It was shown that
most of them could be explained with very few gene losses (for example 333 gene families can
be explained with no gene losses), but these results did not account for the fact that most
families did span less than the 7 considered genomes. For example, 89 of the 333 DS-trees
contain only 4 genes that span 3 genomes, while only 7 of the 59 gene families that span the
7 genomes are DS-trees.

In the present work, we are interested in the analysis of the 577 gene families together. We
grouped the 577 gene trees under a single non-binary root and analyzed them both with our
heuristic described in Section 4 and a branch-and-bound algorithm5 that computed a species
tree that minimizes the number of gene loss events event to explain the whole set of 577 gene
families. The heuristic explained the 577 gene trees with a total of 4906 gene losses, compared
to an optimal number of 3603 gene losses computed by the branch-and-bound algorithm. The
species tree proposed by the heuristic is however very different from the accepted species
tree, unlike the species tree proposed by the branch-and-bound that differs from the accepted
species tree by two local rearrangements: A. thaliana and S. tuberosum are grouped into a
single clade as are O. sativa and Pinus (see Fig. 9).

From these experiments, it appears first that minimizing the number of gene losses seems
to be a good criterion to infer a species tree from a set of gene trees, even in the case of
a possibly problematic dataset as can be gene trees obtained from widespread duplications
histories and where gene families are obtained from ESTs data. Regarding the heuristic, it
was useful from an algorithmical point of view as it computed an initial number of gene losses,
that is less than two times the optimal and helped speed-up the branch-and-bound algorithm.
Among the possible reasons for the poor result, in terms of species tree, obtained with the
heuristic are either possible errors in computing gene families or gene trees, or the facts that
the considered species are known for widespread duplications and that gene families could
be incomplete due to the fact that they were computed from ESTs and not from sequenced
genomes.

5.2 A simulated dataset

For our second experiment, we considered the phylogenetic tree described in Figure 1 of
(Hahn et al. 2007), for 12 Drosophilia species, where three different rates of gene gain/loss
are proposed, for different parts of the tree. We simulated 10 datasets of 100 gene families
following a birth-and-death process as follows: starting from a single ancestral gene at the
root of the species tree (with branch lengths) given in Fig. 1 of (Hahn et al. 2007), we did

5 The algorithm we used is based on the sequential addition algorithm described in Section 4.2 and an
improved version will be described in a future paper.



let this gene evolve along the branches of this species tree with a duplication rate of 0.02
(expected number of event by million years) and a gene loss rate of 0.02. We chose a gene
gain/loss rate of 0.02 as it is slightly higher than the highest rate given in (Hahn et al. 2007)
and because using the three rates given in (Hahn et al. 2007) resulted in datasets with too
few gene losses to assess accurately our algorithms. The 1000 gene families contained a total
of 3777 gene losses, distributed as described in Table 1.

For each of the 10 datasets, we proceeded as for the plant dataset and grouped the 100
gene families under a non-binary root. We then analyzed this tree with our heuristic and the
branch-and-bound algorithm. In all cases the branch-and-bound inferred the correct species
tree, with a number of gene losses lower than the (known) number of gene losses that happened
during the evolution of the families, due, among others, to duplications immediately followed
by a gene loss. In 6 of the 10 cases, the heuristic inferred the correct species tree and in the
last 4 cases, the inferred species tree was exact up to a single local branch rearrangements
(species trees are available on the companion website). The number of gene losses inferred by
the heuristic and branch-and-bound by dataset are described in Table 2.



6 Conclusion

We showed in this paper that deciding if a gene tree can be explained without gene losses
and lead to a unique species tree can be done efficiently. We also introduced the problem of
inferring a species tree from a single gene tree or a set of gene trees by minimizing the num-
ber of gene loss events, that complements the classical gene tree/species tree reconciliation
approaches that were based either on duplications or duplications and losses. Our prelimi-
nary experimental results, especially with simulated data where the exact answer is known,
suggest that our approach can give good results, and should be compared with the two other
reconciliation approaches based on minimizing the number of duplications and the number of
duplications or gene losses.

