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Abstract

Motivation: It is largely established that all extant mitochondria originated from a unique endosymbiotic
event integrating an α−proteobacterial genome into an eukaryotic cell. Subsequently, eukaryote evolution
has been marked by episodes of gene transfer, mainly from the mitochondria to the nucleus, resulting in a
significant reduction of the mitochondrial genome, eventually completely disappearing in some lineages.
However, in other lineages such as in land plants, a high variability in gene repertoire distribution, including
genes encoded in both the nuclear and mitochondrial genome, is an indication of an ongoing process
of Endosymbiotic Gene Transfer (EGT). Understanding how both nuclear and mitochondrial genomes
have been shaped by gene loss, duplication and transfer is expected to shed light on a number of open
questions regarding the evolution of eukaryotes, including rooting of the eukaryotic tree.
Results: We address the problem of inferring the evolution of a gene family through duplication, loss
and EGT events, the latter considered as a special case of horizontal gene transfer occurring between
the mitochondrial and nuclear genomes of the same species (in one direction or the other). We consider
both EGT events resulting in maintaining or removing the gene copy in the source genome. We present a
linear-time algorithm for computing the DEL (Duplication, EGT and Loss) distance, as well as an optimal
reconciled tree, for the unitary cost, and a dynamic programming algorithm allowing to output all optimal
reconciliations for an arbitrary cost of operations. We illustrate the application of our EndoRex software
and analyse different costs settings parameters on a plant dataset and discuss the resulting reconciled
trees.
Availability: EndoRex implementation and supporting data are available on the GitHub repository via
https://github.com/AEVO-lab/EndoRex

1 Introduction
Genomics and cell biology investigations have revealed that all
known eukaryotes descend from a common ancestral mitochondrial-
containing cell that originated from the integration of an endosymbiotic
α−proteobacterium into a host cell [1]. After this early event, eukaryotic
gene contents have been shaped by duplications, losses and Horizontal
Gene Transfers (HGT) from one species to another, but also by
Endosymbiotic Gene Transfers (EGT), mainly from the mitochondrion

to the nucleus, in some cases leading to the total disapearance of the
mitochondrion [2, 3].

Many questions regarding the ancestral mitochondrial proteome
and gene content evolution remain open [4]. One of the reasons is
that, to date, comparative genomics studies have largely focused on
multicellular eukaryotes, mainly animals and plants. While imprints
of global evolutionary events at the genomic level are hardly visible
on multicellular eukaryotes that have diverged too much from the
Last Eukaryotic Common Ancestor (LECA), protists, known to have
emerged close to the eukaryotic origin, are better candidates for such
a comprehensive evolutionary study. Interestingly, a recent sequencing

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1



picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture

“output” — 2021/2/25 — page 2 — #2

picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture

2 Yoann Anselmetti et al.

effort on jakobids [5] and malawimonads [6] protist genomes have been
undertaken by a consortium of protistologists (DeepEuk), suggesting that
soon enough data will be available to allow further investigations on
early-eukaryotic evolution.

In addition to having the appropriate datasets, understanding the
concerted evolution of the eukaryotic mitochondrial and nuclear genomes
also requires having the appropriate algorithmic tools. This problem can
be seen as related to the host-parasite coevolution inference problem [22].
Given a host tree and a parasite tree, cophylogenetic analysis consist
in inferring a history of codivergence, parasite duplication, host switch
or extinction events explaining the coevolution of hosts and parasites.
However, nuclear and mitochondrial genomes can hardly be treated by the
same kind of approach, as they evolve, through a different evolutionary
model, together in the same species, and thus are related through the
same species tree. Rather, inferring an endosymbiotic evolutionary history
requires focusing on gene families and studying the movement of genes
between the mitochondrial and nuclear genomes.

Inferring the evolution of gene families is the purpose of the gene-tree-
species-tree-reconciliation field, seeking for a most parsimonious [7, 8],
or a most probable [9, 10] evolutionary scenario of gene gain and loss
explaining the incongruence between a gene tree and a species tree. A
most parsimonious reconciliation minimizing the number of Duplications
(the D-distance) or the number of Duplications and Losses (the DL-
distance) can be found in linear time using the LCA (Last Common
Ancestor) mapping [11]. Such an algorithm can actually be used to solve
the cophylogenetic problem if operations are restricted to coevolution,
duplication and extinction. Including HGT events (i.e. finding the DTL-
distance) leads to an NP-hard problem if time-consistency is required,
remaining polynomial otherwise [12, 13].

In this paper, we introduce the reconciliation model accounting for
EGT events, i.e. the special case of HGT events where genes are exchanged
between the mitochondrial and nuclear genomes of the same species.
Although integration of the mitochondrial content into the nucleus is the
most frequent event in the course of evolution of eukaryotes, the transfer
from the nucleus to the mitochondrion has also been observed [21]. Here,
we consider the exchange of genes in both directions. Moreover, we
consider EGT events resulting in maintaining a gene copy in the source
genome (we call them Transfers, or EGTr), as well as those resulting in
the removal or loss of function of the gene in the source genome (we call
them Transpositions, or EGTr).

Formally, given a gene tree for a gene family with a known
mitochondrial or nuclear location for each gene copy, we seek for a
most parsimonious sequence of Duplication, EGT and Loss (DEL) events
explaining the tree given a known species tree. First, based on the DL-
distance and on the Fitch algorithm for weighted parsimony, we present,
in Section 3, a linear-time algorithm for computing the DEL-Distance, as
well as an optimal reconciled tree for the unitary cost. We then develop,
in Section 4, a general dynamic programming algorithm that can be used
to output all optimal reconciliations, for an arbitrary cost of operations,
including possibly a different cost for an EGT from the mitochondria to the
nucleus, or conversely.We finally illustrate, in Section 5, the application of
our EndoRex software on clusters of orthologous mitochondrial protein-
coding genes (MitoCOGs) [14] of plants, analyse different costs settings
parameters and discuss the obtained reconciled trees.

For space reasons, some of the proofs are given in Appendix.

2 Preliminaries
All trees are considered rooted. Given a treeT , we denote by r(T ) its root,
by V (T ) its set of nodes and by L(T ) ⊆ V (T ) its leafset. A node x is a
descendant of x′ if x is on the path from x′ to a leaf of T and an ancestor

of x′ if x is on the path from r(T ) to x′; x is a strict descendant (respect.
strict ancestor) of x′ if it is a descendant (respec. ancestor) of x′ different
from x′. Moreover, x is the parent of x′ 6= r(T ) if it directly precedes
x′ on the path from x′ to r(T ). In this latter case, x′ is a child of x. We
denote by E(T ) the set of edges of T , where an edge is represented by
its two terminal nodes (x, x′), with x being the parent of x′. An internal
node (a node which is not a leaf) is said to be unary if it has a single child
and binary if it has two children. If not stated differently, the children of a
binary node x are denoted xl and xr . Given a node x of T , the subtree of
T rooted at x is denoted T [x].

A binary tree is a tree with all internal nodes being binary. If internal
nodes have one or two children, then the tree is said partially binary.

The lowest common ancestor (LCA) in T of a subset L′ of L(T ),
denoted lcaT (L′), is the ancestor common to all the nodes in L′ that is
the most distant from the root.

A treeR is an extension of a tree T if it is obtained from T by grafting
unary or binary nodes in T , where grafting a unary node x on an edge
(u, v) consists in creating a new node x, removing the edge (u, v) and
creating two edges (u, x) and (x, v), and in the case of grafting a binary
node, also creating a new leaf y and a an edge (x, y). In the latter case,
we say that y is a grafted leaf.

Species and gene trees: The species treeS for a set Σ of species represents
a partially ordered set of speciation events that have led to Σ. In this
paper, we consider that each species of σ ∈ Σ has two genomes: σ0
corresponding to its mitochondrial genome and σ1 corresponding to its
nuclear genome.

A gene family is a set Γ of genes where each gene x belongs to a given
species s(x) of Σ. A tree T is a gene tree for a gene family Γ if its leafset
is in bijection with Γ. We will make no distinction between a leaf of T and
the gene of Γ it corresponds to. We call s(x) the species labeling of the
leaf x. For a subset G ⊆ Γ of genes, we write s(G) = {s(g) : g ∈ G}
as the set of species containing the genes of G.

Moreover, we assign to each genex of Γ a boolean value corresponding
to the genome it belongs to. More precisely, b(x) = 0 ifx belongs to s(x)0
and b(x) = 1 if x belongs to s(x)1. In this paper, we assume that the
mitochondrial or nuclear location of each extant gene is known. We call
b(x) the genome labeling of the leaf representing x.

An evolutionary history is represented by an event labeled tree, where
the event label ẽ(x) of an internal node x is its corresponding event. The
event labeling of the internal nodes of a gene tree is obtained through
reconciliation.

