
Genome Halving and Double Distance with Losses

Olivier Tremblay Savard1⋆, Yves Gagnon2, Denis Bertrand3, and Nadia El-Mabrouk4

1 DIRO, Université de Montréal, H3C 3J7, Canada, olivier.tremblay-savard@umontreal.ca
2 DIRO, y.gagnon@umontreal.ca

3 DIRO, bertrden@iro.umontreal.ca
4 DIRO, mabrouk@iro.umontreal.ca

Abstract. Given a phylogenetic tree involving Whole Genome Duplication events, we contribute to
solving the problem of computing the rearrangement and DCJ distances on a branch of the tree linking
a duplication node d to a speciation node or a leaf s. In the case of a genome G at s containing exactly
two copies of each gene, the genome halving problem is to find a perfectly duplicated genome D at d

minimizing the rearrangement distance with G. We generalize the existing exact linear-time algorithm
for genome halving to the case of a genome G with missing gene copies. In the case of a known ancestral
duplicated genome D, we develop a greedy approach for computing the distance between G and D,
called the double distance. Two algorithms are developed in both cases of a genome G containing
exactly two copies of each gene, or at most two copies of each gene (with missing gene copies). These
algorithms are shown time-efficient and very accurate for both the rearrangement and DCJ distances.

Keywords: Genome Duplication, Genome Halving, Distance, Rearrangement, DCJ, Losses.

1 Introduction

Whole genome duplication (WGD), that has the effect of simultaneously doubling all the
chromosomes of a genome, is probably the most spectacular evolutionary event leading to the
creation of multiple gene copies. Right after the WGD event, a genome Dpredup is transformed
into a perfectly duplicated genome D = (Dpredup ⊕ Dpredup) containing a complete set of
duplicated chromosomes. However, subsequent evolutionary events such as rearrangements,
losses and local duplications blur this initial perfect duplicate status. Usually, a hypothesis
that a given species has been subject to a WGD event during its evolution is based on the fact
that syntenies found in pairs (exactly two paralogous regions) cover a high proportion of the
genome. Such evidence has shown up across the whole eukaryote spectrum, from the protist
Giardia to the yeast species (Gordon et al., 2009), including most plant lineages, several
insects, fishes, amphibians, and even mammalian species (P. Dehal, 2005). In plant lineages,
the angiosperm genomes that have been completely sequenced to date all show evidence
of WGD events: three ancient polyploidy events have been revealed by the Arabidopsis
thaliana genome (Blanc et al., 2003; Bowers et al., 2003), one by the rice genome that might
characterize all monocots (in the grass family, maize reveals an additional WGD) (Salse
et al., 2008), and others by the poplar, grape and papaya genomes (Soltis et al., 2009).

Being able to reconstruct the ancestral pre-duplicated genome is essential from both
genome and organismal evolutionary standpoints. In particular, it allows to trace back the
last evolutionary events that have occurred en route from this ancestor to the present-day
genomes, understand the specificity of a given lineage by looking at the differences that
separate it from its closest evolutionary neighbour, study the variation in rearrangement

⋆ The two first authors contributed equally to this work

and loss rates among the different branches of a phylogenetic tree, and the consequences of
such variations on the species. In most cases, analyzing the duplication status of syntenies
in extant species allows to position the WGD events on the corresponding phylogenetic
tree with confidence, leading to a tree with additional WGD nodes that, in contrast to the
speciation nodes, each has a single child. In addition, simple assumptions can be used to infer
the content of ancestral genomes from that of extant species. However, inferring ancestral
gene orders is far from being a simple task.

In the case of genomes with single gene copies, many algorithms have been developed to
solve the rearrangement phylogeny problem, which consists in inferring gene orders at the
internal nodes of a tree so that the sum of distances among all branches is minimized. The
most natural distance between two gene orders is the minimum number of rearrangement
events required to transform one gene order into the other. The rearrangements that have
been most studied by the genome rearrangement community are inversions and reciprocal
translocations (including fusion and fission). More recently, another distance that has been
extensively studied is the Double Cut-and-Join (DCJ) distance which represents a greater
repertoire of rearrangement events while giving rise to simpler formal results (Bergeron et al.,
2006, 2009; Yancopoulos et al., 2005).

A prerequisite for applying any of the algorithms developed for solving the rearrangement
phylogeny problem to a phylogeny with WGD nodes is to be able to compute the distance on
a branch of the phylogeny. However, this is far from being straightforward, as the orthology
relationship between duplicated genes is not set. In particular, computing the distance be-
tween a rearranged duplicated genome G (a genome with exactly two copies of each gene but
in any order) and a perfectly duplicated genome D, called the double distance in (Gavranović
and Tannier, 2010; Tannier et al., 2009), has been shown to be NP-hard for the DCJ dis-
tance (Tannier et al., 2009). When the ancestral genome D is unknown, the genome halving
problem seeks for a perfectly duplicated genome D minimizing the rearrangement distance
between G and D. In 2003, we have presented the first formal result related to genome
duplication, which is an exact linear-time algorithm for solving the genome halving prob-
lem (El-Mabrouk and Sankoff, 2003). Our results have been reformulated by Alekseyev and
Pevzner (Alekseyev and Pevzner, 2007a) using an alternative representation of the break-
point graph. Subsequently, Sankoff and colleagues (Zheng et al., 2008b,a), and more recently
Gavranović and Tannier (Gavranović and Tannier, 2010), used variations of the genome
halving strategy (Guided Genome Halving or GGH) to find the preduplicated ancestor of a
doubled genome in the presence of a non-duplicated outgroup (Zheng et al., 2008a,b).

In this paper, we contribute to solving a number of problems related to the computation
of the rearrangement and DCJ distances on a branch of a phylogenetic tree connecting a
first WGD node to a speciation node or a leaf, in both cases of a known and unknown pre-
duplicated genome (label of the WGD node). In the case of an unknown ancestral genome,
our result is a generalization of the genome halving algorithm to a genome G with missing
gene copies. In the case of a known ancestral genome D, we develop two greedy algorithms
for both cases of a genome G containing exactly two copies of each gene, or at most two
copies of each gene (with missing gene copies). These algorithms are shown time-efficient
and very accurate for both the rearrangement and DCJ distances.

2 Preliminaries

Let Σ be a set of n genes. A string is a sequence of genes from Σ, where each gene is signed (+
or −) depending on its transcriptional orientation. The reverse of a string X = x1x2 . . . xr is
the string −X = −xr −xr−1 . . .−x1. A chromosome is a string, and a genome is a collection of
chromosomes. A unichromosomal genome has a single chromosome, and a multichromosomal
genome has at least two nonnull chromosomes C1, C2, . . . CN . A circular chromosome is a
string x1 . . . xr, where x1 is considered to follow xr. A chromosome that is not circular is
linear . To represent its endpoints, we add an “artificial gene”, denoted O, at each extremity.
In other words, a linear chromosome is a string of the form Ox1 . . . xrO.

In this paper, we consider both uni- and multichromosomal genomes. As most unichromo-
somal genomes are formed by a circular chromosome, and most multichromosomal genomes
are formed by linear chromosomes, only circular unichromosomal genomes, and linear mul-
tichromosomal genomes are considered here.

2.1 Evolutionary events and genomic distances

All the following evolutionary events apply to both uni- and multichromosomal genomes,
except translocations that are only relevant for multichromosomal genomes.

