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Abstract. In this paper we investigate the complexity of two combi-
natorial problems related to genome alignment, a recent approach to
genome comparison based on a duplication-loss model of evolution. The
first combinatorial problem, Duplication-Loss Alignment, aims to align
two genomes and to explain the unaligned part of the genomes as dupli-
cations and losses. The problem has been recently shown to be NP-hard,
even when each gene has at most five occurrences in each genome. Here,
we improve this result by showing that Duplication-Loss Alignment is
APX-hard even if the number of occurrences of a gene inside a genome
is bounded by 2. Then we consider a second combinatorial problem, Min-

imum Relabeling Alignment, and we show that it is equivalent to Minimum

Feedback Vertex Set on Direct Graph, hence implying that the problem
is APX-hard, is fixed-parameter tractable and approximable within fac-
tor O(log |X | log log |X |), where X is the aligned genome considered by
Minimum Relabeling Alignment.

1 Introduction

The comparison of complete genomes usually considers two kinds of mutations:
(1) macro-evolutionary events such as rearrangements (inversions, transposi-
tions, translocations etc.) and (2) content modifying operations (duplications,
losses, horizontal gene transfer etc.) that affect the overall organization of genes.
Put differently, usually genomes are represented as strings of symbols over an
alphabet Σ of gene families. In the past, genome comparison has been largely
based on rearrangement events [3, 9, 12, 16, 4, 15, 17, 18, 7, 8, 11]). Contrariwise,
we introduced in [13] an evolutionary model restricted to content-modifying op-
erations (duplications and losses). We showed that this model is effective in
studying the evolution of certain gene families, such as Transfer RNAs (tRNAs).
From a combinatorial point of view, when rearrangements are ignored gene or-
ganization is preserved, hence allowing to reformulate the comparison of two
genomes as a Duplication-Loss Alignment problem: find an alignment minimiz-
ing the cost of duplications and losses. As in [13], we consider here the cost of an
alignment to be the number of underlying segmental duplications (duplication
of a string of adjacent genes) and single losses (loss of a single gene).

In this paper, we investigate the complexity of two combinatorial problems
related to this approach, Duplication-Loss Alignment and Minimum Relabeling
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Alignment. The second problem stems from a direct approach to Duplication-Loss

Alignment which is in two steps: (1) Compute a best candidate labeled alignment
between the two genomes that may be unfeasible for the Duplication-Loss model
and (2) (Minimum Relabeling Alignment problem) Find an evolutionary scenario
of minimum duplication-loss cost that is in agreement with the alignment. A
similar approach has been proposed in [2], where first it is computed an unla-
beled alignment of two genomes, and then the alignment is explained with an
evolutionary scenario of minimum duplication-loss.

We show in Section 3 that the Duplication-Loss Alignment is APX-hard, even if
the number of occurrences of a gene inside a genome is bounded by 2. Duplication-
Loss Alignment is known to be NP-hard in [5] when each gene has at most five
occurrences in each genome. Notice that in practice genes have few occurrences
inside a genome, so it is interesting to understand how the complexity of the
problem is influenced by this parameter.We then show in Section 4 thatMinimum

Relabeling Alignment is equivalent to Minimum Feedback Vertex Set on Direct

Graph, hence showing that the problem is APX-hard and that (1) it is fixed-
parameter tractable, when the parameter is the cost of the relabeling, (2) it is
approximable within factor O(log |X | log log |X |), where X is the aligned genome
considered by Minimum Relabeling Alignment.

2 Preliminaries

Strings: We consider single chromosomal (circular or linear) genomes, hence,
given an alphabet Σ, each symbol representing a specific gene family, a genome
or string is a sequence of symbols from Σ, where each symbol may have many
occurrences. For example, X in Figure 1 is a genome on the alphabet Σ =
{a, b, c, d, e, f}, with four gene copies from the gene family identified by b.