2.1 Reconciliation

Inside the species’ genomes, genes undergo Speciation (Spe) when the
species to which they belong do, but also Duplication (Dup) i.e. the creation
of a new gene copy, Loss of a gene copy, and Horizontal Gene Transfer
(HGT) when a gene is transmitted from a source to a target genome. In
this paper, we consider special cases of HGTs, called EGTs, only allowing
the transmission of genes from the mitochondrial genome to the nuclear
genome of the same species, or vice-versa. Moreover we consider two
types of EGTs: EGTransfers, or simply Transfers, denoted EGTr, and
EGTranspositions, or simply Transpositions, denoted EGTp, defined as
follows (see Figure 1):

• A gene x belonging to σi is Transposed (by an EGTp event) to σj for
{i, j} = {0, 1} if it is inserted in σj and removed from σi;

• A gene x belonging to σi is Transferred (by an EGTr event) to σj for
{i, j} = {0, 1} if it is inserted in σj without being removed from σi.
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Fig. 1. The effect of an event on a nodex of a gene tree representing the genea belonging to
the genome si , where s is a species and i ∈ {0, 1} (for a species s, so is the mitochondrial
genome and s1 the nuclear genome of s). The tree S up-right is the species tree, where u

and v are the two species arising from the speciation of s. (Spe): Gives rise to a copy au

in ui and av in vi; (Dup): Preserves the copy a in si and gives rise to a new copy b in
si; (EGTr): Represents a Transfer event from si to sj preserving the copy a in si and
giving rise to a new copy aj in sj ; (EGTp): Represents a Transposition event from si to
sj removing the copy a in si and creating a copy aj in sj .

Thus, in this paper, the set of considered events is:

DEL = {Spe,Dup, Loss, EGTr,EGTp}

To define a DEL-Reconciliation, we need to define an extension of the
genome labeling b and the species labeling s to the internal nodes of a
tree. Given a tree T , an extension R of T (R can be equal to T ), and a
mapping s from L(T ) to V (S), an extension of s is a function s̃ from
V (R) to V (S) such that, for each leaf x of T , s̃(x) = s(x). Moreover,
given an assignment b of the leaves of T , an extension of b is a function b̃
from V (R) to {0, 1} such that, for each leaf x of T , b̃(x) = b(x).

Definition 1 (DEL-Reconciliation). Let Γ be a gene family where each
x ∈ Γ belongs to the genome b(x) of a species s(x) of Σ. LetT be a binary
gene tree for Γ andS be a binary species tree for Σ. A DEL-Reconciliation
is a quadruplet 〈R, s̃, b̃, ẽ〉 where R is a partially binary extension of T ,
s̃ is an extension of s and b̃ is an extension of b such that:

1. Each unary node x with a single child y is such that ẽ(x) = EGTp,
s̃(x) = s̃(y) = σ and b̃(x) 6= b̃(y); x represents a transposition
event with source genome σb̃(x) and target genome σb̃(y).

2. For each binary node x of R with two children xl and xr , one of the
following cases holds:

a. s̃(xl) and s̃(xr) are the two children of s̃(x) in S and b̃(xl) =

b̃(xr) = b̃(x), in which case ẽ(x) = Spe;
b. s̃(xl) = s̃(xr) = s̃(x) = σ and b̃(xl) = b̃(xr) = b̃(x) in which

case ẽ(x) = Dup representing a duplication in σb̃(x);

c. s̃(xl) = s̃(xr) = s̃(x) = σ and b̃(xl) 6= b̃(xr) in which case
ẽ(x) = EGTr; let y be the element of {xl, xr} such that b̃(x) 6=
b̃(y), then ẽ(x) is a transfer with source genome σb̃(x) and target
genome σb̃(y).

A grafted leaf on a newly created node x corresponds to a loss in s̃(x).

AsR is as an extension of T , each node in T has a corresponding node
in R. In other words, we can consider that V (T ) ⊆ V (R). In particular
the species labeling on R induces a species labeling on T .

Given a cost function c onDEL and a reconciliationR = 〈R, s̃, b̃, ẽ〉,
the cost c(R) is the sum of costs of the induced events. In this paper, we
assume a 0 cost for speciations and positive costs for all the other events.

We are now ready to formally define the considered optimization
problem.

Fig. 2. The tree RDL up left, together with its node labeling, is the optimal DL-
Reconciliation for the gene tree T represented by the plain edges of RDL and the species
tree S up right. The two down trees are obtained by Algorithm 1 for two different b̃ labeling
of internal nodes: the left labeling is obtained by the Fitch algorithm for weighted parsimony,
while the right labeling is obtained by applying Algorithm 2. The left labeling gives rise to
a non-optimal reconciliation with seven operations (two losses, one duplication, two EGTr
and two EGTp), while the right labeling gives rise to the DEL-Distance which is equal to
six (two losses, three EGTr and one EGTp). Rectangles represent duplications; triangles
represent either EGTr or EGTp events depending whether the labeled node is binary or
unary; dotted lines represent losses; A leaf xi represent a gene x belonging to the genome
i (0 for mitochondrial and 1 for nuclear) of species X.

DEL-Reconciliation Problem:
Input: A species tree S for a set of species Σ, a gene family Γ on Σ, a
gene tree T for Γ, a species labeling s and a genome labeling b of L(T ),
and a cost function c on DEL.
Output: A most parsimonious DEL-Reconciliation, i.e. a DEL-
Reconciliation 〈R, s̃, b̃, ẽ〉 of minimum cost.

In the next section, we first consider the case of a unitary cost, thus
reducing the problem to minimizing the number of operations induced
by a reconciliation. The costDEL(T, S) of the most parsimonious DEL-
Reconciliation forT andS in the case of a unitary cost c is called the DEL-
Distance. We then extend the algorithmic developments to arbitrary costs,
allowing in particular to consider an EGTr or an EGTp event transferring a
gene from the mitochondria to the nucleus differently from a similar event
transferring a gene from the nucleus to the mitochondria.

In the following section, we will refer to the DL-Reconciliation of T
andS. Recall that it is a triplet 〈RDL, s̃, ẽ〉 defined by only considering the
cases of speciations, duplications and losses in Definition 1, and ignoring
the binary assignment of genes. We denote byDL(T, S) the DL-Distance,
i.e. the minimum number of duplications and losses induced by a DL-
reconciliation. The DL-Reconciliation 〈RDL, s̃, ẽ〉 of cost DL(T, S) is
unique and verifies, for any internal node x of V (RDL) ∩ V (T ):

1. s̃(x) = lcaS(s(L(T [x])));
2. if s̃(x) 6= s̃(xl) and s̃(x) 6= s̃(xr) then v is a Speciation; otherwise

x is a Duplication.

We finally need to make the link between the species labeling s̃ of an
optimal reconciliation and the well-known LCA-Mapping. This is formally
stated in the following lemma.

Lemma 1 (LCA-Mapping). Let 〈R, s̃, b̃, ẽ〉 be a DEL-Reconciliation
of minimum cost between T and S. Then, for each x ∈ V (R) ∩ V (T ),
s̃(x) = lcaS(s(L(T [x]))).
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3 A linear-time algorithm for the DEL-Distance
In this section, we consider a unitary cost c on DEL.

Consider a given extension b̃T of b to the internal nodes of T . We
first present an algorithm for computing a DEL-Reconciliation 〈R, s̃, b̃, ẽ〉
of minimum cost, under the condition that b̃(x) = b̃T (x) for each x ∈
V (T )∩V (R). We will then show how a b̃T minimizing the DEL-Distance
can be obtained.

Algorithm 1 computes the DEL-Reconciliation 〈R, s̃, b̃, ẽ〉 from the
DL-Reconciliation 〈RDL, s̃DL, ẽDL〉 (see Figure 2 for an example).

Lemma 2 (Optimality of Algorithm 1). Given a binary assignment b̃T
of the nodes of T , Algorithm 1 outputs a DEL-Reconciliation 〈R, s̃, b̃, ẽ〉
of minimum cost with the constraint that b̃(x) = b̃T (x) for x ∈ V (R) ∩
V (T ).

It follows from Lemma 2 that if b̃ is known in advance for the nodes of
T , a DEL-Reconciliation of minimum cost is obtained from Algorithm 1
with b̃ as input. We now focus on finding such a labeling b̃.

Lemma 3 (Necessary condition for b̃). There exists a DEL-
Reconciliation 〈R, s̃, b̃, ẽ〉 of minimum cost DEL(T, S) such that, for
any node x of T and its children xl and xr in T , b̃(x) = b̃(xl) or
b̃(x) = b̃(xr).

Proof. Assume 〈R, s̃, b̃, ẽ〉 is a most parsimonious DEL-Reconciliation
with a lowest node x not satisfying condition (1): b̃(x) = b̃(xl) or b̃(x) =

b̃(xr). Thus we should have b̃(x) 6= b̃(xl) = b̃(xr). Note that an EGTp
event must be present on at least one of the (x, xl) or (x, xr) branches. A
reconciliation of lower or equal cost can be obtained by assigning b̃(x) =

b̃(xl) = b̃(xr) and removing this EGTp event, reducing the cost by one.
Let px be the parent of x inR (note that if x is the root, px might not exist,
in which case there is nothing else to do). If b̃(x) is now different from
b̃(px), we add an EGTp event between px and x, yielding an alternate
reconciliation of equal or lower cost.

We can reproduce the same transformation iteratively in a bottom-up
fashion until condition (1) is satisfied for every node.