Among the problems that our work suggest, the most natural is the complexity of the
Minimum Subtree Insertions Problem, both for a single gene tree and for a set of
gene trees. From the relationship between Camin-Sokal parsimony and the Minimum Leaf-
Cherry Completion Problem, it is likely that it is NP-complete, but the problem is still
open. Would it be NP-complete, it would then be interesting to ask if it is fixed-parameter
tractable as the problems involving duplications (Hallett and Lagergren 2000) or if it can be
approximated. Considering the problem of inferring gene loss events under a purely combina-
torial point of view, and not from an optimization point of view, it would probably improve our
heuristic to develop the approach used in the first step of the heuristic and based on detecting
possible levels of duplications events. Handling gene trees that are not fully resolved is also
a natural extension. Preliminary results on yeast gene families show that our approach needs
to be generalized to non fully resolved gene trees, which would imply to consider non-binary
species trees. Such problems have recently started to be investigated, both from algorithmical
point of view (Chang and Eulensetin 2006, Berglund-Sonnhammer 2006, Vernot et al. 2007)
and from a biological point of view (Fares et al. 2006, Hahn 2007).
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7 Appendix.

Proof of Proposition 1

It follows from the definition of subtree insertions and gene losses in the reconciliation theory
that at most k subtree insertions are needed to transform T into a DS-tree T ′ such that S

is consistent with T ′ (see for example (Durand et al. 2006)). We then just need to show that
it is impossible to transform T into a DS-tree that is DS-consistent with S with less than k

subtree insertions.
Let T ′′ be a DS-tree obtained from T by less than k subtree insertions such that S is

DS-consistent with T ′′. Moreover, we assume that among such DS-trees T ′′ is obtained form
T using the minimum number of subtree insertions. Without loss of generality, we also assume
that the k subtree insertions in T ′ are the ones given by the LCA mapping between T and S.

Let x be an internal vertex of T (x is then also a vertex of T ′ and T ′′), and y and z

its children in T (also vertices in T ′ and T ′′ but it is possible that they are not children of
x in these two trees due to subtree insertions), such that T ′

y = T ′′

y , T ′

z = T ′′

z but T ′

x 6= T ′′

x .
Such a vertex obviously exists as T ′′ is different from T ′, but S is DS-consistent with both
DS-trees. Let u = M(y), v = M(z) and r = M(x), be the vertices associated to y, z and x

by the LCA mapping M . Then, by definition of the LCA mapping M , Su (resp. Sv, Sr) is
DS-consistent with T ′

y = T ′′

y (resp. T ′

z = T ′′

z , T ′

x) that is a DS-tree. Moreover, by definition of
DS-trees, there is a vertex w of S such that Sw is DS-consistent with T ′′

x . We now show that
w is different from r and is an ancestor of r. If w = r, T ′

y = T ′′

y and T ′

z = T ′′

z , together with
the definition of the LCA mapping, imply that the subtree insertions induced by the LCA
mapping are needed. The minimality of the number of subtree insertions to transform T into
T”, implies then that T ′

x = T ′′

x , which contradicts our assumption. If r is an ancestor of w, S

is not DS-consistent with T ′′ as w is not an ancestor of either u or v. Finally, if neither r is
an ancestor of w nor w is an ancestor of r, both u and v are not descendants of w and S is
not DS-consistent with T ′′. Hence w is an ancestor of r.

This implies that more subtrees have been inserted on the branches (x, y) and (x, z) of T

to obtain T ′′ than to obtain T ′. More precisely, some subtree of S has been inserted both on
the branches (x, y) and (x, z). Such insertions could be avoided to transform T into a DS-tree,
by being moved on the branch from x to its parent. It would then be possible to obtain a
DS-tree such that S is DS-consistent with it in less subtree insertions than required to obtain
T ′′, which contradicts the minimality of T ′′.

Proof of Theorem 1

‘1 ⇒ 2’ The results holds obviously for g = |G| = 1. Assume g > 1, T is a DS-tree and let
T 1, . . . , Tn be a DS-history explaining T , its last speciation event being from T k to T k+1,
producing leaves labeled i and j, with i < j (so j = gk + 1). Without loss of generality,
we can assume that all duplication events involving leaves with a label different from i and
j occurred before this speciation event. It follows immediately from the fact that all later
events are duplication events involving i or j that {i, j} is a DS-valid valid cherry. Moreover
up to relabeling leaves labeled g + 1 by i c(T, i, j) = T k. So c(T, i, j) can be explained by the
DS-history T 1, . . . , T k, and then c(T, i, j) is a DS-tree.
‘1 ⇐ 2’ Here again the base case (g = 1) is obvious. In the general case (g > 1), let {i, j} be
a DS-valid cherry, with i < j. By hypothesis, c(T, i, j) is a DS-tree, so is the same tree where
leaves labeled with g + 1 are replaced by i. Hence, c(T, i, j) can be explained by a DS-history