– A reversal (or inversion) is an operation that replaces some proper substring of a chro-
mosome by its reverse.

– A translocation between two chromosomes X = X1X2 and Y = Y1Y2 is an event trans-
forming them into the two chromosomes X1Y2 and Y1X2, or into X1(−Y1) and (−Y2)X2.
Two special cases of reciprocal translocations are fusions (if one of the two chromosomes
generated by the translocation is an empty string) and fissions (if one of the two input
chromosomes is the empty string).

– A Whole Genome Duplication (WGD) is an event resulting in the duplication of
the genomic content. More precisely, in the case of a multichromosomal genome
G = {C1, C2, . . . CN}, a WGD transforms G into a multichromosomal genome D =
{C1, C

′

1, C2, C
′

2, . . . CN , C ′

N} containing 2N chromosomes where, for each 1 ≤ i ≤ N ,
Ci = C ′

i. In the case of a circular genome G represented by the string x1x2 . . . xr, a WGD
transforms G into the circular genome D represented by the string x1x2 . . . xr x′

1x
′

2 . . . x′

r,
where, for each 1 ≤ j ≤ r, xj = x′

j .
– Finally, a loss is an operation removing a proper substring from a chromosome.

A rearrangement event will refer to an inversion or a translocation event. The rearrange-
ment distance between two genomes G and H (with the same gene content or not), denoted
dR(G, H), is the minimum number of rearrangement events in a scenario transforming G into
H . In the case of genomes with single gene copies, computing the inversion and/or translo-
cation distance has been shown to be a polynomial-time problem, and the best developed
method runs in linear time (Bader et al., 2001; Bergeron et al., 2004).

Another distance that has been extensively studied in the last years is the DCJ dis-
tance (Bergeron et al., 2006, 2009; Yancopoulos et al., 2005). A Double-Cut-and-Join (DCJ)
is an operation that “cuts” two adjacencies pq and rs in a genome, and replaces them by

either pr and qs, or ps and qr. The repertoire of DCJ operations include inversions, recipro-
cal translocations, fusions and fissions, but also other “artificial” rearrangement operations
such as the creation of “intermediate” circular chromosomes. Using such a circular inter-
mediate, a transposition can actually be mimicked by two DCJ operations. Computing the
DCJ distance between two signed permutations is a linear-time problem.

2.2 Genome definitions

In what follows, we consider G to be a genome defined on a set Σ of genes, i.e. g is in G iff
g ∈ Σ.

– G is an extension of a genome H , iff the gene content of H is a subset of the gene content
of G, and there is a sequence of gene insertions transforming H into G.

– G is a singleton genome iff each gene is present exactly once in G.

– G is a Rearranged Duplicated genome (RD genome) iff each gene is present exactly twice
in G.

– G is a perfectly duplicated genome (or duplicated genome for short) iff:

• The multichromosomal case: G is an RD genome containing an even number 2N of
chromosomes, with two identical copies of each chromosome. If D is the set of the N

different chromosomes, then we write G = (D ⊕ D).

• The circular case: G is an RD genome and there is a string D such that G is exactly
D followed by D. We also write G = (D ⊕ D).

– G is a Rearranged Duplicated genome with Losses (RDL genome) iff each gene is present
at least once and at most twice in G.

– G is a Duplicated genome with Losses (DL genome) iff each gene is present in one or two
copies in G, and if a duplicated genome D can be obtained from G by an appropriate
insertion of an additional copy of each singleton (gene present in one copy in G). In other
words, there is an extension of G that is a duplicated genome.

Let G be an RD genome and H be an RDL genome. We define the evolutionary cost
E(G, H) as the minimum number of inversions, translocations and losses required to trans-
form G into H .

2.3 The breakpoint graph

In a series of papers (Hannenhalli, 1995; Hannenhalli and Pevzner, 1999, 1995), Hannen-
halli and Pevzner (hereafter HP) developed polynomial-time algorithms for computing the
rearrangement distance (inversion only, translocation only, or inversion+translocation) be-
tween two singleton genomes G and H on Σ. The algorithms all depend on a bicolored
graph B(G, H), called the breakpoint graph, constructed from G and H as follows (Tesler’s
formalism (Tesler, 2002)).

Graph B(G, H): If a gene x of Σ has a positive sign, replace it by the pair xtxh, and if it is
negative, replace it by xhxt. Then the set V of vertices of B(G, H) is the set of xt and xh for
all x in Σ. Any two vertices of V that are adjacent in some chromosome of G, other than
xt and xh deriving from the same x, are connected by a black edge, and any two that are
adjacent in H are connected by a gray edge. Notice that adjacencies to O are not represented.

In the case of circular chromosomes, each vertex in V is incident to exactly one black
and one gray edge, and thus the graph uniquely decomposes into c(G, H) disjoint cycles of
alternating edge colors (alternating cycles for short).

In the case of G and H being multichromosomal genomes, let an endpoint vertex of G

(resp. of H) be a vertex of V adjacent to O in G (resp. in H). Consider the degree of a vertex
as being the number of edges incident to this vertex. Then any vertex has degree zero if it
is an endpoint in both G and H , one if it is an endpoint in exactly one of the two genomes,
and two otherwise. Thus, the graph decomposes into c(G, H) cycles and p(G, H) paths of
alternating edge color. Notice that a path may contain only one vertex and no edges. We
denote by pGG (resp. pHH) the number of paths linking two endpoints of G (resp. of H). If G

and H have the same number of chromosomes, then pGG = pHH . Otherwise, suppose w.l.o.g.
that G has more chromosomes than H , then pHH ≤ pGG.

The rearrangement distance: Although somehow different algorithms are required for sorting
by translocation only, inversion only or inversion+translocation, all results in (Hannenhalli,
1995; Hannenhalli and Pevzner, 1999, 1995), revisited by Tesler (Tesler, 2002) for multichro-
mosomal genomes, can be summarized by a unique formula given bellow:

HP: dR(G, H) = n + N − C(G, H) + h(G, H)

where n is the number of genes, N is the number of chromosomes of G, and C(G, H) =
c(G, H) + p(G, H) − pGG. In the case of circular genomes, N = p(G, H) = pGG = 0. As for
h(G, H), it is a correction parameter that has a different value depending on the considered
model. In all cases, h(G, H) is related to the decomposition of B(G, H) into components,
where a component is a maximal set of crossing cycles and paths. A component is termed
good if it can be transformed into a set of cycles of size 1 by increasing the number of cycles at
each step, and bad otherwise. The parameter h(G, H) reflects the number of bad components
of the graph. As the probability for a component to be bad is low, the value of h(G, H) is
usually low compared to the dominating parameter C(G, H).

The DCJ distance: Based on the breakpoint graph, the DCJ distance between G and H can
be expressed as follows (Bergeron et al., 2006; Tannier et al., 2009):

DCJ: dDCJ(G, H) = n −

(

c(G, H) +
peven

2

)

where peven is the number of paths with an even number (≥ 0) of edges.

3 Genome Halving with Losses

Given an RD genome G, the genome halving problem is to find a duplicated genome D

minimizing the rearrangement distance with G. In other words, let dR(G) be the minimum

rearrangement distance between G and any duplicated genome D. Then the problem is to
find a duplicated genome D such that dR(G) = dR(G, D).