For a node x ∈ V (T ), define d(x) = 1 if x is a duplication in the
DL-Reconciliation of minimum cost, and d(x) = 0 otherwise. Let b̃ be
a binary labeling of V (T ). For any node x of T , denote ∆b̃(x) = 0 if
x ∈ L(T ), otherwise

∆b̃(x) = max(0, |b̃(x)− b̃(xl)|+ |b̃(x)− b̃(xr)| − d(x))

and define :
cost(T, S, b̃) =

∑
x∈V (T )

∆b̃(x)

Roughly speaking, ∆b̃(x) reflects the number of label changes
between x and its children xl and xr in T , with the exception that
a duplication is allowed a “free” change since it can be turned into
an EGTr node. For example, in Figure 2, cost(T, S, b̃) = 2 for the
labeling b̃ of T consistent with that of the left tree R (Algo1+Fitch), and
cost(T, S, b̃) = 1 for the labeling b̃ of T consistent with that of the right
tree R (Algo1+Algo2), reflecting, for each one, the number of requested
EGTp.

Lemma 4. The minimum cost of a DEL-Reconciliation between a gene
tree T and a species tree S is

DEL(T, S) = DL(T, S) + min
b̃
cost(T, S, b̃)

Proof. By Lemma 2, Algorithm 1 correctly infers a minimum cost
DEL-Reconciliation for a given b̃. Note that this DEL-Reconciliation is
obtained from a DL-Reconciliation by changing some duplication nodes

Algorithm 1 MinDELrec

Input: T, S, s, b̃T ; Output: R, s̃, b̃, ẽ.
1: Let 〈RDL, s̃DL, ẽDL〉 be the reconciliation satisfying the DL-

Distance;
2: R = RDL; s̃ = s̃DL; ẽ = ẽDL;
3: for each node x of R in a bottom-up traversal do
4: if x ∈ V (T ) then
5: b̃(x) = b̃T (x)

6: else
7: Let y be the highest node of T with the parent of x being an

ancestor of y;
8: b̃(x) = b̃(y);

9: for each node x of T in a top-down traversal do
10: Let xl and xr be the two children of x in T ;
11: if b̃(xl) = b̃(x) and b̃(xr) 6= b̃(x) then
12: if ẽDL(x) = Dup then
13: ẽ(x) = EGTr

14: else
15: ẽ(x) = Spe;
16: Graft a node v on the edge (x, v1) where v1 is an ancestor

of xr in R;
17: ẽ(v) = EGTp; b̃(v) = b̃(xr); s̃(v) = s̃(x);

18: else if b̃(xl) 6= b̃(x) and b̃(xr) = b̃(x) then
19: if ẽDL(x) = Dup then
20: ẽ(x) = EGTr

21: else
22: ẽ(x) = Spe;
23: Graft a node v on the edge (x, v1) where v1 is an ancestor

of xl in R;
24: ẽ(v) = EGTp; b̃(v) = b̃(xl); s̃(v) = s̃(x);

25: else if b̃(xl) 6= b̃(x) and b̃(xr) 6= b̃(x) then
26: if ẽDL(x) = Dup then
27: ẽ(x) = EGTr;
28: Graft a node v on the edge (x, v1) where v1 is an ancestor

of xr in R;
29: ẽ(v) = EGTp; b̃(v) = b̃(xr); s̃(v) = s̃(x);
30: else
31: ẽ(x) = Spe;
32: Graft a node vl on the edge (x, v1l) where v1l is an ancestor

of xl in R;
33: Graft a node vr on the edge (x, v1r) where v1r is an ancestor

of xr in R;
34: ẽ(vl) = ẽ(vr) = EGTp; b̃(vl) = b̃(vl) = b̃(xl); ;
35: s̃(vl) = s̃(xl); s̃(vr) = s̃(xr);

to EGTr nodes (which do not change the cost), and by grafting some
EGTp nodes. Thus the latter are responsible for any possible change
in cost from DL(T, S) to DEL(T, S). It follows that the cost of the
returned DEL-Reconciliation is DL(T, S), plus the number of grafted
EGTp nodes.

Let b̃ be a binary assignment of T that minimizes DEL(T, S) when
b̃ is passed to Algorithm 1. By Lemma 3, we may assume that for any
node x and its children xl and xr , b̃(x) = b̃(xl) or b̃(x) = b̃(xr). Thus
∆b̃(x) ∈ {0, 1} for every x. Furthermore, ∆b̃(x) = 1 if and only if x
is a speciation node and an EGTp node is grafted on the edge (x, xl) (if
b̃(x) 6= b̃(xl)) or on the edge (x, xr) (if b̃(x) 6= b̃(xr)). In consequence,
cost(T, S, b̃) counts exactly the number of graftings of EGTp nodes.
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Since the most-parsimonious DL-Reconciliation is unique, the
DL(T, S) term in the above lemma is an invariant. Our goal is therefore
to find the labeling b̃ that minimizes cost(T, S, b̃).

This can be achieved by a slight modification of the Fitch (1971)
algorithm [19] computing, for a given tree with leaf labels, all possible label
assignments of internal nodes minimizing the number of label changes
along the edges of the tree. We first need to recall some concepts on
parsimony. Given a tree T on a leafsetL of residues (generally nucleotides
or amino-acids, but in this paperL = {0, 1} corresponding to the possible
b̃ labeling), the weighted parsimony problem consists in assigning a residue
b̃(u) ∈ L to each internal nodeu ofT in a way minimizing the total weight
of the tree. More precisely, given a cost matrixM on residues, the weight
of T is the sum of weights M(b̃(u), b̃(v)) for all (u, v) ∈ E(T ). An
assignment of T refers to the assignment of a residue to each internal node
of T .

The Sankoff & Cedergren (1983) algorithm [20] allows computing,
in quadratic time, the minimum cost min(T ) of an assignment of T .
Moreover, it allows finding all the assignments T̃ of T leading to min(T ).
When M(a, a) = 0 for all a ∈ L and M(a, b) = 1 for a 6= b, weighted
parsimony can be computed in linear time using the Fitch algorithm.

The Fitch algorithm consists of two phases. The first phase is recursive
and reconstructs possible ancestral labels L(x) for each node x of T and
the overall minimum number of label changes required as follows: For each
nodex ofT in a bottom-up traversal, (1) ifx is a leaf, thenL(x) = {b̃(x)}
and cost(T [x]) = 0. (2) Else, let xl and xr be the children of x. If
L(xl) ∩ L(xr) = ∅, then L(x) = L(xl) ∪ L(xr) and cost(T [x]) =

cost(T [xl]) + cost(T [xr]) + 1; else L(x) = L(xl) ∩ L(xr) and
cost(T [x]) = cost(T [xl]) + cost(T [xr]). The second phase of the
algorithm reconstructs an assignment b̃ of T that has a minimum cost, by
computing b̃(x) as follows: For each node x of T in a top-down traversal,
(1) if x is the root, assign b̃(x) to any label in L(x). (2) Else, let xp be
the parent of x. If b̃(xp) ∈ L(x), then assign b̃(x) = b̃(xp), else assign
b̃(x) to any label in L(x).

The Fitch algorithm does not always find an optimal b̃ assignment
because of duplications that can be turned into EGTr events. Algorithm 2
modifies the first phase of the Fitch algorithm to compute the DEL-
Distance and an assignment b̃ of T that leads to the DEL-Distance. The
modification reflects the fact that a duplication node is allowed a “free”
change since it can be turned into an EGTr node (see Figure 2 for an
illustration).

Lemma 5. Algorithm 2 outputs, in linear time, the DEL-Distance
DEL(T, S) and a binary assignment b̃ of T that leads to a most
parsimonious DEL-Reconciliation.

Proof. It suffices to prove that the following statement holds for any node
x of T : for any label β inL(x), there exists a binary assignment b̃ of T [x]

such that b̃(x) = β and b̃ minimizes cost(T [x], S, b̃).

1. If x is a leaf (Lines 3-5), then L(x) = {b(x)}. For b̃(x) = b(x),
cost(T [x], S, b̃) = 0.

2. If x is not a leaf (Lines 6-20). Let xl and xr be the children of x, and
assume that the statement holds for xl and xr . Let β ∈ L(x). Let b̃l
and b̃r be two binary assignments of T [xl] and T [xr] that minimize
cost(T [xl], S, b̃l) and cost(T [xl], S, b̃r), respectively, and such that
b̃l(xl) = β if β ∈ L(xl) and b̃r(xr) = β if β ∈ L(xr). Let b̃ be
the binary assignment of T [x] obtained by merging b̃l and b̃r and
extending it with b̃(x) = β.

a. If x is a duplication node in the DL-reconciliation (Lines 8-10), then
L(x) = L(xl) ∪ L(xr).

Algorithm 2 MinDEL

Input: T, S, s, b; Output: DEL(T, S), b̃.