T 1, . . . , T k. Next, to go from c(T, i, j) to T , as {i, j} is a DS-valid cherry, we replace each leaf
i by a subtree where one child xℓ of the root x is such that L(xℓ) = {i}, and the other child
such that L(xr) = {i}. This corresponds immediately to single speciation event producing
leaves i and j followed by possible duplication events of leaves i and j, and then a DS-history
explaining T .
‘1 ⇒ 3’: Let T be a DS-tree, and T be a duplication/speciation history for T . Let n be the
number of gene copies existing in the ancestral genome preceding the first speciation event
that gave rise to two genomes labeled 1 and 2, and let {11, 12, · · · , 1n} (resp. {21, 22, · · · , 2n})
be the gene family in genome 1 (resp. genome 2). The gene tree resulting from the first
speciation event has the following general shape:

1
1

b
1

b
2

b
n

1
2

2
1

2
2

1
n

2
n

As gene losses are not allowed in any DS-history leading to the DS-tree, each gene 1i (resp.
2i), for 1 ≤ i ≤ n, is the ancestral copy of at least one gene in each genome resulting from
subsequent speciation events of genome 1 (resp. genome 2). Therefore, all bi left (resp. right)
genome sets are identical, for 1 ≤ i ≤ n, and correspond to the set of genomes descendant
from genome 1 (resp. genome 2). Therefore the set {b1, · · · bn} corresponds to a border of T .
A similar argument allows to prove that all subsequent forests have a border, which concludes
this first part of the proof.

‘1 ⇐ 3’: Let T be a gene tree such that T has a border B of size n and its resulting forests
Fℓ and Fr are DS-valid with borders Bℓ and Br respectively of size nℓ and nr. If T is a gene
tree with |G| = 1 and n leaves, then T is a DS-tree explained by a DS-history constituted by
a sequence of n− 1 gene duplications. Otherwise, by induction on G, it is immediate to prove
that the procedure DS-Construct below computes a DS-history for T .

Procedure DS-Construct (T , B, n)
1. Perform n − 1 duplication events
2. Perform a speciation event
3. DS-Construct(Fℓ, Bℓ, nℓ)
4. DS-Construct (Fr, Br, nr)

Proof of Corollary 1

We prove the statement by induction on g = |G|, and using the characterization of DS-trees
as given in point 2 of Theorem 1. If g = 1, the statement obviously holds. Let g > 1 and {i, j}
be a cherry for T . As T is a DS-tree, let {i, j} be a DS-valid cherry of T . From the definition
of a cherry, we can say that in every DS-history explaining T , there is a speciation event that
produces i and j, followed by possible duplications of i and j. It follows that every species
tree DS-consistent with T contains a vertex with two children that are leaves and labeled
respectively with i and j. Finally, as c(T, i, j) is a DS-tree on g−1 species, by induction there
is a unique species tree DS-tree-consistent with c(T, i, j), which implies that there is a unique
species tree S that is DS-consistent with T .



Proof of Theorem 2

The fact that the algorithm checks whether T is a DS-tree follows immediately from Theorem
1 and the fact that steps 4 to 8 obviously check if the current cherry {i, j} is DS-valid. To
assess the time complexity, one can first notice that every vertex is visited a constant number
of times, during the traversal of T (step 2) and in step 4, step 5 or step 8.

To get a linear time complexity we just need to ensure that steps 4 and 8 are performed
in time linear in the number of visited vertices. To achieve this bound, we maintain during
the algorithm a mapping V from {1, . . . , 2g − 1} to subsets of vertices of T , such that, at any
time in running the algorithm, V (i) is the subset of vertices of T that root subtrees whose
all leaves are labeled by i. More precisely, V (i) is a linked list of all the vertices z of T such
that L(z) = {i}. Moreover, we maintain a mapping W from each leaf of T to the cell of
the lists of V that contain this leaf. V and W can be initialized during a single depth-first
search in T . Then with V known, and provided the list V (i) can be accessed in constant time
(which is easy if V is an array of linked lists), the steps 4 and 8 can be performed in time
linear in the number of visited vertices. Finally, if after step 6, zr and zℓ are removed and z is
replaced by a leaf labeled m, it suffices to remove zr and zℓ from the lists V (i) and V (j) that
contain them (which is easy using W ), and z is added to the list V (m) and W (z) is set to
the corresponding cell in this list, which can both be done in constant time. The linear space
complexity is obvious.