In (El-Mabrouk and Sankoff, 2003) we have developed a linear-time algorithm, called
Algorithm Dedouble, for the reversals-only version of the problem (in the case of unichromo-
somal genomes), the translocations-only version, and the version with both reversals and
translocations. The approach was to start from a partial breakpoint graph B(G), i.e. the
breakpoint graph with the set of edges restricted to the black edges representing G (see
Figure 2.(b) for an example), and to complete this graph with a set of “valid” gray edges,
i.e. gray edges representing a duplicated genome D (thin edges in Figure 2.(c)), in a way
maximizing the number of cycles and paths (parameters c(G, D) and p(G, D) in the HP for-
mula). The second step was then to perform modifications on the obtained graph in order to
remove bad components that can be avoided, and obtain a duplicated genome D minimizing
the rearrangement distance with G (i.e. minimizing the HP formula).

M1:

M2:

M3:

G

G

G

G′

A D = (Dpredup ⊕ Dpredup)

D = (Dpredup ⊕ Dpredup)

D = (Dpredup ⊕ Dpredup)

Dpredup

Dpredup

Dpredup

WGD

WGD

WGD

Loss

Loss

Inv, Trans

Inv, Trans

Inv, Trans, Loss

RDL genome

RDL genome

RDL genome

DL genome

RD genome

Duplicated genome

Duplicated genome

Duplicated genome

Singleton genome

Singleton genome

Singleton genome

Fig. 1. Evolutionary models M1, M2 and M3, considered for a present-day rearranged duplicated genome with losses
G. Direction of evolution is represented by arrows orientation.

Here, we seek to generalize Algorithm Dedouble to a present-day genome G containing
both duplicated genes and singletons, i.e. to an RDL genome. Let G be a present-day RDL
genome. We assume that G has evolved from an ancestral singleton genome through a WGD,
and a sequence of inversions, translocations and loss events. We are then interested in finding
such a pre-duplicated singleton genome Dpredup minimizing the number of rearrangements
needed to obtain G (see model M1 in Figure 1). Note that we do not attempt to minimize
the number of losses.

The following theorem allows to reduce the evolutionary model to a simpler one (model
M2 in Figure 1), where all losses occur first, followed by all rearrangement events.

Theorem 1. Let G be an RDL genome and D be a duplicated genome. Then there exists
a DL genome A with the same gene content as G, such that dR(G, A) = dR(G, D).

Proof: By induction on n = E(G, D)
1. The property is trivially verified for n = 0 and n = 1.
2. Suppose the induction hypothesis is verified for a given n ≥ 1. Now suppose that E(G, D) =
n+1, and let E = E1, E2, . . . En, En+1 be a sequence of n+1 events transforming a duplicated
genome D into an RDL genome G. Let G′ be the genome obtained after performing the

sequence of n events E ′ = E1, E2, . . . En on D. Then n = E(G′, D) as otherwise (if n is not
the minimum number of events transforming D into G′) n + 1 would not be the minimum
number of events transforming D into G. Moreover, by the induction hypothesis, there exists
a DL genome A′ for which dR(G′, A′) = dR(G′, D).

If En+1 is a rearrangement event, the DL genome A with the same gene content as G

is equal to A′. Then, we have dR(G, A) = dR(G, A′) = dR(G′, A′) + 1 and dR(G, D) =
dR(G′, D) + 1. Therefore, dR(G, A) = dR(G, D).

Otherwise, En+1 is a loss event. Let A be the DL genome obtained from A′ by removing
the genes that are removed by the loss operation En+1. Then, it is easy to see that a minimum
sequence of k rearrangement events transforming A′ into G′ can be converted into a sequence
of k rearrangement events transforming A into G (just by removing the lost genes from the
inverted or translocated segments). Therefore dR(G, A) ≤ dR(G′, A′). Similarly, a minimum
sequence of k rearrangement events transforming A into G can be converted into a sequence
of k rearrangement events transforming A′ into G′. Therefore, dR(G, A) = dR(G′, A′) =
dR(G, D) 2

Corollary 1. Let G be an RDL genome, and A be a DL genome with the same gene content
as G, minimizing the cost dR(G, A). If D is the duplicated genome that is an extension of
A, then dR(G) = dR(G, D).

Proof: Let A be a DL genome with the same gene content as G minimizing the cost dR(G, A),
and D be the duplicated genome that is an extension of A. Then we have dR(G, D) =
dR(G, A). Suppose dR(G) 6= dR(G, A), i.e. dR(G, A) > dR(G). Let D′ be a duplicated genome
such that dR(G, D′) = dR(G). Then, from Theorem 1, there is a DL genome A′ such that
dR(G, A′) = dR(G, D′) = dR(G). And thus dR(G, A′) < dR(G, A), which is a contradiction
with the fact that A minimizes the rearrangement cost 2

Therefore, finding a duplicated genome D such that dR(G) = dR(G, D) can be reduced
to the problem of finding a DL genome A with the gene content of G such that dR(G, A) is
minimal over all DL genomes with the gene content of G. In other words, loss events can be
ignored.

To find such a DL genome A, we use a generalization of Algorithm Dedouble, called
Algorithm Dedouble-RDL(G), that proceeds as follows:

1. Consider the RD genome G′ obtained from G by “gluing” singletons to an adjacent gene.
More precisely, consider a given orientation for chromosomes. Then, for each maximum
sequence S of singletons in G: (1) if S is a chromosome, then just remove this chromosome;
(2) otherwise, if S is connected to a left extremity of a chromosome, then replace its
successor x (the gene representing the right adjacency of S in G) by the artificial gene
x′ = Sx; (3) otherwise, if S is not connected to a left extremity of a chromosome, then
replace its predecessor x (possibly already updated in step (2)) by a new artificial gene
x′ representing the sequence xS.

2. Use Algorithm Dedouble to infer a duplicated genome A′ from G′.
3. Recover a DL genome A from A′ by replacing each of its artificial gene by its corresponding

sequence of singletons, and by adding all removed chromosomes of G (formed exclusively
of singletons).

The following theorem immediately follows from the fact that Algorithm Dedouble outputs
a doubled genome A′ minimizing the distance to G′, and that singletons are preserved in the
same order in G and A.

Theorem 2. Let G be an RDL genome and A be the DL genome resulting from Algorithm
Dedouble-RDL(G). Then dR(G, A) = dR(G).

4 An algorithm for the Double Distance

Let G be an RD genome and D = (Dpredup ⊕Dpredup) be a duplicated genome. The problem
of computing the DCJ distance between G and D has already been shown to be an NP-hard
problem (Tannier et al., 2009), contrary to the polynomial-time complexity of computing
the distance between two singleton genomes. This difference in complexity is the result of
the missing one-to-one orthology relationship between the gene copies. In other words, given
a labelling of the genes in G, the problem is to find a labelling of the genes in D leading to
a minimum distance between G and D.

Consider a given beginning gene, in the case of a circular genome, or a given order and
left-to-right orientation of chromosomes in the case of a multichromosomal genome G. Then,
for each gene x (present in two copies in G and also in D), label the first occurrence of
x in G as x1 and the second as x2. Let B(G) be the partial breakpoint graph for G. To
complete this partial graph, each double adjacency (xr, ys) in D (where r, s ∈ {t, h}) should
be represented in a completed graph B(G, DL), where DL is a labelling of genome D, by
either one of the following pairs of gray edges: {(xr

1, y
s
1), (x

r
2, y

s
2)}, or {(xr

1, y
s
2), (x

r
2, y

s
1)}. Each

of these two cases leads to a different labelling of the gene copies in D. The problem is then
to choose the pairs of gray edges allowing to minimize the HP formula in the case of the
rearrangement distance, or the DCJ formula in the case of minimizing the DCJ distance.