1: Let 〈RDL, s̃DL, ẽDL〉 be the reconciliation satisfying the DL-
Distance;

2: for each node x of T in a bottom-up traversal do
3: if x is a leaf then
4: L(x) = {b(x)};
5: DEL(T [x], S) = 0

6: else
7: Let xl and xr be the children of x;
8: if ẽDL(x) = Dup then
9: L(x) = L(xl) ∪ L(xr);
10: DEL(T [x], S) = DEL(T [xl], S) +DEL(T [xr], S) + 1

11: else if L(xl) ∩ L(xr) = ∅ then
12: L(x) = L(xl) ∪ L(xr);
13: DEL(T [x], S) = DEL(T [xl], S) +DEL(T [xr], S) + 1

14: else
15: L(x) = L(xl) ∩ L(xr);
16: DEL(T [x], S) = DEL(T [xl], S) +DEL(T [xr], S)

17: for each node x of T in a top-down traversal do
18: if x is the root then
19: b̃(x) = any label in L(x);
20: else
21: Let xp be the parent of x;
22: if b̃(xp) ∈ L(x) then
23: b̃(x) = b̃(xp);
24: else
25: b̃(x) = any label in L(x);

(1) If β ∈ L(xl) ∩ L(xr), then b̃(xl) = b̃(xr) = b̃(x) = β,
and ∆b̃(x) = 0. Thus cost(T [x], S, b̃) = cost(T [xl], S, b̃l) +

cost(T [xr], S, b̃r), without any increment.
(2) If β 6∈ L(xl) ∩ L(xr), then β ∈ L(xl) or β ∈ L(xr), and

b̃(xl) = b̃(x) = β or b̃(xr) = b̃(x) = β, and ∆b̃(x) = 0. Thus
cost(T [x], S, b̃) = cost(T [xl], S, b̃l) + cost(T [xr], S, b̃r),
without any increment.

In both cases, Algorithm 1 computes a DEL-Reconciliation with
minimum cost DEL(T [xl], S) + DEL(T [xr], S) + 1 with a
minimum increment of 1 for a Dup node in case (1), or by making x
an EGTr node in case (2), but no additional EGTp node is required.

b. If x is a speciation node in the DL-reconciliation.

(1) If L(x) 6= L(xl) ∩ L(xr), then L(xl) ∩ L(xr) = ∅, and
β ∈ L(xl) or β ∈ L(xr). So b̃(xl) = b̃(x) = β or
b̃(xr) = b̃(x) = β, and ∆b̃(x) = 1. Thus cost(T [x], S, b̃) =

cost(T [xl], S, b̃l) + cost(T [xr], S, b̃r) + 1,g with a minimum
increment of 1 by grafting an EGTp node on one of the
(x, xl) or (x, xr) branches. In this case, Algorithm 1 computes
a DEL-Reconciliation with minimum cost DEL(T [xl], S) +

DEL(T [xr], S) + 1.
(2) If L(x) = L(xl) ∩ L(xr), then β ∈ L(xl) and β ∈ L(xr).

So b̃(xl) = b̃(xr) = b̃(x) = β, and ∆b̃(x) = 0. Thus
cost(T [x], S, b̃) = cost(T [xl], S, b̃l) + cost(T [xr], S, b̃r)

without any additional cost. Algorithm 1 computes a
DEL-Reconciliation with minimum cost DEL(T [xl], S) +

DEL(T [xr], S) when given b̃.

It is easy to see that both the first and the second phases of the algorithm
have linear time complexity, thus the overall algorithm has a linear time
complexity.



picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture

“output” — 2021/2/25 — page 6 — #6

picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture

6 Yoann Anselmetti et al.

As for the Fitch Algorithm, Algorithm 2 does not allow to output all the
solutions of the DEL-Reconciliation problem leading to the DEL-Distance.
However, this can be achieved by adapting the Sankoff and Cedergren’s
dynamic programming algorithm. Rather, we choose to introduce, in the
next section, a more general dynamic programming algorithm allowing to
output all optimal solutions for an arbitrary cost of the DEL events, not
only for the unitary cost.

4 Solving the DEL-Reconciliation Problem with
arbitrary DEL costs

In this section, we assume that each possible event has a different cost.
We use δ and λ to denote the cost of a duplication and a loss, respectively.
We use ρ0 (resp. τ0) for the cost of a transposition (resp. transfer) from
the mitochondrial genome to the nuclear genome, and ρ1 (resp. τ1) for
the cost of a transposition (resp. transfer) from the nuclear genome to the
mitochondrial genome. Note that the subscripts of the EGT costs indicate
the source of the switch.

Also denote

ρ∗0 = min(ρ0, τ0 + λ) ρ∗1 = min(ρ1, τ1 + λ)

Roughly speaking, ρ∗0 represents the minimum cost required to switch
from mitochondrial to nuclear genome inside a branch of T , and ρ∗1 the
minimum cost required in the other direction. The purpose of ρ∗0 and ρ∗1
is that a switch can be accomplished by a transposition event, but also by
a transfer event followed by a loss.

Let x ∈ V (T ) and let bx ∈ {0, 1}. We denote by D[x, bx] the
minimum cost of a DEL-Reconciliation 〈R, s̃, b̃, ẽ〉 of T [x] with S in
which b̃(x) = bx (or∞ if no such reconciliation exists). Note that s̃(x)

does not need to be inferred, since by Lemma 1, we may assume that
s̃(x) = lcaS(s(L(T [x]))).

Trivially, if x is a leaf of T , we have

D[x, bx] =

{
0 if bx = b(x)

∞ otherwise

Assume now that x is an internal node of T . Let xl, xr be the children
of x. For s1, s2 ∈ V (S), let path(s1, s2) denote the number of vertices
on the path between s1 and s2 in S, including s1 and s2. Then define

lx = path(s̃(x), s̃(xl)) + path(s̃(x), s̃(xr))

which counts the number of mandatory losses on the child branches of a
node x of T .

To compute D[x, bx], we use three auxiliary values D[x, bx, ex],
where ex ∈ {Spe,Dup,EGTr} represents the event label of x (note
that ex cannot be a transposition event, since x has two children).

If s̃(x) = s̃(xl) or s̃(x) = s̃(xr), then D[x, bx, Spe] = ∞.
Assuming this check has been performed, we have

D[x, bx, Spe] = λ(lx − 4) +∑
x′∈{xl,xr}

min(D[x′, bx], ρ∗bx +D[x′, 1− bx])

D[x, bx, Dup] = δ + λ(lx − 2) +∑
x′∈{xl,xr}

min(D[x′, bx], ρ∗bx +D[x′, 1− bx])

D[x, bx, EGTr] = τbx + λ(lx − 2) +

min


D[xl, bx] +D[xr, 1− bx]

D[xl, 1− bx] +D[xr, bx]

ρ∗1−bx
+D[xl, bx] +D[xr, bx]

ρ∗bx +D[xl, 1− bx] +D[xr, 1− bx]

PutD[x, bx] = min(D[x, bx, Spe], D[x, bx, Dup], D[x, bx, EGTr]).
The value of interest is min(D[r(T ), 0], D[r(T ), 1]).

Theorem 1. For any x ∈ V (T ) and bx ∈ {0, 1}, the value ofD[x, bx],
as defined above, is equal to the minimum cost of a DEL-Reconciliation
〈R, s̃, b̃, ẽ〉 of T [x] with S satisfying b̃(x) = bx.

Moreover, the minimum cost min(D[r(T ), 0], D[r(T ), 1]) of a
reconciliation of T with S can be computed in timeO(|V (T )|+ |V (S)|).

Let us note that once theD table is computed, a standard backtracking
procedure allow to reconstruct every optimal DEL-Reconciliation.

5 Experimental results
We implemented the above dynamic programming procedure in python
in a software called EndoRex, which supports arbitrary costs as input and
returns a reconciled gene tree in Newick format. The python source can be
accessed at https://github.com/AEVO-lab/EndoRex. We then performed a
variety of experiments on a dataset obtained from [14], as described in the
following.

5.1 Kannan et al., (2014) dataset

For the reconstruction of evolutionary histories with EGT events,
we used a dataset from Kannan et al., 2014 [14] available at
ftp://ftp.ncbi.nih.gov/pub/koonin/MitoCOGs. The dataset consists of 140
clusters of orthologous mitochondrial protein-coding genes (MitoCOGs)
extended with paralogs and nuclear protein-coding homologs from
2,486 eukaryotes with complete mitochondrial genomes. Statistics on
MitoCOGs of the Kannan et al. dataset are described in Table 1.

Table 1. Statistics of the Kannan et al., 2014 dataset.

Gene set Nb of MitoCOGs Nb of species Nb of genes
Mitochondrial-encoded 140 2,486 34,755
Nuclear-encoded 45 52 1,317
Whole set 140 2,486 36,072

5.2 Dataset preprocessing

Among these 140 MitoCOGs of the initial Kannan et al. dataset, we first
selected the 45 clusters with nuclear-encoded protein sequences. Within
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these MitoCOGs, 52 eukaryotes are represented including 28 Opisthokonta
(10 Fungi, 17 Metazoa and 1 Choanoflagellata), 9 Viridiplantae, 1
Rodophyta, 1 Glaucophyta), 5 Alveolata, 1 Amoebozoa, 2 Euglenozoa,
1 Heterolobosea, 1 Rhizaria and 3 Stramenopiles. Based on the Figure 1
of [14] and analysis of the dataset, we selected the 11 plants species clade,
including the 9 Viridiplantae, Cyanidioschyzon merolae (Rodophyta)
and Cyanophora paradoxa (Glaucophyta), for EGT evolutionary history
inference with EndoRex as gene-content location is more diversified
among this species group.