Proof of Theorem 3

To prove that Procedure Compute-Loss-Number is well defined, we only need to prove
that (1) in step 6 there exists a species tree Pj on the genome set L′(Fj) that extends every
tree in Pi+1 whose genome set is included in L′(Fj), and (2) P1 contains a unique species tree
that is a species tree on G.

(1) The statement obviously holds when i = k as Pk+1 = r(T ) and then every element of r(T )
is a single vertex by construction. If i 6= k, as we defined one species tree in Pi+1 for each
part of the partition of Fi by genome sets, the genome sets of the trees in Pi+1 are pairwise
disjoint, which immediately implies the stated property.

(2) We first show that the partition by genome sets of F1 has only one part. Let x be a
vertex of T such that x is the lowest common ancestor of two vertices y and z of V1 with
L′(y) 6= L′(z), and no descendant of x does satisfy the same property. If x is the parent of
both y and z, then x is valid and should belong to V1, which contradicts the fact that it is
ancestor of two vertices of V1. Otherwise (x is not the parent of both y and z), as all leaves
of T are covered by vertices of V1, there are other descendants of x that belong to V1. All
vertices of V1 that belong to the same subtree of Tx than y (resp. z) have the same label L′

than y (resp. z), as otherwise an ancestor of y (resp. z) would belong to V1. Here again this
contradicts the fact that x is not a valid vertex. So we can not have L′(y) 6= L′(z) for any
pair x and y of vertices of V1.
Finally, as the partition by genome sets of F1 has only one part, P1 contains a unique species
tree S. By definition, the vertices of V1 covers all leaves of T and then S is a species tree on
G.

The fact that ℓ(T, S) is an upper bound for the minimum number of subtree insertions
needed to transform T into a DS-tree follows from Proposition 1.



Proof of Lemma 1

(1) Otherwise, given a valid vertex that roots a subtree with at least three leaves with different
labels, one of its descendant is itself a valid vertex and then T has at least one more level of
valid vertices.

(2) We use induction on the number of descendants of x that belong to Vi+1. If there is only
one, the statement obviously holds. Otherwise, if there are two such vertices that are sibling,
say xℓ and xr, as their parent is not a valid vertex, L(xℓ) ∩ L(xr) 6= ∅, and then, following
Procedure Relabel L′(xℓ) = L′(xr). By induction, we can then conclude. Finally, the fact
that two such sibling vertices of level Vi+1 exist follows from the fact that the descendants of
x that belong to level Vi+1 cover all leaves of Tx.

Proof of Proposition 2

We use an auxiliary weighted complete graph L and maintain the following invariants: (1)
every vertex of L is a tree Sk of S, (2) the weight of a vertex Sk, denoted by w(k), is equal
to the number of trees of T whose genome set is included in or equal to the genome set of Sk

and (3) the weight of an edge between Sk and Sℓ, denoted by w({k, ℓ}), is the sum, over all
pairs {i, j} such that i is a leaf of Sk and j a leaf of Sℓ, of the number of occurrences of the
cherry {i, j} in T . L can be computed initially (i.e. for S = {{1}, . . . , {m}}) from T in time
O(q + m2) and space O(m2).

It follows from the definition of L that

1. c(Si,j ,T ) − c(S,T ) = w(i) + w(j) − 2w({i, j}),
2. updating L after replacing S by Si,j can be done by

(a) contracting the edge between Si and Sj to create a new vertex containing the new tree
obtained by joining them,

(b) setting the weight w of the new vertex to w(i) + w(j) + w({i, j}) and

(c) replacing all multiple edges adjacent to the new vertex by a single edge whose weight
is the sum of the weights of these edges.

Thus, deciding which pair of trees Si and Sj to join and updating L can be done in time
linear in the number of edges of L, that is in time O(m2). Procedure Completion-Leaf-
Cherry performs m− 1 iteration of the loop in step 2 and the total time complexity is then
in O(q|+ m3). The space complexity is in O(m2) due to the necessity to encode the complete
graph L that has O(m) vertices.

Proof of Proposition 3

A depth-first traversal of T , in time O(n), is required before applying Procedure Relabel
for the initial labeling of the vertices of T by their genome sets. Finding the levels of valid
vertices of T requires a second preorder tree traversal, and for each set of highest valid
vertices, relabeling the vertices requires to compare their genome sets, which can be done in
time proportional to the number g of different genomes. Therefore, Procedure Relabel
can be done in time O(g × n).