Here, we focus on maximizing the dominating value C(G, D) in the HP formula. In the
case of genome halving, this simplification has been called the Weak Genome Halving Prob-
lem (Alekseyev and Pevzner, 2007a). We similarly define our simplified problem as follows:

Weak Double Distance Problem. For a given labelled RD genome G and an unlabelled
duplicated genome D, find a labelling DL of D such that the number of alternating cycles
C(G, D) of the breakpoint graph B(G, DL) is maximized over all possible labellings of D.

Notice that, in the case of a circular genome, a labelling of D maximizing the parameter
C(G, D) also maximizes the DCJ formula, as C(G, D) = c(G, D) in this case. In the multi-
chromosomal case, a labelling of D maximizing C(G, D) is likely to also maximize the DCJ
formula, though there is no guarantee for that.

Clearly, the “best” exhaustive approach trying all possible labellings for D has a worst
running-time complexity in O(n.2n) for n = |Σ|. Indeed, D has 2n possible labellings, and
for each labelling, the most efficient approach for computing the rearrangement distance
between G and D is linear.

4.1 Circular genomes

Let G be a circular RD genome and D be a circular duplicated genome. We consider the
contracted breakpoint graph representation CB(D, G) defined as follows: the set of vertices of

CB(D, G) is V = {xr, for allx ∈ Σ andr ∈ {t, h}}. Any two vertices which are adjacent in D

(except the extremities of a same gene) are connected by two parallel gray edges, and any
two adjacent in G (except the extremities of a same gene) are connected by a black edge (see
Figure 2.(a)). Such representation has previously been used in the context of genome halving
for circular (Alekseyev and Pevzner, 2007b) and multichromosomal genomes (Gavranović
and Tannier, 2010), with the difference that each gray edge was represented exactly once.
It follows that each vertex of CB(D, G) is adjacent to exactly two gray edges and two black
edges.

u
ht

u
h

v 1v
v

h
1

t
1
t

1

u
u

1
h

u h

u
u u

v
vv

t
1

t
2 2

2 2

2
h

2

2

v
v

1v
v

h
1

t

v
v

uv

(a) (b)

t
1
t

1

u
u

1
h

u h

u
u u

v
vv

t
1

t
2 2

2 2

2
h

2

2

v
v

(c)

CB(D, G): B(G):

B(G, DL):

Fig. 2. (a) The contracted breakpoint graph CB(D, G) for the circular RD genome G = (u − v u v) and the circular
duplicated genome D = (uv)⊕(uv). Gray edges (thin lines) represent genome D and black edges (thick lines) represent
genome G. (b) The partial breakpoint graph B(G). (c) The completed breakpoint graph B(G, DL) corresponding to
the labelling G = (u1 − v1 u2 v2) and DL = (u1 v1) ⊕ (u2 v2). This labelling DL, leading to 3 cycles, is optimal. The
resulting rearrangement distance is 1.

Now consider the partial breakpoint graph B(G) of the labelled RD genome G (see
Figure 2.(b)). Let C be an alternating edge-colour cycle in CB(D, G) with the set of vertices
V , the set of black edges b = {b1, · · · bm}, and the set of gray edges g = {g1, · · · gm}. Then
we can construct a corresponding cycle in B(G). More precisely, let bB = {bB1 , · · · bBm} be
a set of black edges in B(G) corresponding to {b1, · · · bm} (i.e., for each i, the two vertices
adjacent to bBi are two labelled copies of the vertices adjacent to bi), and let V B

b be the set
of all the vertices adjacent to bBi , for all i. Then there is a set of gray edges gB = {gB

1 , · · · gB

m}
corresponding to {g1, · · · gm} and linking vertices of V B

b , allowing to form a single alternating
cycle in B(G).

This observation leads to a greedy approach for labelling the genome D, or equivalently
completing the partial graph B(G). Formally, a completed graph B(G, DL) is a graph obtained
from B(G) by adding gray edges such that each vertex of B(G, DL) is adjacent to exactly 2
edges (one black and one gray) (Figure 2.(c)).

The general idea of Algorithm Double-Distance(G,D) given in Figure 3 is: at each step, pick
an alternating cycle of minimum size from CB(D, G), construct the corresponding cycle in
B(G), and then remove from CB(D, G) all used edges. The algorithm stops when the partial
graph is completed.

Lemma 1. Algorithm Double-Distance(G,D) terminates and results in a completed graph
B(G, DL).

Algorithm Double-Distance(G,D)
Input: CB(D, G) and the partial graph B(G);
Output: The graph B(G) completed with gray edges (i.e. B(G, DL));
1. For CSize = 1 to n Do ;
2. For CV ertex = bl

1 to bl

n Do

3. If CB(D, G) is empty (i.e. no edges left)
4. Return ;
5. If there is an alternating cycle C of size CSize beginning at CV ertex Then

Construct a corresponding cycle in B(G):
6. Let b be the set of black edges and g the set of gray edges of C;
7. Consider a set of black edges bB corresponding to b in B(G) and not considered in a previous step;
8. Let V B

b be the set of vertices of bB;
9. Construct a set of gray edges gB corresponding to g and linking vertices of V B

b in B(G);
10. Remove from CB(D, G) all edges of C;
11. End If

12. End For

13. End For

Fig. 3. A greedy approach for completing the partial graph B(G) with gray edges representing the genome D. Here,
n = |Σ| is the number of different genes, and b1, b2, . . . bn is a left-to-right ordering of the black edges of CB(D, G). For
each i, bl

i is the vertex representing the left adjacency of bi. The size of a cycle is the number of black (or equivalently
gray) edges of the cycle.

Proof. We will show that, at each step, if the graph CB(D, G) is non-empty (it still contains
edges), then it contains an alternating cycle. Notice first that if the graph CB(D, G) is a
non-empty balanced graph (i.e. every vertex has the same number of incident gray and black
edges), then it contains at least one alternating cyle. This is a consequence of the fact that a
balanced graph contains an alternating eulerian cycle in every connected component (Kotzig,
1968; Pevzner, 1995).

Suppose that at a given step of the algorithm, CB(D, G) is a non-empty unbalanced
graph. Clearly such a graph can not be the input of the algorithm, as at the beginning, each
vertex has two adjacent edges of each color. On the other hand, it can not be the graph
obtained after an iteration of the algorithm, as when edges adjacent to a vertex are removed,
they are removed by bicolored pairs (i.e. one gray and one black edge). Therefore, if the
graph CB(D, G) is non-empty, it is balanced and thus it contains at least one alternating
cycle. Moreover, as only a finite number of alternating cycles can emerge from this graph,
the algorithm is guaranteed to terminate (because at each step, at least one alternating cycle
is removed).