The 11 plants species are represented in 68 MitoCOGs with
mitochondrial-encoded proteins and 41 MitoCOGs with nuclear-encoded
proteins. We selected the clusters for which there were mitochondrial and
nuclear encoded genes, yielding 28 MitoCOGS containing 326 protein-
coding genes, including 184 encoded in the mitochondria and 142 in the
nucleus.

Table 2 gives information about the 28 MitoCOGs of the 11 plants
dataset specifying the gene name, the protein metabolic pathway, and the
number of genes and species for each MitoCOG.

Table 2. Statistics on the 28 MitoCOGs of the 11 plants dataset. For the "Nb
of gene" column, the number of mitochondria-encoded (mito) and nucleus-
encoded (nuc) gene are specified.

MitoCOG Gene Metabolic Nb of genes Nb of
ID name pathway (mito+nuc) species

MitoCOG0006 nad3 Complex I 11 (10+1) 11
MitoCOG0007 nad4L Complex I 13 (12+1) 11
MitoCOG0031 nad7 Complex I 11 (9+2) 11
MitoCOG0043 nad9 Complex I 11 (9+2) 11
MitoCOG0029 nad10 Complex I 13 (1+12) 10
MitoCOG0052 sdh2 Complex II 22 (1+21) 10
MitoCOG0051 sdh3 Complex II 8 (3+5) 6
MitoCOG0075 sdh4 Complex II 9 (4+5) 9
MitoCOG0003 cox2 Complex IV 13 (10+3) 11
MitoCOG0005 cox3 Complex IV 13 (10+3) 11
MitoCOG0059 atp1 Complex V 9 (7+2) 8
MitoCOG0076 atp4 Complex V 12 (11+1) 10
MitoCOG0004 atp6 Complex V 13 (12+1) 11
MitoCOG0014 atp9 Complex V 13 (10+3) 11
MitoCOG0027 rpl2 Translation 14 (5+9) 10
MitoCOG0053 rpl6 Translation 10 (4+6) 8
MitoCOG0092 rpl10 Translation 5 (2+3) 5
MitoCOG0048 rpl14 Translation 15 (5+10) 11
MitoCOG0039 rpl16 Translation 12 (8+4) 11
MitoCOG0070 rpl20 Translation 11 (2+9) 8
MitoCOG0080 rps2 Translation 9 (5+4) 9
MitoCOG0067 rps4 Translation 8 (7+1) 7
MitoCOG0061 rps7 Translation 12 (8+4) 11
MitoCOG0072 rps10 Translation 12 (3+9) 8
MitoCOG0054 rps11 Translation 12 (6+6) 10
MitoCOG0064 rps13 Translation 10 (7+3) 10
MitoCOG0055 rps14 Translation 9 (5+4) 8
MitoCOG0026 rps19 Translation 16 (8+8) 8

For each MitoCOG, we applied a pipeline to infer the evolutionary
history of EGTs with DEL-Reconciliation along the 11 plants species tree.
Topology of the species tree was taken from [14]. We added the species
Micromonas sp. RCC299 as the sister species of Ostreococcus tauri as
only these 2 among the 11 plants species belong to the Mamiellophyceae
class (Figure 3).

Fig. 3. Species tree of the 11 plants considered in our experimental analysis. Topology of
the tree is based on [14].

As for constructing gene trees, the first step of the pipeline was to
align the protein sequences with MUSCLE [16]. In the second step, a
maximum likelihood protein tree was infered using RAxML (v8.2.4) with
the PROTGAMMAAUTO option that automatically choose the best fitting
amino acid substitution model [17]. NOTUNG (v.2.9.1.5) was then used
to root the trees by minimizing the cost of a duplication-loss reconciliation
with default parameter (loss cost: 1.0 and duplication cost: 1.5) [18].

The rooted protein trees obtained with this pipeline and the 11 plants
species tree were given as input of the EndoRex software to infer a
most parsimonious DEL-Reconciliation allowing for arbitrary costs for
duplications, losses and EGTs.

5.3 EndoRex evolutionary events cost setting

As a reminder, we consider six parameters corresponding to the different
evolutionary event costs: δ and λ the cost of, respectively, a gene
duplication and loss; ρ0 (resp. τ0) the cost of a transposition (resp. transfer)
from the mitochondrial genome to the nuclear genome, and ρ1 (resp. τ1)
the cost of a transposition (resp. transfer) from the nuclear genome to the
mitochondrial genome.

We test six different costs settings for the application of EndoRex on
the 11 plants dataset. The setting S1 corresponds to the default values
for parameters, with a unitary cost for evolutionary events (allowing to
compute the DEL-Distance). For setting S2, the gene loss and duplication
costs are those used in NOTUNG for rooting the protein trees, and transfers
and transpositions are given the same cost as losses: λ = ρ0 = ρ1 =

τ0 = τ1 = 1.0 and δ = 1.5. For setting S3, transposition and transfer
costs are increased to reflect the fact that these evolutionary events are
less frequent than gene duplications: λ = 1.0, δ = 1.5 and ρ0 = ρ1 =

τ0 = τ1 = 2.0. In setting S4, we consider transfers as less frequent than
transpositions: λ = 1.0, δ = 1.5, ρ0 = ρ1 = 2.0 and τ0 = τ1 = 3.0.
For setting S5, we differentiate the cost of the mitochondria to the nucleus
from the nucleus to the mitochondria gene move. It is well established
that mitochondrial genes are integrated into the nuclear genome, and the
reversal process is an extremely rare event: λ = 1.0, δ = 1.5, ρ0 = 2.0,
ρ1 = 3.0, τ0 = 3.0 and τ1 = 4.0. Then, setting S6 is as setting S5

except we make no difference between transfer and transposition costs:
λ = 1.0, δ = 1.5, ρ0 = 2.0, ρ1 = 3.0, τ0 = 2.0 and τ1 = 3.0.



picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture

“output” — 2021/2/25 — page 8 — #8

picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture

8 Yoann Anselmetti et al.

Applied to the 28 MitoCOGs trees, EndoRex infer the same DEL-
Reconciliation with the six different settings for the five MitoCOGs:
MitoCOG0029, MitoCOG0048, MitoCOG0067, MitoCOG0080 and
MitoCOG0092.

We first observed that setting S2 is the parameterization leading to the
most different DEL-Reconciliation solutions compared to the five other
settings. Actually, this cost setting is not realistic as EGTs are much less
frequent than gene duplications and should logically be penalized more.
Therefore, from now, we discard this setting from the analysis. Comparison
of the five remaining settings yields a unique DEL-Reconciliation for 21
of the 28 MitoCOGs.

Among the seven MitoCOGs with different DEL-Reconciliations
depending on the considered setting (among the five left), six of
them (MitoCOG0005, MitoCOG0014, MitoCOG0027, MitoCOG0051,
MitoCOG0053, MitoCOG0072) lead to two different DEL-Reconciliations
and one (MitoCOG0039) to three different DEL-Reconciliations.

We analysed the three DEL-Reconciliations of MitoCOG0039,
corresponding to the rpl16 gene, to illustrate the dynamic of the score
settings (see Figure 4). According to this case study, it seems that setting
S1 is inappropriate as it leads to the prediction of numerous EGTs from
the nucleus to the mitochondria, which is very unrealistic as a very few
number of gene movements from the nucleus to the mitochondria have been
described in the literature. DEL-Reconciliation predicted with setting S5

is the scenario most in line with the literature as it only infers EGTs from the
mitochondria to the nucleus, with transpositions located close to the leaves
of the tree, indicating an ongoing process of endosymbiotic gene transfer
in plants for this gene family. The scenario inferred with settings S3, S4

and S6 is an intermediate between those inferred with setting S1 and
S5. The main difference with scenario of S1 is the inference of an EGTp
followed by a duplication instead of an EGTr for S1 at the lowest ancestor
of S. bicolor, O. sativa, V. vinifera and A. thaliana replacing two EGTp
from nucleus to mitochondria, in S1, by one EGTp from mitochondria to
nucleus, in settings S3, S4 and S6. But in this DEL-Reconciliation, there
is still one EGTp and one EGTr from the nucleus to the mitochondria that
may be considered unlikely.

6 Conclusion
Investigating the origin, evolution and characteristics of gene coding
capacity of eukaryotes has been among the central themes in the Life
Sciences. In this context, the endosymbiotic origin of mitochondrial
genomes and the gradual integration of the mitochondrial gene content
to the nucleus are important evolutionary parameters expected to shed
light on features of eukaryotic gene evolution and function.