Given a string Z, we denote by |Z| its length, by Z[i], 1 ≤ i ≤ |Z|, the i-th
symbol of Z, and by Z[i, j], 1 ≤ i ≤ j ≤ |Z|, the substring of Z that starts at
position i and ends at position j. Finally, we say that two substrings Z[i1, i2]
and Z[j1, j2], with 1 ≤ i2 ≤ j2 ≤ |Z|, overlap if j1 ≤ i2.
Graphs: In the rest of the paper we will consider both directed and undirected
graphs. An undirected graph is cubic, when each of its vertex has degree 3.
Consider now a directed graph G = (V,A). Given a vertex v ∈ V , we denote
by IN(v) = {u ∈ V : (u, v) ∈ A}. A feedback vertex set (FVS) of G is a subset
V ′ ⊆ V such that V ′ contains at least one vertex from every directed cycle in G.
The Duplication-Loss Model of Evolution: We assume that present-day genomes
have evolved from an ancestral string through duplications and losses, where,
given a genome X : (i) A Duplication of size z is an operation that copies a
substring of size z of X somewhere else in the genome. Given two identical
non overlapping substrings X [i, i + z − 1] and X [j, j + z − 1] of X , we denote
by D = (X [i, i+ z − 1], X [j, j + z − 1]) a duplication from X [i, i + z − 1] to
X [j, j + z − 1]; X [i, i + z − 1] is the source, and X [j, j + z − 1] is the target of
the duplication D; (ii) A loss of size z is an operation L = (X [i, i+ z − 1]) that
removes a substring X [i, i+ z − 1] of size z from X .
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Given an integer z ≥ 1, we denote by c(D(z)) the cost of a duplication of
size z, and by c(L(z)) the cost of a loss of size z.
The Duplication-Loss Alignment Problem: We introduced in [13] the concept of
“Feasible” Labeled Alignment of two genomesX and Y . Definitions on alignments
are given below, and illustrated in Figure 1.

a b c a b c d b e f d b e

fb ca e

X:

Y: b

a b c a b c d b e f d b e

b fb ca e
L L

X:

Y:
L

(i)

(ii)
1 1 1 2 2 2 1 3 1 1 2 4 2

326353

1 1 1 2 2 2 1 3 1 1 2 4 2

326353

(i) Cyclic labeled alignment: 4 duplications

(ii) Feasible lab. alignment: 3 duplications and 2 losses

(iii) Feasible lab. alignment: 3 duplications and 1 loss

Fig. 1. Alignments for strings X and Y . Costs are c(D(z)) = 1 and c(L(z)) = z for any
integer z. Losses are denoted by “L” and duplications by arrows from source (indicated
by bracket) to target. Two different labeling are given for the left alignment: one (i)
with “d2 b4” being interpreted as the target of a duplication, and one (ii) with the same
substring interpreted as two losses.

In the rest of the paper, we consider two genomes X and Y on an alphabet
Σ. Denote with Σ− = Σ ∪ {−} be the alphabet Σ augmented with a symbol ‘-’
(called a gap) not in Σ.

Definition 1. An Alignment of X and Y , denoted by A(X ,Y), consists of a
pair (X ,Y) of strings on Σ−×Σ− obtained by filling X and Y respectively with
gaps, such that (1) the Aligned Genomes X and Y are equal length and (2) for
each position i, 1 ≤ i ≤ |X |, it holds that either X [i] = Y[i] 6= − (i is called a
Match), or exactly one of X [i], Y[i] is equal to a gap (i is called a Mismatch).

An explanation of an alignment A(X ,Y) with a duplication-loss history lead-
ing to X and Y from a common ancestor,requires a labeling of the mismatched
positions of the aligned genomes X and Y in terms of duplications and losses.

Definition 2. A Labeling L(X ) of an aligned genome X is a set of losses and du-
plications, such that for each mismatched position j, 1 ≤ j ≤ |X |, L(X ) contains
either a loss L = (X [j1, j2]) or exactly one duplication D = (X [i1, i2],X [j1, j2])
with 1 ≤ j1 ≤ j ≤ j2 ≤ |X |. A Labeled Alignment A(L(X ),L(Y)) is a labeling of
the two aligned genomes X and Y.

The cost of a labeling L(X ), denoted by c(L(X )), is the cost of the un-
derlying operations (losses and duplications). The cost of a labeled alignment
A(L(X ),L(Y)) is the sum of c(L(X )) and c(L(Y)).

A correct interpretation of an alignment in term of duplication-loss history, must
prevent from a “cyclic” interpretation of an alignment (see the labeled alignment
(i) in Figure 1), where cycles are rigorously defined as follows.

Definition 3. Consider a set of duplications D. D induces a Duplication Cycle if
there is a permutation D1 = (X [i1, r1],X [j1, s1]), D2 = (X [i2, r2],X [j2, s2]), . . . ,
Dh = (X [ih, rh],X [jh, sh]) of the duplications in D, such that (1) the substrings
X [jp, sp] and X [ip+1, rp+1] overlap, for each 1 ≤ p ≤ h−1, and (2) the substrings
X [jh, sh] and X [i1, r1] overlap.
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Now, a labeling L(X ) is Feasible if contains no subset of duplications that
induces a duplication cycle. A Feasible Labeled Alignment A(L(X ),L(Y)) is a
feasible labeling of an alignment of X and Y where L(X ) and L(Y) are feasible
labeling (see Figure 1, (ii) and (iii)).