Finally, since all gray edges of CB(D, G) are inserted in B(G), and each vertex of B(G)
is considered only once as an adjacency of a new inserted gray edge (line 7), clearly when no
edges remain in CB(D, G), the obtained graph B(G) is a completed graph 2

Let DL = u1,α1
. . . ur,αr

u1,α1
. . . ur,αr

be a labelling for D = u1 . . . uru1 . . . ur, where,
for each 1 ≤ i ≤ r, αi ∈ {1, 2}, and αi denotes the complementary element of αi in
{1, 2}. A bi-circular representation of DL is the pair of circular chromosomes {u1,α1

. . . ur,αr
,

u1,α1
. . . ur,αr

}.

Lemma 2. The gray edges of the completed graph resulting from the execution of Algorithm
Double-Distance(G,D) represent either a labelling of D, or a bi-circular representation of a
labelling of D.

Proof. At each execution of the internal For Loop (line 2), the algorithm selects an alternating
cycle C in CB(D, G), and constructs a corresponding cycle in B(G). In other words, for each
gray edge g in C linking two vertices xr, ys, for r and s ∈ {t, h}, we construct, in B(G), a
corresponding edge gB linking two labelled copies xr

α and ys
β of x and y respectively, for α and

β ∈ {1, 2}. Assume w.l.o.g. that xr
α = xh

1 and that ys
β = yt

1. Creating this gray edge in B(G)
is equivalent to labelling the genome D so that the two following adjacencies are created:
(xh

1 , y
t
1) and (xh

2 , y
t
2) (the other possibility being (xh

1 , y
t
2) and (xh

2 , y
t
1)). In order to end up with

a labelling of D, at each step the created adjacencies should not be in conflict with the ones
already created. Suppose this is not the case. In other words, the newly created adjacencies
(xh

1 , y
t
1) and (xh

2 , y
t
2) lead to a conflict. This can happen in one of the two following situations:

– We have already created, in a previous step of the algorithm, an adjacency (zu, yt), with
zu 6= xh and u ∈ {t, h}. This is impossible as (zu, yt) would have been an adjacency of
D. But since D is a duplicated genome, it can not involve two different adjacencies for a
given gene extremity yt.

– We have already formed, following the previous steps of the algorithm, a segment of
adjacencies resulting in y1 being on the left-side of x1, i.e. a segment of form +y1 · · ·+x1.
This means that we also have created the homologous segment +y2 · · ·+x2. Then having
to add the gray edge (xh

1 , y
t
1) means that D is a duplicated circular genome of form

+y · · · + x + y · · · + x. Therefore, adding the last two remaining gray edges (xh
1 , y

t
1) and

(xh
2 , y

t
2) results in a bi-circular representation of the labelling +y1 · · · + x1 + y2 · · · + x2

of D 2

Following the proof of Lemma 2, it is immediate to see that, if the set of strings represented
by the gray edges of the output completed graph of Algorithm Double-Distance(G,D) is not a
labelling of D, then changing the last chosen set of gray edges results in a correct labelling
of D. More precisely, instead of adding the last two gray edges (xh

1 , y
t
1) and (xh

2 , y
t
2) the right

choice would have been to add the two gray edges (xh
1 , y

t
2) and (xh

2 , y
t
1).

Complexity: As each vertex is adjacent to two black edges, finding an alternating cycle of size
k beginning at a given vertex of CB(D, G) (line 5) can be done in O(2k) time. Therefore, the
algorithm has a worst running-time complexity bounded by Σn

k=1
n.2k, which is not better

than the exhaustive approach in O(n.2n). However, as demonstrated in the experimental
part of this paper, it is actually a much faster approach in practice. This is due to the edge
removal step (line 7), which allows to reduce the graph quickly, and to stop the process after
a small number of iterations.

4.2 Multichromosomal genomes

In the case of G and D being multichromosomal genomes, we define the contracted breakpoint
graph CB(D, G) as before, except that it contains an additional vertex O such that any
endpoint vertex in D is connected to O by two gray edges, and any endpoint vertex in G

is connected to O by a black edge. It follows that, except O that is adjacent to 2NG black
edges and 2ND gray edges, NG being the number of chromosomes of G, and ND the number
of chromosomes of D, each other vertex is adjacent to exactly two gray edges and two black
edges.

Algorithm Double-Distance(G,D) can be used in the case of multichromosomal genomes if
we replace line 3 with “ If CB(D, G) is acyclic”. At the end of the algorithm, CB(D, G) is
acyclic and the only remaining paths connect two vertices that are both endpoints of G, or
both endpoints of D (as a path connecting two endpoints of two different genomes would
have been closed by Algorithm Double-Distance(G,D) to form a cycle). Then, to complete the
graph B(G), it suffices to add the remaining paths of CB(D, G).

Due to the 2(NG + ND) edges incident to O, the worst-time complexity is the one for
circular genomes multiplied by NG.ND, i.e. O(n.NG.ND.2n). Hopefully in practice, n is not
a tight upper bound as exploration eventually stops for much smaller cycle sizes.

5 Double Distance with Losses

Similarly to genome halving, we aim to generalize the double distance to genomes with
possibly missing gene copies. More precisely, given an RDL genome G and a duplicated
genome D = (Dpredup ⊕Dpredup) on the same set of genes, how can we compute the distance
between G and D? Notice first that a simple generalization of the strategy used for Algorithm
Dedouble-RDL which would consist in (1) “gluing” the singletons of G to an adjacent gene
and removing the corresponding copies from D, and (2) applying Algorithm Double-Distance
to the obtained genomes G′ and D′, does not solve the problem. Indeed, the distance obtained
after applying Algorithm Double-Distance(G’,D’) would only be a lower bound of the distance
between genomes G and D. For example, suppose that an optimal sequence of rearrangements
are performed on G′ to transform it into D′, and that the singletons are then unglued to form
the DL genome A. The problem is that the perfectly duplicated genome D is not necessarily
an extension of A.

As reducing the evolutionary model M1 to M2 does not help in this case, we instead
reduce it to the symmetrical model M3 (Figure 1.(c)), where all rearrangements occur first,
followed by all losses. The next theorem justifies this reduction.

Theorem 3. Let G be an RDL genome and D be a duplicated genome. Then there is an
RD genome G′ that is an extension of G, such that dR(G′, D) = dR(G, D).

Proof. Proof by induction, very similar to the one of Theorem 1 2

The problem thus reduces to the one of finding an RD genome G′ that is an extension
of G, minimizing the weak double distance to D. Such a genome G′ is called an optimal
extension of G.

In the following section we focus on circular genomes. We subsequently explain, in
section 5.2, the modifications that should be introduced in the case of multichromosomal
genomes.

5.1 Circular genomes

The following lemma allows to limit the possible insertion positions of a missing gene in G.

Lemma 3. Let x be a singleton in G, labelled x1. Then, there is an optimal extension G′ of
G such that the inserted copy x2 of x has a preserved (left or right) adjacency with D.