For each level of T , Procedure Compute-Loss-Number requires to partition of the
forest F into its subforest, which is done in time proportional to g by comparing genome sets
for one level, and thus in time and space O(g × n) for all the levels of T .



Computing the phylogeny Pj during step 6 of Procedure Compute-Loss-Number can
be done in time that is cubic in the number of leaves of Pj (Proposition 2), and linear in
the number of considered trees of the forest (the sum of the factors q in the complexity of
Procedure Completion-Leaf-Cherry over the whole process adds up into a O(n) factor).
We can then perform all calls to Procedure Completion-Leaf-Cherry in O(n+ g3) and
space O(g2), that is O(g × n).

Finally, computing ℓ(T, S) can be done in linear time. Therefore, the time complexity of
the whole heuristic is in O(g × n + g3) and the space complexity in O(g × n).



number of gene losses 1 2 3 4 5 6 7 8 9 10 11

number of gene families 39 238 226 203 135 75 46 23 10 4 1

Table 1. Distribution of the number of observed gene losses in the 1000 simulated gene families.



Dataset 1 2 3 4 5 6 7 8 9 10

Gene losses : observed 384 396 377 372 347 371 396 387 366 381

Gene losses : minimum 348 358 338 341 316 335 369 353 345 355

Gene losses : heuristic 348 393 338 341 373 335 369 353 395 401

Table 2. Results by dataset. Row 2 gives the exact number of gene losses observed during the generation of
the gene trees. Row 3 gives the minimum number of gene losses computed by the branch-and-bound algorithm.
Row 4 gives the number of gene losses inferred by our heuristic.
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Fig. 1. (a) The gene tree T ; (b) A compact representation of DLS-history explaining T where the order of
events is given between brackets; the plain ovals represent extant and ancestral individual genes and dotted
branches represent lost genes; the genes are denoted as ki meaning “gene i in genome k”. (c) The induced
species tree S.
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Fig. 2. Three subtree insertions are required to transform the gene tree of Figure 1.a. into a DS-tree. They
correspond to the three gene losses in the history represented by Figure reffig:DLS-history.b.
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Fig. 3. Inferring subtree insertions in the reconciliation framework. The root x of the gene tree (left tree) is a
duplication vertex as indicated by the three arrows that represent the LCA mapping M from the gene tree to
the species tree (right tree), and the two subtree insertions on the left branch, from x to xℓ correspond to the
d(M(xℓ)), M(x) + 1 gene losses indicated by formula (1).
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Fig. 4. Illustration of the notion related to borders: the partition associated to each valid internal vertex
is shown; the border B of T contains the two vertices indicated by ovals, with the associated partition
{{1, 2}, {3, 4}}. The vertices indicated by circles form the border of the forest Fr containing the subtrees
of T whose leaves belong to {1, 2}. The ertices indicated by squares form the border of the forest Fℓ containing
the subtrees of T whose leaves belong to {3, 4}.
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Fig. 5. An illustration of Procedure Relabel for a tree on the genome set G = {1, 2, 3, 4, 5}. For each
vertex x, the label in square brackets is L(x) of x and the label in brackets is the genome subset inserted
by Procedure Relabel to create L′. This tree has two levels: V1 is the set of vertices indicated by black
circles and V2 is the set of vertices indicated by black squares. The empty circles leaves represent F , the set of
expanded leaves, so r(T ) = {4, 5}.
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Fig. 6. Applying Procedure Compute-Loss-Number on the input (T, L′) given by Fig 5. (a) The three sets
of species trees computed for each of the three levels. The species tree S is the one associated to the first level.
(b) The DS-tree obtained by inserting subtrees following the 6 gene loss events induced by the LCA mapping
between S and T .
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Fig. 7. Completing a set of four leaves and cherries. (a) The leaves and cherries. (b) A species tree. (c)
The completion, where inserted subtrees and edges are represented with dotted lines and insertions sites are
represented by empty circles. The total number of subtree insertions is six.
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Fig. 8. Illustration of the link between completing leaves and cherries and the Camin-Sokal parsimony problem.
(a) A set of leaves and cherries. (b) A species tree S. (c) The labellings of the vertices of S, represented between
square brackets, according to the four leaves and cherries. There are six character gains (two for the first and
third trees, ¡ and one for the second and fourth trees).
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Fig. 9. Species trees for the 577 plants gene families. (a) Accepted species tree (Fig. 2 in (Sanderson and
McMahon 2007)). (b) Optimal species trees obtained with the branch-and-bound algorithm. (c) Species tree
obtained with the heuristic.