We are now ready to give the main optimization problem introduced in [13].

Problem 1 Duplication-Loss Alignment[DLA]
Input: Two genomes X and Y .
Output: A Feasible Labeled Alignment A(L(X ),L(Y)) of minimum cost.

Minimum Feasible Realbeling: A natural approach to DLA proceeds in two steps.
First, based on a dynamic programming approach, compute a (possibly cyclic)
labeled alignment A(L(X ),L(Y)) of minimum cost. Then, the alignment is re-
labeled in an optimal way, e.g. find feasible labeling L′(X ) and L′(Y) for X and
Y respectively, by replacing some of the duplications with losses. Notice that
once the genomes are aligned, each feasible relabeling can be computed inde-
pendently. Given an aligned genome X and a labeling L(X ), a feasible relabeling
L′(X ) of L(X ) is a labeling of X obtained by transforming some duplications of
L(X ) into losses, so that L′(X ) is a feasible labeling of X . The cost of a feasible
relabeling is c(L′(X )) − c(L(X )) =

∑
D is relabeled by L’(X )(|D| − 1).

Hence, the Minimum Feasible Relabeling problem can be defined as follows:

Problem 2 Minimum Feasible Relabeling[MFR]
Input: an aligned genome X and a labeling L(X ).
Output: a feasible relabeling L′(X ) of L(X ) having minimum cost.

3 Complexity of Duplication-Loss Alignment

In this section we investigate the complexity of Duplication-Loss Alignment, and
we show that the problem is APX-hard even when each gene appears at most
twice in the genome (we denote this restriction as 2-DLA). We prove the APX-
hardness of 2-DLA by giving a reduction from Minimum Vertex Cover on Cubic
Graphs (MVCC), which is known to be APX-hard [1]. Given an undirected cubic
graph G = (V,E), MVCC asks for a subset V ′ ⊆ V of minimum cardinality, such
that for each edge {u, v} ∈ E, at least one of u, v is in V ′.

LetG = (V,E) be a cubic graph, in the following we define an instance (X,Y )
of DLA. Given a vertex vi and its incident edges {vi, vj}, {vi, vp}, {vi, vq}, with
j < p < q, we say that {vi, vj} ({vi, vp}, {vi, vq} respectively) is the first (second,
third respectively) edge incident in vi.

First, set t = 9|V |. We define the alphabet Σ over which X and Y range:

Σ = {αi,j : vi ∈ V ∧ 1 ≤ j ≤ 6} ∪ Γ ∪ {βi,j : vi ∈ V ∧ 1 ≤ j ≤ 4} ∪ Λ

where

Γ = {γi,j : vi ∈ V ∧ 1 ≤ j ≤ t}, Λ = {λi,j,h : {vi, vj} ∈ E ∧ 1 ≤ h ≤ t}

Now, for each vi ∈ V , define two substrings BX(vi), BY (vi) (substrings of X , Y
respectively), as follows:

BX(vi) = αi,1 . . . αi,6βi,1 . . . βi,4; BY (vi) = βi,1 . . . βi,4αi,1 . . . αi,6
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Now, consider the edge {vi, vj} ∈ E and assume that {vi, vj} is the h-th
edges incident in vi, 1 ≤ h ≤ 3, and the k-th edge incident in vj , 1 ≤ k ≤ 3.
Define two substrings BX(ei,j), BY (ei,j) of X , Y respectively, associated with
{vi, vj}, as follows:

BX(ei,j) = αi,2h−1αi,2hαj,2k−1αj,2k; BY (ei,j) = αj,2k−1αj,2kαi,2h−1αi,2h

Now, we are able to define the two genomes X , Y :
X = γ1,1 . . . γ1,tBX(v1)γ2,1 . . . γ2,tBX(v2) . . . γn,1 . . . γn,tBX(vn)·

λ1,w,1 . . . λ1,w,tBX(e1,w) . . . λp,q,1 . . . λp,q,tBX(ep,q)

Y = γ1,1 . . . γ1,tBY (v1)γ2,1 . . . γ2,tBY (v2) . . . γn,1 . . . γn,tBY (vn)·

λ1,w,1 . . . λ1,w,tBY (e1,w) . . . λp,q,1 . . . λp,q,tBY (ep,q)

It is easy to see that (X,Y ) is an instance of 2-DLA, as each symbol of Σ has
at most two occurrences in each of X , Y . Recall that the cost of a duplication
of length z is c(D(z)) = 1, while the cost of a loss of length z is c(L(z)) = z.