Proof. Let G′ be an optimal extension of G. More precisely, G′ is an RD genome that is
an extension of G and dR(G′, D) is minimal over all RD genomes that are extensions of G.
Let R = {r1, · · · rp} be an optimal sequence of inversions transforming G′ into D. If G′ is a
labelled genome, then applying R to G′ results in a labelled genome D. Let L2 and R2 be
respectively the left and right adjacencies of x2 in D. If x2 is left-adjacent to one copy of
L or right-adjacent to one copy of R in G′, then the lemma is verified. Otherwise, consider
the genome G′′

glue obtained from G′ by removing the copy x2, and gluing it to either L2 or
R2. W.l.o.g., let’s say that x2 is glued to L2, i.e. L2 is replaced by L′′

2 = L2 x2. Then, for
each ri ∈ R acting on the segment Xi, consider the inversion r′i acting on the segment X ′

i

obtained from Xi by replacing L2 by L′′
2, and removing x2 from Xi, if applicable. Then,

applying the sequence of inversions R′ = {r′1, · · · r
′

p} to G′′

glue and then ungluing L′′

2 gives rise
to the genome D. Therefore, the genome G′′ obtained by ungluing L′′

2 in G′′

glue is an optimal
extension genome of G verifying the property that x2 has a preserved adjacency with D 2

In other words, x2 can be inserted in G adjacent to one of the two copies of its left or
right neighbour in D. The problem is to find the appropriate neighbour and copy number,
as this would influence the number of operations required to place x1 adjacent to the other
copies of its neighbours. The idea of the algorithm will therefore be to create the adjacencies
for x1 before those for x2.

We consider a tricolored graph CB(D, G) obtained by adding to the contracted breakpoint
graph representation, introduced in the previous section, a new set of “dotted edges” defined
as follows: for each vertex ys representing an extremity of a singleton y of G (for s ∈ {t, h}) ,
construct a dotted edge linking ys to its adjacent vertex in D (see Figure 5.(a) left). Algorithm
Double-Distance-with-Loss(G,D), presented in Figure 4, takes as input the tricolored graph
CB(D, G) and the partial breakpoint graph B(G), and completes B(G) with appropriate gray
edges, but also additional black edges, corresponding to the missing singleton copies that
have to be inserted in G to produce an extension G′.

In the following developments, as well as in Figure 4, alternating cycles only refer to
cycles of black and gray alternating edge colors (i.e. dotted edges are not considered in the
cycles). The algorithm proceeds as follows (see Figure 5 for an example):

1. The For Loop 2 - 9: Proceed as in Algorithm Double-Distance(G,D)), i.e. pick an alternating
cycle of minimum size from CB(D, G), construct the corresponding cycle in B(G), and
then remove from CB(D, G) all used edges. This step is performed as long as CB(D, G)
contains an alternating cycle.
It is easy to see that when we enter the For Loop with a graph CB(D, G) containing at
least one cycle, and we leave this Loop with CB(D, G) being non-empty, then there is at
least one single gray edge with a parallel dotted edge, which allows to enter the following
For Loop.

2. The For Loop 13 - 31: For each singleton extremity ys that has been considered in the
previous step (i.e. the adjacency of ys

1 has been created in B(G)), add the second copy of
this singleton extremity (i.e. ys

2) at the right place in B(G), and form the corresponding
alternating cycle of size 1. Lines 14 - 17 allow to concatenate adjacent singletons into a
single block, and lines 18 - 30 give all the details about the appropriate modifications
(insertions and removals) of edges in B(G) and CB(D, G) resulting from the insertion of
a singleton at the appropriate position in G.

Algorithm Double-Distance-with-Loss(G,D)
Input: CB(D, G) and the partial graph B(G);
Output: The partial graph B(G) completed (i.e. B(G, DL)), and an RD genome G′ that is an extension of G;

1. While CB(D, G) is not empty (i.e. has edges left) Do

2. For CSize = 1 to n Do ;

3. For CV ertex = bl

1 to bl

n Do

4. If there is a cycle C of size CSize beginning at CV ertex Then

5. Construct a corresponding cycle in B(G) (instructions 6 to 9 of Algo. Double-Distance);
6. Remove from CB(D, G) all edges of C;
7. End If

8. End For

9. End For

10. If CB(D, G) does not contain any single gray edge Then

11. Choose an arbitrary gray edge (xr, ys) with a parallel dotted edge
12. End If

13. For each single gray edge (xr, ys) that has a parallel dotted edge or the chosen edge of Line 11 Do

14. If x and y are both singletons Then

15. Create the block B representing the adjacency (xr, ys)
16. Remove from CB(D, G) the two vertices xr, ys, and their adjacent edges;
17. Replace in both CB(D, G) and B(G) the vertex xr by Br and the vertex ys by Bs;
18. Otherwise {Among x, y, only one is a singleton}
19. Let y be the singleton vertex;
20. Let (xr, zu) be the remaining black edge of CB(D, G) adjacent to xr;
21. In B(G):
22. Remove the black edge (xr, zu);
23. Add the black edges (xr, ys) and (ys, zu);
24. Add the gray edge (xr, ys);
25. In CB(D, G):
26. Remove the black edge (xr, zu);
27. Remove the gray and dotted edges (xr, ys);
28. Remove the dotted edge adjacent to ys;
29. Add the black edge (ys, zu);
30. End If

31. End For

32. End While

33. Return (The genome G′ deduced from the black edges of B(G));

Fig. 4. The notation s for s ∈ {t, h} refers to the complement of s in this set. More precisely, if s = t then s = h and
if s = h then s = t. A “single gray edge” is a gray edge that has no parallel gray edge.

Unfortunately, it happens (very rarely) that the graph CB(D, G) obtained as an output
of the For Loop 13 - 31 is acyclic, which prevents any modification by the For Loop 2 - 9,

and does not allow then to re-enter the For Loop 13 - 31, as no single gray edge exists. This
is the reason of Instructions 10 - 12, allowing to remove any gray edge with a parallel dotted
edge, and then proceeding with the For Loop 13 - 31.

a b c c ah bt h t h t h h t t h t h t h t
b b c c a a b b aa(a)

a c a b a−b
2 1 1 1 1 2 2 21

2 1 1 2 2

1

a b c a

h h t t h t h t h t
a b b c c a a b b aa b c c ah bt h t h t(b)

−ba c a b aa b c a

h h t t h t h t h t
a b b c c a a b b c

h tc aa b c c ah bt h t h t(c)
−ba c a b c a2a b c a

1

2 1 1 1 1 2 2 21

2 1 1 2 2

1

2 1 1 1 1 2 2 21

2 1 1 2 2

1 2

2

2

b c a
(d)

a

h h t t h t h t h t
a b b c c a a b b c

h tc aa b c c ah bt h t h t

−ba c a b c a
2 1 1 1 1 2 2 21

2 1 1 2 2

1 2

2

2

1

1

1

CB(D, G): B(G):

Fig. 5. An execution of Algorithm Double-Distance-with-Loss(G,D) with D = (a b c)⊕ (a b c) and G = (a − b c a b). The
evolution of the contracted breakpoint graph CB(D, G) and the partial breakpoint graph B(G) are shown respectively
on the left and right sides of the figure. (a) The initial graphs. Gene c is a singleton and, in CB(D, G), each of its
extremities is connected by a dotted edge to its adjacent vertex in D. (b) The current graphs after executing the For
Loop 2 - 9. No more alternating cycles are present in CB(D, G). (c) The current graphs after executing the For Loop
13 - 31. The second copy of c is inserted in B(G) and edges are updated in both graphs. (d) The current graphs after
a second execution of the For Loop 2 - 9. As CB(D, G) is empty (no edges left), the algorithm stops.

Lemma 4. The completed graph B(G, DL) output by Algorithm Double-Distance-with-Loss
satisfies:

1. Its set of black edges represent an extension of G.
2. Its set of gray edges represent, either a labelling of D or a bi-circular representation of a

labelling of D.