From a computational point of view, detecting the footprint of
endosymbiosis in the gene repertoires of the mitochondrial and nuclear
genomes of eukaryotes require new evolutionary prediction methods. This
paper is a first effort towards developing the appropriate algorithmic tools
for analysing the movement of genes inside a gene family between the
mitochondrial and nuclear genome of the same species. More precisely, we
have introduced a new reconciliation model accounting for endosymbiotic
gene transfer (EGT), a special case of horizontal gene transfer, with the
purpose of reconstructing the evolutionary history of genes accounting for
their movement between the mitochondria and nucleus. We presented a
linear-time algorithm, based on the Duplication-Loss (DL) reconciliation
distance and the Fitch algorithm for weighted parsimony, to compute
a most parsimonious history of Duplication, EGT and Loss (DEL)
events explaining a gene tree with leaves identified as mitochondrial
or nuclear genes. We also presented a general dynamic programming
algorithm, implemented in the EndoRex software, to compute all optimal
DEL-Reconciliations for any arbitrary cost scheme of operations.

Fig. 4. DEL-Reconciliations obtained for MitoCOG0039 with the EndoRex scores settings
S1, S3, S4, S5 and S6. The blue part of the tree indicates that the genetic material is
located in the mitochondria, while the red part indicates location in the nucleus. Shapes
at the internal nodes represent the evolutionary event associated according to the Figure 1.
Gene are formatted as follow: [species_name]__[gene-encoding location]__[gene id]. With
gene-encoding location annotation: 0−→mitochondria and 1−→nucleus. Loss events are not
represented.

By applying EndoRex to a plants dataset, we showed that it is well-
designed to infer the evolutionary histories of EGT events, considering
a variety of cost settings. Some reconciled trees (not shown) of the 11
plants dataset produced evolutionary histories that could be considered
unrealistic as leading to an unexpected high number of gene duplications
and losses. As our algorithm is exact and thus guaranteed to infer the
minimum number of events given a gene tree, this is likely due to errors
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in protein sequence alignment and/or gene tree inference, leading to
erroneous gene trees [24]. A better gene tree inference pipeline should
be designed to get more accurate gene trees, probably allowing for more
realistic DEL-Reconciliations.

Future applications will concern a thorough analysis of protein-coding
genes involved in common metabolic pathways. As an example, the
oxydative phophorylation (OXPHOS) is a series of protein complexes (I,
II, III, IV and V) leading to an electrochemical proton gradient activating
the ATP synthase (complex V) that produces ATP, an important molecule
involved in the intracellular energy tranfer. These protein-coding genes
involved in OXPHOS are expected to share common mitochondrial-
nuclear movement, as nucleus and mitochondria are two compartments
with different biological dynamics.

The purpose of inferring common episodes of EGT events for a
set of gene families opens new avenues towards algorithmic extensions
seeking for a most parsimonious joint DEL-Reconciliation of multiple
gene trees with a species tree. This may be handled by generalizing the
Super-Reconciliation [23] model to account for segmental DEL events.

Finally, the recent sequencing effort conducted towards jakobids and
malawimonads protists genomes known to have emerged close to the
eukaryotic origin will provide a valuable dataset that can be analysed
with the new developed algorithms, helping to shed light on a number
of important biological questions, among them resolving the root of the
eukaryote tree. In fact, as EGTs are rare events, candidate topologies for
which DEL-Reconciliations infer the lowest number of EGT events, may
provide evidence of a correct rooting.
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Appendix

Proof of Lemma 1

Let 〈R, s̃, b̃, ẽ〉 be a DEL-Reconciliation of minimum cost between T and
S. Let λ be the cost of a loss event. Let us first make an observation. Let
v ∈ V (R) and let l ∈ L(R[v]) ∩ L(T ), assuming that l exists. Let P =

(v = p1, p2, . . . , pk = l) be the path fromv to l inR. It is easy to see from
the definition of reconciliation that s̃(v) = s̃(p1), s̃(p2), . . . , s̃(pk) =

s̃(l) is a path of S, but with some vertices possibly being repeated (i.e.
s̃(pi) = s̃(pi+1) is possible, but otherwise s̃(pi+1) is a child of s̃(pi)).
It follows that s̃(v) must be an ancestor of s(l). Since v and l were chosen
arbitrarily, we have that for any v ∈ V (R), s̃(v) is an ancestor of s(l) for
every leaf l ∈ L(R[v]) ∩ L(T ).

Now suppose that, for some x ∈ V (R) ∩ V (T ), s̃(x) 6=
lcaS(s(L(T [x]))). Moreover, choosex as a lowest node ofV (R)∩V (T )

with this property (i.e. s̃(x′) = lcaS(s(L(T [x′]))) for all descendants
x′ ∈ V (R)∩V (T ) of x inR). Note that x is an internal node of T since
s̃(x) = s(x) for every leaf x of T .

As we argued, s̃(x) is an ancestor of s(l) for every leaf l ∈ L(T [x]).
Since s̃(x) 6= lcaS(s(L(T [x]))), it follows that s̃(x) is a strict ancestor
of lcaS(s(L(T [x]))). We first argue thatx cannot be a speciation. Assume
this is the case and let x′l, x

′
r be the children of x inR (but not necessarily

in T ). We use xl and xr to denote the children of x in T . By the definition
of speciation, s̃(x′l) and s̃(x′r) are the two children of s̃(x). Because s̃(x)

is a strict ancestor of lcaS(s(L(T [x]))), only one of s̃(x′l) or s̃(x′r) has
descendants in {s(l) : l ∈ L(T [x])}. Assume without loss of generality
that only s̃(x′l) has such descendants. But then, s̃(x′r) is not an ancestor
of any member of s(L(T [x])). In particular, s̃(x′r) is not an ancestor of
any member of s(L(R[x′r]) ∩ L(T )), and the latter is easily seen to be
non-empty (this is because x′r is an ancestor of xr and T [xr] has leaves
from T ). As we argued before, this is not possible, since there should be
a path from s̃(x′r) to any s(l) with l ∈ L(T [x′r]) ∩ L(T ).

Assume that x is a duplication or transfer event (x cannot be a
transposition event because it is binary). As before, let xl and xr be
the children of x in T (but not necessarily in R). By the choice of x,
s̃(xl) = lcaS(s(L(T [xl]))) and s̃(xr) = lcaS(s(L(T [xr]))). Thus
s̃(x) must be a strict ancestor of both s̃(xl) and s̃(xr). Let s′ be the child
of s̃(x) that is on the path from s̃(x) to lcaS(s(L(T [x]))). We obtain an
alternate reconciliation by modifyingR to obtain another extensionR′ of
T . We do not change any event labeling. We map x to s′ and graft a loss
in s̃(x) on the edge between x and its parent inR (if any). In that manner,
the parent of x inR still has a child mapped to s̃(x) inR′. This increases
the cost by λ, the cost of one loss.

Now let x1, x2, . . . , xk be the nodes on the path from x to xl in R
(excluding x and xl). Note that since x is a duplication or EGTr, s̃(x) =

s̃(x1). Moreover, at most one node among x1, . . . , xk can be an EGTr or
an EGTp, since there is no point in making more than one switch within
an edge.

If present, we may assume without loss of generality that such an
event occurs at xk , the parent of xl in R, since the timing of the
switch does not affect the reconciliation cost. In this case, s̃(xk) =

s̃(xl) = lcaS(s(L(T [xl]))). On the other hand, s̃(x1) = s̃(x) 6=
lcaS(s(L(T [x]))). This implies that x1 6= xk , and thus x1 is not an
EGTr or an EGTp. It follows that x1 is a node inserted because of a grafted
loss, and s̃(x2) = s′. In R′, we can remove x1 and its loss leaf, and by
doing so, the left child of x becomes x2. This preserves all properties of
a valid reconciliation because both x and x2 are mapped to s′. We can
apply the same procedure on the path from x to xr .

InR′, we have created one loss above x, but have removed two losses
on both sides of x. No other event labeling has changed. Since we assume
that losses have a non-zero cost, R′ has a strictly lower cost than R, a
contradiction.

Proof of Lemma 2

We first show that the reconciliation 〈R, s̃, b̃, ẽ〉 obtained from Algorithm 1
is a valid DEL-Reconciliation. Note that the tree R returned by the
algorithm is the same as RDL, but with some grafted unary nodes for
EGTp events where needed. Consider some x ∈ V (RDL). In R, we
put ẽ(x) = Spe if ẽDL(x) = Spe, and ẽ(x) ∈ {Dup,ETTT} if
ẽDL(x) = Dup. If no additional node was grafted as a new child of x,
all properties of reconciliation would be preserved since we keep s̃ as in
s̃DL. If some node x′ was grafted as a new child of x, we ensure that
s̃(x′) is the same as the previous child of x, which ensures that we satisfy
the properties of reconciliation. Therefore, we only need to check whether
the tree RDL is modified in an appropriate way in the case of a different
b̃ value for a node x of T and one of its two children xl or xr .

Lines 2-8 first ensure that the starting tree R is such that, for each
node x of T , b̃(x) = b̃T (x), and for any edge (x, y) in T such that
b̃T (x) 6= b̃T (y), the corresponding path (x, v1, v2, · · · vn, y) on R is
such that for all i, b̃(vi) = b̃(y). Subsequently, in the case of a different b̃
value for a node x of T and its child y, the node x is either modified to an
EGTr node, ensuring that the switch between b̃(x) and b̃(v1) is correctly
explained by this EGTr, or a new EGTp node v is grafted on the edge
(x, v1), also correctly explaining the switch between b̃(x) and b̃(v1).