In order to prove the main properties of the reduction we have to show some
intermediate results. First, in Prop. 1, we show that all the positions containing
symbols in Γ ∪ Λ are aligned.

Proposition 1 Consider an optimal alignment A(X ,Y) having cost less than
2t. Then, A(X ,Y) aligns each position of X and Y containing a symbol in Γ ∪Λ.

As a consequence of Prop. 1, we can assume that if two positions containing
symbols Σ \ (Γ ∪ Λ) of X , Y are aligned, then either they both belong to sub-
strings BX(vi), BY (vi), with vi ∈ V , or they both belong to substrings BX(ei,j),
BY (ei,j), with {vi, vj} ∈ E. Now, we present a property of the alignment of the
substrings BX(vi), BY (vi) and BX(ei,j), BY (ei,j).

Proposition 2 Consider the substrings BX(vi), BY (vi), BX(ei,j), BY (ei,j) for
some vi ∈ V and some {vi.vj} ∈ E. Then, any alignment of X and Y results in
at most 6 matched positions of BX(vi), BY (vi) and at most 2 matched positions
of BX(ei,j), BY (ei,j).

Now, we are ready to prove the main results of the reduction. The idea of the
reduction is that for each pair of substrings BX(vi), BY (vi) we have two possible
cases: either the substrings αi,1 . . . αi,6 are aligned (corresponding to vertex vi
in the vertex cover of G) or the substrings βi,1 . . . βi,4 are aligned (corresponding
to vertex vi not in the vertex cover of G).

Lemma 1. Let G = (V,E) be a cubic graph and let (X,Y ) be the corresponding
instance of 2-DLA. Then, given a vertex cover V ′ ⊆ V of G, we can compute in
polynomial time a feasible labeled alignment A(L(X ),L(Y)) of cost 8|V ′|+6|V \
V ′|+ 2|E|.

Proof. Let V ′ be a vertex cover of G, we compute a feasible labeled alignment
A(L(X ),L(Y)) as follows.

For each vi ∈ V ′, align the substrings αi,1 . . . αi,6 of BX(vi), BY (vi) and
define a loss for each position containing a symbol βi,j , 1 ≤ j ≤ 4. Hence the
cost for aligning BX(vi), BY (vi) in this case is 8.
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For each vi ∈ V \ V ′, align the substrings βi,1 . . . βi,4 of BX(vi), BY (vi), and
for each {vi, vj} ∈ E, where {vi, vj} is the h-th edges of vi, 1 ≤ h ≤ 3, define a
duplication from the substring αi,2h−1αi,2h of BX(ei,j) (BY (ei,j) respectively)
to the string αi,2h−1αi,2h of BX(vi) (BY (vi) respectively). Hence the cost for
aligning BX(vi), BY (vi) in this case is 6.

Finally, let {vi, vj} be the h-th edge incident in vi, and assume that vi ∈ V ′.
Align the substrings αj,2k−1αj,2k of BX(ei,j) and BY (ei,j), and define a dupli-
cation from the substring αi,2h−1αi,2h of BX(vi) (BY (vi) respectively) to the
substring αi,2h−1αi,2h of BX(ei,j) (BY (ei,j) respectively). The cost for aligning
BX(ei,j) and BY (ei,j) is 2.

By construction, it follows that A(L(X ),L(Y)) has a cost of 8|V ′| + 6|V \
V ′|+ 2|E|. ⊓⊔

Lemma 2. Let G = (V,E) be a cubic graph and let (X,Y ) be the corresponding
instance of 2-DLA. Then, given an alignment A(L(X ),L(Y)) of cost 8p+6(|V |−
p) + 2|E| we can compute in polynomial time a vertex cover of G of size p.

Proof. (Sketch.) Consider an alignment A(L(X ),L(Y)) of cost 8p + 6(|V | −
p) + 2|E|. By construction, by Prop. 1, and by Prop. 2, it can be shown that
A(L(X ),L(Y)) satisfies the following properties: (1) the alignment of BX(ei,j),
BY (ei,j) has a cost of two, having a duplication either from a substring of BX(vi)
(BY (vi) respectively) or from a substring of BX(vj) (BY (vj) respectively) to a
substring of BX(ei,j) (BY (ei,j) respectively); (2) if there is a duplication from
a substring of BX(vi) (BY (vi) respectively) to a substring of BX(ei,j) (BY (ei,j)
respectively), then A(L(X ),L(Y)) aligns the substrings αi,1 . . . αi,6 of BX(vi),
BY (vi), and labels as losses the substrings βi,1 . . . βi,4 in BX(vi), BX(vj); (3)
if A(L(X ),L(Y)) defines no duplication starting from a substring of BX(vi),
BX(vj), then A(L(X ),L(Y)) aligns the substrings βi,1 . . . βi,4 in BX(vi), BY (vi),
and each substring αi,2h−1αi,2h 1 ≤ h ≤ 3, of BX(vi) (of of BY (vi) respectively),
is the target of a duplication from the substring αi,2h−1αi,2h of BX(ei,j) (of
BY (ei,j) respectively), where {vi, vj} is the h-th edges of vi.