Proof. 1. Follows from the fact that the algorithm ends up with an empty graph CB(D, G)
(no edges remain in CB(D, G)). Therefore, at the end, for each singleton in G, two vertices
and one black edge have been added in B(G), leading to a genome G′ with all missing
copies of G inserted.

2. Same proof as for Lemma 2 2

5.2 Multichromosomal genomes

In the case of G and D being multichromosomal genomes, the right and/or left neighbour
in D of a singleton gene can be a chromosome end (represented by O in the contracted

breakpoint graph; see section 4.2). Since O is a special node that is adjacent to the endpoint
genes of all the chromosomes, some modifications have to be made to Algorithm Double-
Distance-with-Loss(G,D) for multichromosomal genomes.

The special node O is not considered as a singleton node in the contracted breakpoint
graph, so the only part of Algorithm Double-Distance-with-Loss(G,D) that has to be changed
is between lines 18 - 30. When working on the dotted edge (xr, ys), if xr = O, then there are
two possibilities: the singleton gene y is, in D, (1) adjacent to a gene and a chromosome end,
or (2) adjacent to two chromosome ends (i.e. y is the only gene on a chromosome). In the
first case, we can simply work on the dotted edge adjacent to ys, which is the dotted edge
representing the other adjacency of y in D. In the second case, both ys and ys are connected
to O by a dotted edge. Algorithm Double-Distance-with-Loss(G,D) can then be used on any of
these two dotted edges if we skip lines 20, 22 and 26 and set zu = O.

6 Results

Since the generalization of the genome halving problem to a present-day RDL genome has
been proved to be an exact algorithm executing in linear time, we only test the performance
of the proposed method to compute the double distance. We generated datasets through
simulated evolutions between a duplicated genome D and an RD or RDL genome G for both
circular and multichromosomal genomes, as follows.

Simulated datasets: We first determine n, the number of genes, and N , the number of chro-
mosomes in Dpredup. We also define l, the percentage of genes in Dpredup that is lost after
the WGD. Then, we generate D by applying a WGD, and a series of rearrangement and/or
loss events are performed on D to obtain G. The rearrangements are simply the ones al-
lowed by our model, namely inversions only in the case of circular genomes or inversions
and translocations (including fusions and fissions) in the case of multichromosomal genomes.
The number of rearrangement events, µ, is a parameter chosen prior to the data generation,
and the size of each rearrangement is chosen randomly. As for the rates of rearrangement
operations, we chose (Inv : Trans : Fus+Fiss) = (5 : 4 : 1) to follow the rates reported for a
lineage where a WGD occurred (Gordon et al., 2009).

In order to validate the distances obtained with our greedy approach, we use an exact
algorithm described below.

Exact algorithm: If G is an RDL genome, we generate all possible RD genomes by reinserting
the missing gene copies at all possible positions following Lemma 3. The following algorithm
can be used with RD genomes. Let L (resp. L∗) be a complete (resp. partial) labelling of the
gene copies of D, and B(G, DL∗

) the breakpoint graph where the only defined gray edges
are those adjacent to the genes of L∗. The idea is to compute a lower bound for dR(G, D)
as we progressively construct L∗. More precisely, if at one step we have c cycles and p paths
in B(G, DL∗

), we know that the number of cycles in B(G, DL) will be at most equal to
c + p. Thus it is possible to use the following lower bound in a branch and bound strategy:
dR(G, D) ≥ n − c − p.

Due to the high running-time complexity of the exact method, validation with the exact
distance can only be done for “simple” datasets obtained with a low number of genes, a
low number of rearrangements, and a maximum of two singletons. For datasets that were
too complex for the exact algorithm, we estimated the accuracy of our greedy algorithm for
the double distance by comparing the inferred distance with the number of rearrangements
performed between D and G in the simulated evolution.

6.1 Time efficiency

Since the running-time complexity is a function of n for the exact approach, we generated
genomes containing different numbers of genes to evaluate the time efficiency of our greedy
heuristic. For the exact method, n varies from 10 to 100, with an increment of 10. The
parameters µ, N and l are arbitrarily fixed to 15, 4 and 0 respectively. For Algorithm Double-
Distance-with-Loss(G,D), n varies from 100 to 1000 with an increment of 100 and we plotted
the results for l equal to 0, 10 and 50%. With µ fixed to 15, the running-time of Algorithm
Double-Distance-with-Loss(G,D) does not vary (below 0.001 seconds for all values of n). Thus,
the number of rearrangements has been changed to µ = n in order to see a variation in the
running-time. For each of those n values, multiple datasets were generated and the running
time was averaged.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100

T
im

e
(s

ec
on

ds
)

Nb of genes

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 200 400 600 800 1000

T
im

e
(s

ec
on

ds
)

Nb of genes

0% losses
10% losses
50% losses

Fig. 6. Left: Running-time of the exact algorithm computing the double distance without losses between D and
G with various number of genes and a fixed number of rearrangements (µ=15). Right: Running-time of Algorithm
Double-Distance-with-Loss(G,D) to compute the double distance with various number of genes and rearrangements
(µ = n) and different gene loss percentages.

We can clearly observe the exponential running-time of the exact approach when the
number of genes increases (see Figure 6 left). In contrast, Algorithm Double-Distance-with-
Loss(G,D) is less limited by the genome size and more by the number of rearrangements.
In Figure 6 right, we can see that even for datasets with a high number of rearrangements
(µ = n), the running-time, for 0% losses, remains under or close to 1 second. Obviously, the
more losses there are in G, the slower is the algorithm, but the running-time remains less
than the anticipated worst-time complexity.

6.2 Heuristic accuracy

Comparison with the exact approach. We now test whether Algorithm Double-Distance-with-
Loss(G,D) infers an accurate rearrangement distance by comparing its results against those
of the exact approach. Recall that because of the high running-time complexity of the exact
approach, we can only perform this algorithm on simple datasets exhibiting low numbers
of genes, rearrangements and losses. The genomes were generated with n fixed to 25, N

to 4 for multichromosomal genomes, µ varying from 0 to 50 by increments of 5 and zero,
one or two singletons. For each value of µ, 500 datasets were simulated. The error rate is
the proportion of datasets for which the exact method found a more accurate distance than
Algorithm Double-Distance-with-Loss(G,D). Results are averaged over all datasets showing a
comparable number of rearrangement events.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50

E
rr

or
 R

at
e

Nb of rearrangement events

0 singleton
1 singleton

2 singletons

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50

E
rr

or
 R

at
e

Nb of rearrangement events

0 singleton
1 singleton

2 singletons

Fig. 7. Comparison of Algorithm Double-Distance-with-Loss(G,D) with the exact approach for genomes of size 50 right
after the WGD, showing the error rate of the inferred rearrangement distance for circular (left) and multichromosomal
genomes (right). Error rates were computed for genomes with zero, one and two singletons.