We now show that the DEL-Reconciliation output by Algorithm 1 is
of minimum cost. First Note that, from the initialization done in Line 8,
for each leaf x which is on RDL but not in T (lost gene), the algorithm
ensures that b̃(x) = b̃(px) were px is x’s parent. Thus, grafted loss leaves
never require an extra EGTr event on an “inserted edge” of RDL.

Assume another reconciliation 〈R′, s̃′, b̃′, ẽ′〉 has a strictly lower cost
than 〈R, s̃, b̃, ẽ〉 output by Algorithm 1. We first show that, for any node of
T , the corresponding node inR andR′ have the same event label. Assume
this is not the case. Let x be the lowest node of T such that ẽ′(x) 6= ẽ(x).
Let xl and xr be its two children in T and vl and vr be the two non-
unary descendant of x in R′ the closest from x. Note that xl and xr do
not necessarily correspond to vl and vr in R′. Rather, they may be strict
descendants of these nodes in R′.

1. If ẽDL(x) = Dup, then from Algorithm 1, ẽ(x) = Dup if b̃(xl) =

b̃(x) and b̃(xr) = b̃(x), and ẽ(x) = EGTr otherwise. As ẽ′(x) 6=
ẽ(x), we should have ẽ′(x) ∈ {Spe,EGTr} in the first case, or
ẽ′(x) ∈ {Spe,Dup} in the second case.

Assume ẽ′(x) = Spe. From Lemma 1, as 〈R′, s̃′, b̃′, ẽ′〉 is a
reconciliation of minimum cost, s̃′(x) = lcaS(s(L(T [x]))), and as
x is a speciation node in R′, one of vl and vr should be mapped to
s̃(x)l and the other to s̃(x)r . Assume w.l.o.g. that s̃′(vl) = s̃(x)l
and s̃′(vr) = s̃(x)r . Now, as x is a duplication node in RDL, then
s̃(xl) = s̃(x) or s̃(xr) = s̃(x). Assume w.l.o.g. that s̃(xl) =

s̃(x). As xl is a node of the subtree of R′ rooted at vl, by definition
of a reconciliation, s̃′(xl) should be a descendant of s̃(vl), which
is not the case as s̃′(vl) = s̃(x)l is rather a strict descendant of
s̃(x) = s̃(xl) = s̃′(xl). Therefore, x cannot be a speciation node in
〈R′, s̃′, b̃′, ẽ′〉. We deduce that ẽ′(x) ∈ {Dup,EGTr}.

Now assume that b̃(xl) 6= b̃(x) or b̃(xr) 6= b̃(x). In this case,
the algorithm puts ẽ(x) = EGTr and, as x is not a speciation, it
should be a duplication node in 〈R′, s̃′, b̃′, ẽ′〉. But then an a unary
EGTp node v should be present in one of the two paths from x to xl
or from x to xr in R′, contradicting the fact that 〈R′, s̃′, b̃′, ẽ′〉 is
a reconciliation of minimum cost, since labeling x as an EGTr node
and removing v would reduce the cost of the reconciliation by one.

Finally, assume that b̃(xl) = b̃(x) and b̃(xr) = b̃(x). In this
case, the algorithm puts ẽ(x) = Dup and, as x is not a speciation,
it should be an EGTr node in 〈R′, s̃′, b̃′, ẽ′〉, which induces, by
definition of an EGTr event, that one of the two children y of x in
R′ is such that b̃(y) 6= b̃(x). Now, as b̃(x) = b̃(xl) = b̃(xr),
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one unary EGTp node v should change the b̃ labeling of y to the
b̃ labeling of its descendant in {xl, xr}. But then relabeling x as a
duplication node would allow removing v and thus reducing the cost
of the reconciliation by one, contradicting the fact that 〈R′, s̃′, b̃′, ẽ′〉
is a reconciliation of minimum cost.

2. If ẽDL(x) = Spe, then from the properties of a DL-Reconciliation,
we should have s̃(xl) 6= s̃(x) and s̃(xr) 6= s̃(x). From Algorithm 1,
x remains a speciation node in 〈R, s̃, b̃, ẽ〉.

As ẽ′(x) 6= ẽ(x), we should have ẽ′(x) = Dup or ẽ′(x) =

EGTr. In both cases, s̃(vl) = s̃(vr) = s(x). This implies that
xl 6= vl and xr 6= vr , and thus vl and vr are grafted because
of losses. Since R′ uses the LCA-mapping by Lemma 1, we can
remove vl, vr and their corresponding grafted loss leaves and make
x a speciation, while preserving a valid reconciliation. This saves a
cost of three (two losses and a Dup or EGTr event). In the worst
case, we had ẽ′(x) = EGTr, in which case we can add an EGTp
event on the appropriate branch to encorce the same switch.

Thus replacing theDup or EGTr label ofx by a speciation reduces
the cost of R′ by at least two, contradicting the fact that R′ is a
reconciliation of minimum cost.

Since we have the same number of Dup and ETTr events as R′, it
remains to show that we cannot graft less nodes than those induced by
Algorithm 1. The grafted nodes are either binary nodes corresponding to
losses, or EGTp unary nodes. Suppose R′ has less grafted nodes than
R. Then there is an edge (x, y) in T such that the corresponding path
P ′x,y = (x, v′1, v

′
2, · · · v′n′ , y) in R′ is shorter than the corresponding

pathPx,y = (x, v1, v2, · · · vn, y) inR. We consider a lowest edge (x, y)

of T verifying this condition, and we assume, without loss of generality,
that y = xl. Recall that by Lemma 1, s̃(x) = s̃′(x) and s̃(y) = s̃′(y).

• If ẽDL(x) = Dup, then x is a duplication or an EGTr node in both
R and R′. Then, by definition of a reconciliation, s̃(v1) = s̃(x).
Moreover, from the fact that R is obtained from RDL, Algorithm 1
leads to a path Px,y with as many nodes as the path from s̃(x) to
s̃(xl) in S if x is a duplication node, and an additional EGTp node
if bT (x) 6= bT (xl) = bT (xr). Moreover, it is easy to see that the
number of losses crafted on (x, y) must be equal to the number of
nodes on the path from s̃(x) and s̃(y), excluding s̃(y), either in R
or R′, and that the EGTp event added by the algorithm cannot be
avoided. And thus, the path P ′x,y should be at least as long as Px,y ,
contradicting the hypothesis that P ′x,y is shorter than Px,y .

• If ẽDL(x) = Spe, then x is a speciation node in both R and R′.
Then, by definition of a reconciliation, s̃(v1) = s̃′(v1) = s̃(x)l.
Thus, from the fact that R is obtained from RDL, Algorithm 1 leads
to a path Pv1,y with as many nodes as the path from s̃(x)l to s̃(xl)
in S, with an additional EGTp node if b̃(x) 6= b̃(xl). Moreover, it
is easy to see that no other operation (Spe, Dup, RGT or EGTp) can
allow making less losses or avoid the EGTp event. And thus, the path
P ′v1,y should be at least as long asPv1,y , contradicting the hypothesis
that P ′x,y is shorter than Px,y .

Proof of Theorem 1

Let us first argue on the complexity of computing D[x, bx] for every x ∈
V (T ) and every bx ∈ {0, 1} (including D[r(T ), 0] and D[r(T ), 1]),
our values of interest). The LCA-mapping s̃ can be computed in time
O(|V (T )|+ |V (S)|) using classical approaches from DL-reconciliation.
We can compute D[x, 0] and D[x, 1] for every x ∈ V (T ) in a post-
order traversal of T (because their value only depends on xl and xr),
and thus there are O(|V (T )|) values to compute. If we assume that if
we have access to lx for each x, it is clear from the recurrences that
D[x, bx, Spe], D[x, bx, Dup] andD[x, bx, EGTr] can be computed in

O(1) time. To access lx in time O(1) for any x, we can preprocess S
by labeling each v ∈ V (S) by its depth (i.e. its distance to the root).
Then, path(s̃(x), s̃(xl) is simply the difference in depth between s̃(x)

and s̃(xl) (because s̃(xl) must be a descendant of s̃(x)). This difference
can be obtained in constant time, and it follows that lx can be obtained
in O(1). Therefore, each D[x, bx] entry takes O(1) time to compute.
Including the time to compute the preprocessing and the LCA-mapping,
the total time of the algorithm is O(|V (T )|+ |V (S)|).

Let us now argue that the algorithm is correct. Let x ∈ V (T ), let bx ∈
{0, 1}, and letR = 〈R, s̃, b̃, ẽ〉be a DEL-Reconciliation of minimum cost
between T [x] and S that satisfies b̃(x) = bx. The proof is by induction
on the height of T [x]. If x is a leaf, it is easy to see that D[x, bx] is
correct. Assume thatx is an internal node with childrenxl andxr . We may
inductively assume that D[xl, bl] and D[xr, br] are computed correctly
for bl, br ∈ {0, 1}.

In what follows, let Rl = 〈Rl, s̃l, b̃l, ẽl〉 be the reconciliation
between T [xl] and S obtained by taking R[xl], and restricting s̃, b̃ and
ẽ to V (R[xl]). Similarly, let Rr be the reconciliation of T [xr] with S
obtained by taking R[xr] and restricting s̃, b̃ and ẽ to R[xr].