Hence the set V ′ = {vi : αi,1 . . . αi,6 is aligned by A(L(X ),L(Y)) in BX(vi), By(vi)}
is a vertex cover of G, with |V ′| = p. ⊓⊔

The APX-hardness of 2-DLA is a direct consequence of Lemmas 1, 2, and of
the APX-hardness of MVCC [1].

4 Complexity of Minimum Feasible Relabeling

In what follows we show that MFR is equivalent to the Minimum Directed
Feedback Vertex Set (DFVS) problem. Given a directed graph G = (V,A),
DFVS asks for a feedback vertex set V ′ ⊆ V of minimum cardinality.

First, in Section 4.1 we give an L-reduction from DFVS to MFR. As a conse-
quence, we prove that MFR is APX-hard. Then, in Section 4.2, we give a reduc-
tion from DFVS to MFR which implies that MFR is fixed-parameter tractable
and is approximable within factor O(log |X | log log |X |).
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4.1 Hardness of MFR

In this section we give an L-reduction from DFVS to MFR. Given a direct graph
G = (V,A), with V = {v1, . . . , vn}, in what follows we define the corresponding
genome X and labeling L(X ). Given a substring s of X , we denote with sa the
fact that s is aligned in X (hence it does not need any labeling). In the definition
of L(X ), first we define the aligned genome X , then we define the labeling of X .

Before giving the details of the construction we give an overview of the con-
struction of X and L(X ). For each vertex vi ∈ V we define a substring F (vi)
obtained by concatenating four substrings si,IN , si,1, si,2, si,OUT (see Fig. 2).
The reduction defines two kind of duplications: (1) duplications between sub-
strings of F (vi) (one duplication between si,IN , si,1, one duplication between
si,1, si,2, one duplication between si,2, si,OUT ); (2) duplications between sub-
strings of different F (vi), F (vj). The latter kind of duplications encodes arcs of
the graph G. Furthermore, notice that si,IN is used to encode arcs incoming in
vi, while si,OUT is used to encode arcs outgoing from vi.

S i,1 S i,OUTS i,2S i,IN

F(V )i

S j,IN S j,2

F(V )j

S j,1 S j,OUT

Fig. 2. Substrings F (vi), F (vj) associated with vertices vi, vj and arc (vi, vj); arcs
represent duplications. Dashed red arcs are associated with candidate duplications.

Now, we define formally the instance of MFR. Define the alphabet Σ =
{wi,j,t : (vi, vj) ∈ A, 1 ≤ t ≤ n+2} ∪ {xi, yi : vi ∈ V }. Given an arc (vi, vj) ∈ A,
define the string ei,j as follows: ei,j = wi,j,1wi,j,2 . . . wi,j,n+2.

Now, we define the strings si,IN , si,1, si,2, si,OUT (notice that we assume
that IN(vi) = {vh1

, , vhz
}, and that h1 < h2 · · · < hz):

si,IN = ei,h1
ei,h2

. . . ei,hz
xa
i ; si,1 = ei,h1

ei,h2
. . . ei,hz

xi y
a
i ;

si,2 = eai,h1
eai,h2

. . . eai,hz
xi yi; si,OUT = ei,h1

ei,h2
. . . ei,hz

xi.

Define F (vi) = si,IN · si,1 · si,2 · si,OUT . The aligned genome X is defined as
follows: X = F (v1) · F (v2) · · · · · F (vn).

Now, we define the labeling L(X ) of X . L(X ) consists of two kinds of dupli-
cations: duplications between two substrings of the same F (vi) and duplications
between substrings of different sets F (vi), F (vj). We start by defining the label-
ing of the strings in F (vi) (for the not aligned symbols), which is used to encode
the vertex vi ∈ V :
(1) a duplication from the substring ei,h1

ei,h2
. . . ei,hz

xa
i of si,IN to the sub-

string ei,h1
ei,h2

. . . ei,hz
xi of si,1;

(2) a duplication from the substring xi y
a
i of si,1 to the substring xi yi of si,2;

(3) a duplication from the substring eai,h1
eai,h2

. . . eai,hz
xi of si,2 to the substring

ei,h1
ei,h2

. . . ei,hz
xi of si,OUT .