As observed in Figure 7, the error rate of Algorithm Double-Distance-with-Loss(G,D) is close
to 0 when the number of rearrangements is less than 15. Moreover, the distance inferred by
Algorithm Double-Distance-with-Loss(G,D) is in average really close to the optimal distance
for both types of genomes (circular and multichromosomal). In fact, when the distance is not
the same, it differs in average by 1 rearrangement and at most by 2 (which occurred only once
in our simulations). Naturally, the error rate of Algorithm Double-Distance-with-Loss(G,D) is
more apparent when the number of rearrangements and losses increases. This behavior is
due to the fact that when a high number of rearrangements is performed, different cycles of
equal size can be selected and a choice must be made affecting the remaining set of cycles.
The presence of missing gene copies will also produce more errors because the reinsertion
procedure introduces more choices. As stated before, in this experiment we seek to optimize
the rearrangement distance, but we obtain similar results if we seek to optimize the DCJ
distance (results not shown).

Complex datasets. As a final experiment, simulations were performed with n = 1000, N

= 8 for multichromosomal genomes, µ varying from 0 to 1000, and l equal to 0, 25 and

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

In
fe

rr
ed

 D
is

ta
nc

e

Nb of rearrangement events

0% losses
25% losses
50% losses

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

In
fe

rr
ed

 D
is

ta
nc

e

Nb of rearrangement events

0% losses
25% losses
50% losses

Fig. 8. Inferred rearrangement distances with complex datasets (n = 1000) and different gene loss percentages, for
circular genomes (left) and multichromosomal genomes (right).

50%. The distances obtained with Algorithm Double-Distance-with-Loss(G,D) are compared
with µ. Results shown in Figure 8 demonstrate that our method infers distances close to
the number of rearrangement events performed on the original genome (for circular and
multichromosomal genomes). However, when the number of rearrangement events increases,
our approach underestimates that value. Notice that the more losses there are, the lesser the
distance is because we reinsert the missing gene copies next to one of their adjacent genes
in D. As in the comparison with the exact approach, the results are similar with the DCJ
distance (not shown).

7 Conclusion

We presented a linear time algorithm to solve the genome halving problem for genomes with
missing gene copies. We also presented a greedy heuristic (Algorithm Double-Distance(G,D))
to compute the distance between an RD genome G and a duplicated genome D for the
rearrangement and DCJ distances. Finally, we generalized this algorithm so that genome G

can be an RD or RDL genome (Algorithm Double-Distance-with-Loss(G,D)). Our experiments
on simulated datasets showed that Algorithm Double-Distance-with-Loss(G,D) is time-efficient
and accurate.

The proposed heuristic for the double distance could be adapted to genomes that have
undergone more than one WGD, thus increasing the running-time complexity as the number
of possible labellings for a gene would increase. Our algorithm could then be used for the
rearrangement phylogeny problem with genomes that have evolved through one or more
whole genome duplications. Indeed, this method would allow to compute distances efficiently
on all branches of such a phylogeny and consequently, an algorithm for the median problem
could be used on the tree.

Another interesting future work will concern the generalization of Algorithm Double-
Distance-with-Loss(G,D) for genomes G and D both being RD or RDL genomes. The current
approach, using the contracted breakpoint graph, can not be used directly when the genome
D is not a perfectly duplicated genome.

Bibliography

Alekseyev, M. and Pevzner, P., 2007a. Colored de bruijn graphs and the genome halving
problem. IEEE/ACM Trans. Comput. Biol. Bioinformatics 4, 98 – 107.

Alekseyev, M. and Pevzner, P., 2007b. Whole genome duplications, multi-break rearrange-
ments, and genome halving problem. In Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms, 665 – 679.

Bader, D., Moret, B., and Yan, M., 2001. A linear-time algorithm for computing inversion
distance between signed permutations with an experimental study. Journal of Computa-
tional Biology 8, 483 – 491.

Bergeron, A., Mixtacki, J., and Stoye, J., 2004. Reversal distance without hurdles and
fortresses. In Combinatorial Pattern Matching, LNCS, volume 3109, 388 – 399.

Bergeron, A., Mixtacki, J., and Stoye, J., 2006. A unifying view of genome rearrangements.
In Algorithms in Bioinformatics, LNCS, WABI, volume 4175, 163 – 173.

Bergeron, A., Mixtacki, J., and Stoye, J., 2009. A new linear time algorithm to compute the
genomic distance via the double cut and join distance. Theoretical Computer Science 410,
5300 – 5316.

Blanc, G., Hokamp, K., and Wolfe, K., 2003. A recent polyploidy superimposed on older
large-scale duplications in the Arabidopsis genome. Genome Research 13, 137 – 144.

Bowers, J., Chapman, B., Romg, J., and Paterson, A., 2003. Unravelling angiosperm genome
evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433 –
438.

El-Mabrouk, N. and Sankoff, D., 2003. The reconstruction of doubled genomes. SIAM
Journal on Computing 32, 754 – 792.

Gavranović, H. and Tannier, E., 2010. Guided genome halving: probably optimal solutions
provide good insights into the preduplication ancestral genome of Saccharomyces cere-
visiae. In Pacific Symposium on Biocomputing, volume 15, 21 – 30.

Gordon, J., Byrne, K., and Wolfe, K., 2009. Additions, losses, and rearrangements on the
evolutionary route from a reconstructed ancestor to the modern saccharomyces cerevisiae
genome. PloS Genetics 5, e1000485.

Hannenhalli, S., 1995. Polynomial-time algorithm for computing translocation distance be-
tween genomes. In LNCS, volume 937, 162 – 176.

Hannenhalli, S. and Pevzner, P., 1995. Transforming men into mice. In Proceedings of the
IEEE 36th Annual Symposium on Foundations of Computer Science, 581 – 592.

Hannenhalli, S. and Pevzner, P. A., 1999. Transforming cabbage into turnip (polynomial
algorithm for sorting signed permutations by reversals). JACM 48, 1 – 27.

Kotzig, A., 1968. Moves without forbidden transitions in a graph. Matematicky casopis 18,
76 – 80.

P. Dehal, J. B., 2005. Two rounds of whole genome duplication in the ancestral vertebrate.
Plos Biology 3, e314.

Pevzner, P., 1995. Dna physical mapping and alternating eulerian cycles in colored graphs.
Algorithmica 13, 77 – 105.

Salse, J., Bolot, S., Throude, M., Jouffe, V., Piegu, B., Quraishi, U., Calcagno, T., Cooke,
R., Delseny, M., and Feuillet, C., 2008. Identification and characterization of shared du-
plications between rice and wheat provide new insight into grass genome evolution. The
Plant Cell 20, 11 – 24.

Soltis, D., Albert, V., Leebens-Mack, J., Bell, C., Paterson, A., Zheng, C., Sankoff, D.,
dePamphilis, C., Wall, P., and Soltis, P., 2009. Polyploidy and angiosperm diversification.
American Journal of Botany 96, 336 – 348.

Tannier, E., Zheng, C., and Sankoff, D., 2009. Multichromosomal median and halving prob-
lems under different genomic distances. BMC Bioinformatics 10.

Tesler, G., 2002. Efficient algorithms for multichromosomal genome rearrangements. Journal
of Computer and System Sciences 65, 587 – 609.

Yancopoulos, S., Attie, O., and Friedberg, R., 2005. Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21, 3340 – 3346.

Zheng, C., Zhu, Q., Adam, Z., and Sankoff, D., 2008a. Guided genome halving: hardness,
heuristics and the history of the hemiascomycetes. ISMB, 96 – 104.

Zheng, C., Zhu, Q., and Sankoff, D., 2008b. Descendants of whole genome duplication within
gene order phylogeny. Journal of Computational Biology 15, 947 – 964.