We show two useful claims, the first being that these sub-
reconciliations must be optimal with respect to their subtrees.

Claim 1.1. c(Rl) = D[xl, b̃(xl)] and c(Rr) = D[xr, b̃(xr)].

Proof. By induction and by the definition ofD, we haveD[xl, b̃(xl)] ≤
c(Rl). Moreover, in R we may replace the R[xl] subtree by Rl (more
precisely, replace R[xl] by Rl, and use s̃l, b̃l and ẽl for the vertices of
Rl). Since s̃l(xl) = s̃(xl) and b̃l(xl) = b̃(xl), all conditions of a
valid reconciliation are met after such a replacement. Furthermore, no
additional loss, transfer or transposition is required on the path between
x to xl. If D[xl, b̃(xl)] < c(R) held, this transformation would yield a
lower cost reconciliation and contradict the optimality of R. Therefore,
D[xl, b̃(xl)] ≥ c(R). It follows that D[xl, b̃(xl)] = c(Rl]). By a
symmetric argument, D[xr, b̃(xr)] = c(R).

Claim 1.2. If ẽ(x) = Spe, then there are at least lx − 4 losses grafted
on the (x, xl) and (x, xr) branches, and otherwise, there are at least
lx − 2 such grafted losses.

Proof. If ẽ(x) = Spe, in R there must be a loss grafted on the
(x, xl) (resp. (x, xr)) branch for each node of path(s̃(x), s̃(xl)) (resp.
path(s̃(x), s̃(xr))), excluding s̃(x) and s̃(xl) (resp. s̃(xr)). The number
of such losses is lx − 4 and induce a cost of λ(lx − 4). If ẽ(x) ∈
{Dup,Etrf}, the required losses are the same, except that we do not
exclude x from both paths, and thus lx − 2 losses are required for a cost
of λ(lx − 2).

We now argue that D[x, bx] ≤ c(R). First assume that ẽ(x) ∈
{Spe,Dup}. We then consider the four possible b̃ labelings of xl and
xr .

• If b̃(x) = b̃(xl) = b̃(xr), then no cost other than the losses is required
on the (x, xl) and (x, xr) branches. Thus using claims 1.1 and 1.2,

c(R) ≥
{
λ(lx − 4) + c(Rl) + c(Rr) if ẽ(x) = Spe

δ + λ(lx − 2) + c(Rl) + c(Rr) if ẽ(x) = Dup

=

{
λ(lx − 4) +D[xl, bx] +D[xr, bx] if ẽ(x) = Spe

δ + λ(lx − 2) +D[xl, bx] +D[xr, bx] if ẽ(x) = Dup

Since for both ẽ(x) ∈ {Spe,Dup}, D[x, bx, ẽ(x)] adds the losses,
plus the minimum ofD[x′, bx] and ρ∗bx +D[x′, 1−bx] for each child
x′ ∈ {xl, xr}, we see that D[x, bx] ≤ D[x, bx, ẽ(x)] ≤ c(R).

• If b̃(x) = b̃(xl) and b̃(x) = 1 − b̃(xr), then no additional cost is
required on the (x, xl) branch, but a switch is required on (x, xr).
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The minimum possible cost of such a switch is ρ∗bx , and thus using the
two claims as the previous case (we omit the step replacing c(Rl) by
D[xl, bx] and c(Rr) byD[xr, 1−bx], which is implicit by claim 1.1),
if ẽ(x) = Spe, we have

c(R) ≥ λ(lx − 4) +D[xl, bx] + ρ∗bx +D[xr, 1− bx]

and if ẽ(x) = Dup, we have

c(R) ≥ δ + λ(lx − 2) +D[xl, bx] + ρ∗bx +D[xr, 1− bx]

Again, the above expressions are considered by the minimisation of
D[x, bx, ẽ(x)], and so D[x, bx] ≤ D[x, bx, ẽ(x)] ≤ c(R).

• If b̃(x) = 1− b̃(xl) and b̃(x) = b̃(xr), this case is symmetric to the
previous one.

• If b̃(x) = 1− b̃(xl) and If b̃(x) = 1− b̃(xr), then a switch with host
bx is needed on both branches (x, xl) and (x, xr). Thus, if ẽ(x) =

Spe, we have

c(R) ≥ λ(lx − 4) + ρ∗bx +D[xl, 1− bx] + ρ∗bx +D[xr, 1− bx]

and if ẽ(x) = Dup, we have

c(R) ≥δ + λ(lx − 2) + ρ∗bx +D[xl, 1− bx] + ρ∗bx +D[xr, 1− bx]

Again, these are considered inD[x, bx, ẽ(x)], and we getD[x, bx] ≤
D[x, bx, ẽ(x)] ≤ c(R).

In all cases, D[x, bx] ≤ c(R). It remains to show that this holds for
ẽ(x) = Etrf . In this case, a cost of τbx must be counted for the x node,
plus the cost for lx − 2 losses by claim 1.2. Next, we consider all values
of b̃(xl) and b̃(xr).

• if b̃(xl) 6= b̃(xr), then as we argued

c(R) ≥ τbx + λ(lx − 2) + c(Rl) + c(Rr)

= τbx + λ(lx − 2) +D[xl, b̃(xl)] +D[xr, b̃(xr)]

The latter expression is among the expressions that D[x, bx, Etrf ]

minimizes and thus D[x, bx] ≤ D[x, bx, Etrf ] ≤ c(R).
• if bx = b̃(xr) = b̃(xr), then since x is an Etrf event, one of the

(x, xl) or (x, xr) branches must switch to 1 − bx, then switch back
to bx, implying a transposition from 1 − bx to bx of cost ρ∗1−bx

. In
this situation,

c(R) ≥ τbx + λ(lx − 2) + ρ∗1−bx
+D[xl, bx] +D[xr, bx]

which is considered among the expressions minimized by
D[x, bx, Etrf ]. Again, D[x, bx] ≤ D[x, bx, Etrf ] ≤ c(R).

• if bx = 1 − b̃(xl) = 1 − b̃(xr), then one of the (x, xl) or (x, xr)

branches stays in bx, and thus must switch to 1− bx for a cost of ρ∗bx .
In this situation,

c(R) ≥ τbx + λ(lx − 2) + ρ∗bx +D[xl, bx] +D[xr, bx]

which is considered among the expressions minimized by
D[x, bx, Etrf ]. Again, D[x, bx] ≤ D[x, bx, Etrf ] ≤ c(R).

In every possible case, D[x, bx] ≤ c(R).
We must now prove the complementary bound, i.e. that D[x, bx] ≥

c(R). Let e ∈ {Spe,Dup,Etrf} such that D[x, bx] = D[x, bx, e].
If e = Spe, the expression D[x, bx, Spe] corresponds to making x
a speciation (which is possible since we check that neither of s̃(x) =

s̃(xl) nor s̃(x) = s̃(xr) holds) and adding the minimum number of
mandatory losses on (x, xl) and (x, xr). Let bl ∈ {0, 1} that minimizes
min(D[xl, bx], ρ∗bx +D[xl, 1− bx]), and define br for xr analogously.
Thus consider the reconciliationR′ in whichx is a speciation, on which we
graft the lx−4 mandatory losses on (x, xl) and (x, xr) and then, for each
of bl or br that differs from bx, adds a transposition on the corresponding
branch. Then, for T [xl] subtree, take an optimal reconciliation Rl for
T [xl] and for the T [xr] subtree, take the optimal reconciliation Rr for
T [xr]. By induction, Rl and Rr are of costs D[xl, bl] and D[xr, br]

respectively. Since all optimal reconciliations use the LCA-mapping, such
a reconciliation is valid and its cost is as defined in D[x, bx, Spe]. It
follows thatD[x, bx, Spe] = c(R′) ≥ c(R) (the latter inequality owing
to the optimality ofR).

If e = Dup, the argument is exactly the same, except that to construct
R′, we make x a duplication and add lx − 2 losses instead.

Finally, assume thate = Etrf . It is not hard to see that each expression
thatD[x, bx, Etrf ] may choose when minimizing corresponds to a valid
reconciliation. Indeed, consider the reconciliation R′ where ẽ(x) =

Etrf for a cost of τbx . We add lx − 2 mandatory losses on the (x, xl)

and (x, xr) branches. Then, the first two cases of the minimization in
D[x, bx, Etrf ] correspond to having no additional switch needed, and
hence we can use the optimal reconciliation for T [xl] and T [xr]. The
third case corresponds to having both xl and xr mapped to bx, in which
case we can chosse to apply the transfer on (x, xl), but need need to switch
back for a cost of ρ∗1−bx

. The last case corresponds to having both xl and
xr mapped to 1− bx, in which case the transfer applies one switch, an we
add a transposition for the other switch of cost ρ∗bx .

Since each possible case represents the cost of a valid reconciliation
R′, we get D[x, bx, Etrf ] = c(R′) ≥ c(R). Thus for every possible
value of e, we have D[x, bx] = D[x, bx, e] ≥ c(R).

To conclude, the two complementary bounds show that D[x, bx] =

c(R).