Now, we define the duplications between substrings of X that belong to
different F (vi). Those duplications are used to encode the arcs in A. Given an
arc (vi, vj) ∈ A, define a duplication from the substring ei,j of si,OUT to the
substring ei,j of sj,IN .
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The duplication from the substring si,1 to the substring si,2, with 1 ≤ i ≤ n,
both belonging to F (vi) (notice that the duplicated string is xi yi), is called a
candidate duplication, and it is denoted byDi (see Fig. 2). Each other duplication
is called a non candidate duplication. Informally, the reduction is based on the
following properties. Since each non candidate duplication has a cost of at least
n+1 (it includes the duplication of substring ei,j), it follows that: (1) a feasible
relabeling L′(X ) is computed by relabeling only candidate duplications (Lemma
3); (2) a vertex vi in a solution V ′ of DFVS corresponds to the removal of a
candidate duplication Di. First, we show that we can consider only solutions of
MFR that relabel only candidate duplications.

Lemma 3. Given a feasible relabeling L′(X ) of L(X ), we can compute in poly-
nomial time a relabeling L′′(X ) of L(X ) such that (1) L′′(X ) relabels only can-
didate duplications, and (2) the cost of L′′(X ) is not greater than that of L′(X ).

Now, we present the two main properties of the reduction.

Lemma 4. Let G = (V,E) be a directed graph, and let (X ,L(X )) be the corre-
sponding instance of MFR. Then, given a feedback vertex set V ′ of G, we can
compute in polynomial time a feasible relabeling L′(X ) of (X ,L′(X )) of cost |V ′|.

Proof. (Sketch.) Let V ′ be a feedback vertex set of G. Then, we define a solu-
tion a feasible relabeling L′(X ) of (X ,L(X )) that relabels the following set of
duplications {Di : vi ∈ V ′} as losses. It is easy to see that L′(X ) is a feasible
labeling of X , since V ′ is a feedback vertex set of G. ⊓⊔

Lemma 5. Let G = (V,E) be a graph, and let (X ,L(X )) be the corresponding
instance of MFR. Then, given a feasible relabeling L′(X ) of (X ,L(X )) of cost c,
we can compute in polynomial time a feedback vertex set V ′ of G, with |V ′| ≤ c.

The APX-hardness of MFR is a direct consequence of Lemmas 4, 5 and of
the APX-hardness of DFVS [14].

4.2 Tractability of MFR

In this section we give give a reduction from MFR to DFVS. The reduction
we present is both a parameterized and an approximation preserving reduction,
hence it follows that: (1) MFR is fixed-parameter tractable, when parameter-
ized by the cost of the solution; (2) MFR can be approximated within factor
O(log |X | log log |X |).

Now, let X be a labeled genome associated with a labeling L(X ). In what
follows, we define the directed graph G = (V,A) (input of DFVS) associated
with (X ,L(X )). Consider the set D of duplications induced by L(X ). First,
notice that we assume that each duplication D ∈ D has size at least 2, otherwise
we can relabel such a duplication with cost 0.

Now, we define G = (V,A) as follows. V =
⋃

D∈D
V (D), where V (D) is a

set of vertices associated with duplication D ∈ D, defined as follows: V (D) =
{vD,i : 1 ≤ i ≤ |D| − 1}.
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Now, we define the set of arcs A:

A = {(vDi,p, vDj ,q) : Di = (X [i1, i2],X [i3, i4]) ∧Dj = (X [j1, j2]X [j3, j4])∧

X [i3, i4],X [j1, j2] overlap, 1 ≤ p ≤ |Di| − 1, 1 ≤ j ≤ |Dj| − 1}.

Informally, given two duplications Di, Dj, such that the target of Di and the
source of Dj overlap, we have an arc from each vertex of V (Di) to each vertex
of V (Dj).

Next, we show how to relate a feedback vertex set V ′ of G and a solution
of MFR having size |V ′|. The idea is that a set V (Di) of nodes in the feedback
vertex set of G corresponds to a duplication Di relabeled as loss. Notice that
a feedback vertex set V ′ of G is minimal if there exists no vertex v ∈ V ′ such
that V ′ \ {v} is a feedback vertex set of G. Next, we prove some properties of a
minimal FVS of G.

Lemma 6. Let V ′ be a minimal feedback vertex set of the graph G = (V,E)
associated with (X ,L(X )). Then, given a duplication Di of D, either all the
vertices of V (Di) belong to V ′ or none of the vertices of V (Di) belongs to V ′.

Now, we are ready to prove the main properties of the reduction.

Lemma 7. Let (X ,L(X )) be an instance of MFR and let G be the corresponding
instance of DFVS. Then, given a feasible relabeling L′(X ) of (X , L(X )) of cost
c, we can compute in polynomial time a feedback vertex set of G of size c.

Proof. (Sketch.) Assume that L′(X ) is a feasible relabeling of (X , L(X )) and
let D′ be the set of duplications of L(X ) relabeled as losses by L′(X ). Define
the feedback vertex set V ′ of G as V ′ =

⋃
D∈D′ V (D). It is easy to see that if

V ′ is not a feedback vertex set, then L′(X ) induces a duplication cycle. Since
|V (D)| = |D| − 1, it follows that |V ′| =

∑
D∈D′ |D| − 1 = c(L′(X )). ⊓⊔

Lemma 8. Let (X ,L(X )) be an instance of MFR and let G be the corresponding
instance of DFVS. Then, given a minimal feedback vertex set V ′ of G, we can
compute in polynomial time a feasible relabeling L′(X ) of (X ,L(X )) of cost |V ′|.

Proof. (Sketch.) Assume that V ′ is a minimal feedback vertex set of G. Since
by Lemma 6 either V (D) ⊆ V ′ or V (D)∩V ′ = ∅, we define a feasible relabeling
L′(X ) of (X ,L(X )) by relabeling as losses the following set of duplications:
D′ = {D : V (D) ⊆ V ′}. Since V ′ is a feedback vertex set of G, it is easy to see
that L′(X ) is feasible. Finally, c(L′(X )) =

∑
D∈D′ |D| − 1 = |V ′|. ⊓⊔

Theorem 3 is a consequence of Lemma 7, Lemma 8, and of the fact that DFVS
admits a fixed-parameter algorithm of time complexity O(4kk!poly− time(|X |))
[6], and it is approximable within factor O(log |V | log log |V |) [19, 10].

Theorem 3 The MFR problem: (1) admits a fixed-parameter algorithm of time
complexity O(4kk!poly − time(|X |)), where k is the size of the relabeling; (2)
admits an approximation algorithm of factor O(log |X | log log |X |).
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5 Conclusion

In this paper, we investigated the complexity of two problems, MLA and MFR,
related to the alignment of two genomes based on a duplication and loss model of
evolution. Interesting future work include the investigation of the approximation
and parameterized complexity of DLA.
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Appendix

Proofs of Section 3

We show that given a cubic graph G = (V,E), the corresponding pair of genomes
(X,Y ) is an instance of 2-DLA.

Proposition 4 Each symbol of Σ has at most two occurrences in each of X, Y .

Proof. By construction each symbol in Γ ∪Λ∪{βi,j : 1 ≤ i ≤ |V |, 1 ≤ j ≤ 4} has
exactly one occurrence in each of X and Y . Each symbol αi,j , with {vi, vj} ∈ E,
has two occurrences in X (Y respectively): one in BX(vi) (BY (vi) respectively)
and one in BX(ei,j) (BY (ei,j) respectively). ⊓⊔

Proof of Prop. 1

Proposition 5 Consider an alignment A of X, Y having cost less than 2t.
Then, A aligns each position of X and Y containing a symbol in Γ ∪ Λ.

Proof. Notice that by construction each symbol in Γ ∪Λ occurs exactly once in
each of X and Y . As a consequence if a position containing a symbol in Γ ∪Λ is
not aligned, it must be a loss. It follows that if all the positions that separates
two substrings BX(vi), BX(vi+1) and two substrings BY (vi), BY (vi+1) are not
aligned, all such positions are losses, hence the alignment has a cost of at least
2t. Hence assume that position p in X and position p in Y are aligned, where
X [p] = Y [p] = γi,z , Let pl be the position of X and Y such that X [pl] = Y [pl] =
γi,1 and let pr be the position of X and Y such that X [pr] = Y [pr] = γi,t. Since
p is aligned in X and gy, each position of X [1, pl] (X [pr, |X |] respectively) can
be aligned only with a position of gy[1, pl] (Y [pr, |Y |] respectively). But then,
we can modify A(X,Y ) by aligning all the positions containing symbols of γi,y,
1 ≤ y ≤ t, without modifying any alignment defined by A, hence increasing the
number of aligned positions. ⊓⊔

Proof of Prop. 2

Proposition 6 Consider the substrings BX(vi), BY (vi), BX(ei,j), BY (ei,j) for
some vi ∈ V and some {vi.vj} ∈ E. Then, any alignment of X and Y results in
at most 6 matched positions of BX(vi), BY (vi) and at most 2 matched positions
of BX(ei,j), BY (ei,j).

Proof. By construction, either the positions of BX(vi), BY (vi) containing sym-
bols αi,1 . . . αi,6 are aligned or positions of BX(vi), BY (vi) containing symbols
βi,1 . . . βi,4 are aligned.

Moreover, by construction, either the positions of BX(ei,j), BY (ei,j) contain-
ing symbols αi,2h−1αi,2h are aligned or positions of BX(ei,j), BY (ei,j) containing
symbols αi,2k−1αi,2k are aligned. ⊓⊔
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Proofs of Section 4.1

Proof of Prop. 3

Lemma 9. Given a feasible relabeling L′ of X , we can compute in polynomial
time a relabeling L′′ of X such that (1) each duplication of L′ \L′′ is a candidate
duplication, and (2) the cost of L′′ is not greater than that of L′.

Proof. Notice that each non candidate duplication duplicates a substring of
length at least n+ 2, since by construction each non candidate duplication du-
plicates a string containing ei,j , and by construction |ei,j | = n+ 2.

Consider the feasible relabeling L′ and assume that L′ is obtained by re-
moving a non candidate duplication of L (otherwise L′′ is exactly L′). Since by
construction each non candidate duplication duplicates at least n + 2 positions
(hence relabeling this duplication as a loss has a cost of least n + 1), we com-
pute L′′ starting from L′ as follows: L′′ relabels all the candidate duplications
of L as losses, while all the non candidate duplications of L are not relabeled.
Since there are n candidate duplications in X , and each candidate duplication
duplicates a string of length 2 (hence relabeling this duplication as a loss has a
cost of 1), it follows that the cost of L′′ is not greater than the cost of L′.

What is left to show is that L′′ is a feasible relabeling (that is L′′ induces no
cycle). Assume by contradiction that there is a cycle C induced by the labeling
L′′ of X . By construction L induces no cycle in the labeling of the substrings of
X in the set F (vi), vi ∈ V , and the same property holds for L′. Hence the cycle
C must include substrings from at least two different sets F (vi) and F (vj), for
some (vi, vj) ∈ E. It follows, by construction, that C must include a path from
si,IN to some sj,IN . But L′′ removes all the candidate duplications, hence also
the candidate duplication of F (vi), thus leading to a contradiction. ⊓⊔

Proof of Lemma 6

Lemma 10. Consider the graph G = (V,E) associated with (X ,L) and let V ′

be a minimal feedback vertex set of G. Then, given a duplication D of L, either
all the vertices of V (D) belong to V ′ or none of the vertices of V (D) belongs to
V ′.

Proof. Assume that a vertex vD,i ∈ V , for some i with 1 ≤ i ≤ |D| − 1, is in
V ′, while a vertex vD,j , for some j 6= i with 1 ≤ j ≤ |D|, is not in V ′. Since
V ′ is a feedback vertex set, it follows that G[V \ V ′] does not contain cycles.
Denote by IN(v) = {u ∈ V : (u, v) ∈ A}, and by OUT (v) = {u ∈ V : (v, u) ∈
A}. By construction, IN(vD,i) = IN(vD,j), and OUT (vD,i) = OUT (vD,j), and
{vD,i, vD,j} /∈ E, hence G[(V \V ′)∪vD,i] will not contain a cycle. Thus V ′\{vD,i}
is a feedback vertex set, and V ′ could not be a minimal feedback vertex set of
G. ⊓⊔

Proof of Theorem 3

Theorem 7 The MFR problem:
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1. admits a fixed-parameter algorithm of time complexity O(4kk!poly−time(|X |)),
where k is the size of the relabeling;

2. admits an approximation algorithm of factor O(log |X | log log |X |).

Proof. The result follows from Lemma 7 and Lemma 8 and from the following
facts.

(1) Notice that the size of the graph G is polynomial in |X |, more precisely
|V | ≤ |X |2. Indeed, there exist at most |X | duplications, as there exists at
most |X | sets V (D) associated with a duplication D of L, and each set V (D)
contains at most X vertices, since each duplication is obviously bounded by the
size of X . Since DFVS admits a fixed-parameter algorithm of time complexity
O(4kk!poly − time(|V |)), where k is the size of the FVS, it follows that MFR
admits a fixed-parameter algorithm of time complexity O(4kk!poly− time(|X |)),
where k is the number of duplications transformed into losses.

(2) Since DFVS admits an approximation algorithm of sizeO(log |V | log log |V |),
and since by the previous argument, |V | ≤ |X |2, MFR admits an approximation
algorithm of factor O(log |X | log log |X |). ⊓⊔


